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Preface 
This report has been produced by the UK Energy Research Centre’s Technology and 

Policy Assessment (TPA) function.  

The TPA was set up to address key controversies in the energy field through 

comprehensive assessments of the current state of knowledge. It aims to provide 

authoritative reports that set high standards for rigour and transparency, while 

explaining results in a way that is useful to policymakers.  

This report forms part of the TPA’s assessment of evidence for near-term physical 

constraints on global oil supply. The subject of this assessment was chosen after 

consultation with energy sector stakeholders and upon the recommendation of the 

TPA Advisory Group, which is comprised of independent experts from government, 

academia and the private sector. The assessment addresses the following question: 

What evidence is there to support the proposition that the global supply of 

‘conventional oil’ will be constrained by physical depletion before 2030? 

The results of the project are summarised in a Main Report, supported by the 

following Technical Reports: 

1. Data sources and issues 

2. Definition and interpretation of reserve estimates 

3. Nature and importance of reserve growth 

4. Decline rates and depletion rates 

5. Methods for estimating ultimately recoverable resources 

6. Methods for forecasting future oil supply  

7. Comparison of global supply forecasts 

The assessment was led by the Sussex Energy Group (SEG) at the University of 

Sussex, with contributions from the Centre for Energy Policy and Technology at 

Imperial College, the Energy and Resources Group at the University of California 

(Berkeley) and a number of independent consultants. The assessment was overseen 

by a panel of experts and is very wide ranging, reviewing more than 500 studies and 

reports from around the world. 

Technical Report 6: Methods of forecasting future oil supply is authored by Adam 

Brandt of the Energy and Resources Group at UC Berkeley. It describes the different 

methodologies available for forecasting oil supply, identifies their key assumptions 

and sensitivities and assesses their strengths and weaknesses. It highlights a 

convergence in the literature and draws conclusions regarding the predictive value of 

such models and the confidence that may be placed in the forecasts obtained.  
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Executive Summary 

 

For over a century, oil depletion has repeatedly surfaced as an issue of concern. The 

mathematical methods used to understand oil depletion and to predict future oil 

production have become more sophisticated over time: poorly-quantified concern over 

future oil resources in the early 20
th

 century has given way to sophisticated simulations of 

oil discovery and extraction. This systematic review assesses the insight offered by these 

methodologies and critically evaluates their usefulness in projecting future oil production. 

It focuses on models that project future rates of oil production, and does not address the 

modeling or estimation of oil resources (e.g., ultimately recoverable resources, or URR). 

 

Models reviewed include the Hubbert methodology, other curve-fitting methods, 

simulations of resource discovery and extraction, detailed ―bottom-up‖ models, and 

theoretical and empirical economic models of oil resource depletion. Important examples 

of published models are discussed, and the benefits and drawbacks of these models are 

outlined. I also discuss the physical and economic assumptions that serve as the basis for 

the studied models. 

 

Simple mathematical models are reviewed first. Resource exhaustion models based on 

the reserve-to-production ratio have been used since the early 20
th

 century. These models 

are unfit for understanding even the gross behavior of future oil supplies, as they account 

for neither reserve growth nor empirically-observed shapes of oil production profiles. 

Curve-fitting methods began with the early hand-drawn models of Hubbert and Ayres. 

Hubbert later built his logistic model of oil depletion. The key characteristics of the 

Hubbert method include: a logistic cumulative discovery function, a symmetric 

production profile, and the use of ultimately recoverable reserves (URR) as an exogenous 

constraint. 

 

Hubbert‘s work inspired a variety of related curve-fitting models which relax one or more 

of his key assumptions. Some rely on non-logistic functions, such as exponential, linear, 

or Gaussian curves. Some models exhibit asymmetric rates of increase and decrease, 

allowing them to closely fit production profiles that have decline rates that differ from 

their rates of increase. Other models, often called ―multi-cycle‖ models, treat production 

as the sum of a number of technologically or geologically distinct cycles of development.  

 

There are a variety of arguments made in support of using bell-shaped curves, but these 

are not rigorous in general, and arguments based on the central limit theorem are 

especially difficult to justify. Empirical results suggest that bell-shaped functions are 

useful for fitting historical production profiles, but that they are by no means exclusive in 

this respect. Also, the increased complexity of multi-cycle models often results in 

spurious precision of model fit to data because such models lack a priori justification for 

the specific timing or magnitude of any given cycle. 

 

Simulation models of oil depletion differ from curve-fitting models in that they do not 

assume a given function for oil production curves (e.g., a bell-shaped logistic function) 

but instead represent physical and economic mechanisms of the discovery and extraction 
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of oil. Such mechanistic aspects can include discovery probabilities or the increasing 

difficulty of oil extraction as a function of depletion. The most complex of these 

simulations model the investment and extraction of a number of competing fuels, such as 

conventional crude oil and unconventional hydrocarbons like tar sands.  

 

Unfortunately, simulation models are complex and difficult to understand or critique. 

This hinders a key goal of mathematical modeling: to increase our understanding of how 

the oil production system functions. As model complexity increases, the required number 

of data inputs and model parameters increases as well. Often times the primary data on 

which to base such model inputs are of poor quality or are simply not available. This can 

result in an increase in the number of assumptions required, thus negating some of the 

value of their increased detail. 

 

Bottom-up models of oil depletion utilize detailed datasets of reserves and production, 

often including data at the field level. These models allow relatively straightforward and 

simple assumptions about field-level production behavior to be summed into aggregate 

regional or global production curves that exhibit considerable complexity and, in 

principle, could accurately reproduce observed production profiles. These models are 

critiqued because they are based on datasets that are not publically available. In addition, 

their complexity requires many assumptions based on modeler judgment. Both of these 

characteristics, which are fundamental to the method and give it much of its strength, 

hinder the ability of other authors to replicate or improve on these models. 

 

There are two primary types of economic oil depletion models: optimal depletion models 

and econometric models. Theoretical models of optimal resource depletion are created to 

analytically explore the economic tradeoffs between producing exhaustible resources 

now or producing them at a later time. They are very simple, which is advantageous 

because they allow tractable analytical solutions to be developed. Econometric models of 

oil depletion form the mechanistic counterpart to theoretical models of optimal depletion. 

These models require significantly more input data than optimal depletion models. Of 

particular importance are ―hybrid‖ econometric models that include simple 

representations of physical aspects of oil production (such as the relationship between 

depletion level and extraction costs) in addition to more traditional economic variables 

such as the oil price.  

 

There are difficulties with both types of econometric models. Economic optimal 

depletion models are problematic because they are largely theoretical and have little or no 

representation of the specifics of oil production.  This is a consequence of keeping the 

models simple so that they remain analytically tractable. In contrast, econometric models 

can include many variables affecting oil production, and therefore can exhibit excellent 

fidelity to historical production data. Unfortunately, this fidelity tends not to be robust 

when used for anything but short-term predictions. 

 

We conclude this review with a number of synthesizing thoughts. We first classify all 

major reviewed models along four dimensions of variability: 1) their emphasis on 

physical or economic aspects of oil production, 2) their scale, 3) their degree of 
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representation of mechanistic details of the oil production process, and 4) their 

complexity. Interestingly, a number of models that are based on quite disparate 

assumptions (e.g., physical simulation vs. economic optimal depletion) produce 

approximately bell-shaped production profiles. This is a hopeful convergence, because a 

good number of observed historical production profiles are approximately bell-shaped. 

 

The mathematical and analytical tools used to determine the quality of fit of models to 

historical data make it difficult to determine definitively whether one model type is 

superior. Available empirical data suggest that a number of different functions are useful 

for fitting historical data.  And experience with the results of complex simulation models 

suggests that fidelity in fitting historical data does not indicate that a model will be 

successful in forecasting future production. 

 

Skepticism is warranted regarding the ability of simple models to predict with precision 

the date of peak oil production. Despite this, they are likely useful for making predictions 

of the decade of peak production for a given URR estimate. I also argue that more 

detailed models have significant advantages for near-term forecasts, but that the many 

uncertainties involved reduce this advantage for making long-term predictions. I 

emphasize that attempting to use any models to make detailed predictions is likely to not 

be useful, because many aspects of the world are not included in even the most complex 

models. 

 

Increasing model complexity is often not a useful way to increase model fidelity. And, in 

fact, increasing model fidelity though additional complexity is detrimental to the other 

important goal of modeling oil depletion, which is to increase our understanding of the 

physical and economic processes underlying oil depletion. 

 

Lastly, I argue that forecasting the physical aspects of oil depletion without also including 

the economics of substitution with alternatives to conventional petroleum (e.g. coal-

liquids or the tar sands) results in unrealistic projections of future energy supply. By 

ignoring this adaptive substitution process, models ignore the important economic and 

environmental impacts that will arise from this transition to substitutes for conventional 

petroleum. 
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1 Introduction 
Concern about the availability of oil emerged soon after the birth of the modern oil 

industry and has resurfaced repeatedly since, leading to numerous predictions of 

impending exhaustion of oil resources. And while these projections were generally 

proven incorrect (sometimes spectacularly so), the future never seemed assured. This is 

because, as Adelman (1997) argued, the oil industry is fundamentally ―a tug-of-war 

between depletion and knowledge.‖ And although knowledge has won out over depletion 

for the last 150 years, allowing us to increase oil production almost continuously, there is 

uncertainty about how much longer this can continue.  

 

There are two key questions facing those who attempt to model oil depletion. First, how 

much recoverable oil exists? Answering this question requires estimating ultimately 

recoverable resources (URR), the amount of oil that can be economically produced over 

all time. See a companion report (Sorrell and Speirs 2009) for a discussion of this 

problem. Secondly, we can ask: how quickly will this stock of oil be depleted, and what 

path will production take over time? This is the problem of how one converts an estimate 

of URR into an estimate of future rates of oil production. This report addresses this 

question by reviewing the mathematical methods used to project rates of oil production 

over time.    

 

Quantitative understanding of oil depletion has increased significantly over the last 

century. Calculations of the exhaustion time of remaining oil resources were performed 

as early as 1909, although the methods used were simple (Day 1909).  By mid-century, 

methods of predicting field-level production were used in evaluating the economics of 

producing fields (Arps 1945), and statistical methods were developed to better project 

how much oil is likely to be found in a given region (Kaufman 1983). In the 1950s and 

1960s, curve-fitting techniques were used to forecast petroleum production, accurately 

predicting the peak in US oil production in 1970 (Hubbert 1956). After the oil crisis of 

1973, the problem of oil depletion received great attention from economists, temporarily 

elevating the area of resource depletion to a field of vigorous theoretical exploration 

(Krautkraemer 1998). And finally, the 1970s and 1980s saw increasing focus on 

econometric modeling of oil discovery and extraction (Walls 1992). Interest in oil 

depletion waned after the oil price decline of the mid 1980s, resulting in a decline in 

academic interest until recently.  

 

Oil depletion models vary in many ways, but three dimensions are key (see Figure 1). 

First, the level of aggregation varies between models: some models project global 

production, while others model production from individual fields. Second, some models 

fit a theoretical function to historical data to project future production, while others 

attempt to model the mechanisms governing oil discovery and extraction. Lastly, some 

models rely primarily upon on economic reasoning, while others emphasize the physical 

nature of oil depletion.
1
 

                                                 
1
 This list is not exhaustive, and other important dimensions include: model complexity, forecasting period 

(near vs. long-term); maturity of the forecasted region (i.e., unexplored, pre-peak, or post-peak); or the 

production of deterministic (point value) or probabilistic results (Schuenemeyer 1981). Other classification 
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The models reviewed in this report inhabit different portions of the space represented in 

Figure 1. Some models clearly inhabit one region of this diagram, like a global curve-

fitting model that utilizes a physically-based exponential depletion function (Wood, Long 

et al. 2000). Other models attempt to bridge the gap between the extrema of these 

dimensions, such as a field-level model that ―builds up‖ to a global depletion projection 

(Miller 2005) or a model that uses probabilistic properties of the energy system to 

generate the functional forms used in curve fitting (Bardi 2005). 

 

What insight is offered by these methods of modeling oil depletion? Which of these 

models best reproduce historical data? And, given the uncertainties involved, are any of 

these methods useful for predicting the course of future oil production? This systematic 

review attempts to address these questions. 

 

1.1 Outline of report structure 
A wide range of mathematical models of oil depletion are reviewed.

2
 I start by outlining 

simple quantitative models (Section 2), followed by curve-fitting methods such as 

Hubbert‘s method (Section 3). Next, I review simulations of resource discovery and 

extraction (Section 4), and ―bottom-up‖ field-level projections of near-term production 

(Section 5). Lastly, I review economic models of oil depletion (Section 6).  

 

For each modeling approach, I discuss its physical and/or economic basis, including its 

grounding in observed data. I attempt to critique each model within its original context, 

and save overarching critiques that apply across classes of models for the synthesizing 

                                                                                                                                                 
systems have been used to group models. Walls (1992) groups models into geologic/engineering and 

econometric models, while Kaufman (1983) groups models of oil resource estimation into six categories. 
2
 This review represents a comprehensive survey of the published, peer-reviewed literature. Some non-peer 

reviewed industry journals such as Oil & Gas Journal are included, as well as a few prominent or 

particularly original works published in the informal or government literature. 

 
Figure 1. Three of the dimensions along which oil depletion models vary. The level of aggregation 

is shown by the vertical dimension, the level of mechanistic detail is given by the horizontal 

dimension, and the intellectual grounding of the model is represented by the depth dimension. 
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discussion. I do not review models used for predicting production from individual fields 

(i.e. exponential or hyperbolic decline curves) (Arps 1945). I also do not review statistical 

―discovery process‖ models, because they are more typically used to estimate URR (Arps 

and Roberts 1958; Drew and Schuenemeyer 1993). 

 

I conclude by addressing overarching topics (Section 7). First, I classify the variety of 

models reviewed in the paper along a number of dimensions and discuss a convergence 

across a number of model types toward ―bell-shaped‖ production profiles. I then question 

whether we can determine which model ―works best‖ at fitting historical production 

profiles. I then summarize what is known about the predictive value of these models, and 

discuss the role of complexity in the predictive ability of models. I conclude by 

describing one way in which future oil depletion models could be improved.  

 

1.2 Terminology and mathematical formulation 
Some terms are used repeatedly throughout this report. A production profile or 

production curve is a plot of oil production with volumes of oil produced plotted on the 

y-axis and time on the x-axis. The production cycle is the complete production profile 

from the start of production to when the resource is exhausted.  

 

Reserves are the volume of oil estimated to be extractable from known deposits under 

current technical and market conditions. The level of confidence in these estimates is 

typically indicated by the terms proved reserves (1P), proved and probable reserves (2P) 

and proved, probable and possible reserves (3P). Typically, only proved reserves 

estimates are publicly available. 

 

Cumulative discoveries for a region represent the sum of cumulative production and 

reserves in known deposits. Estimates of cumulative discoveries tend to grow over time, 

as a result of improved recovery, additional discoveries and other factors. This is 

commonly referred to as reserve growth although it is more accurately the estimates of 

cumulative discoveries that are growing, rather than declared reserves. Ultimately 

recoverable resources (URR) are the volume of oil estimated to be economically 

extractable from a field or region over all time. For known deposits, the URR represents 

the sum of cumulative discoveries and estimates of future reserve growth. For a 

geographical region, the URR represents the sum of cumulative discoveries, future 

reserve growth and yet to find resources. The remaining resources for a region are all the 

resources that have yet to be produced – calculated by subtracting cumulative production 

from the estimate of URR. 

 

Nearly all models presented in this review are of the general mathematical form:
3
 

   ),,,,,( 321321 xxxfy . eq. 1  

                                                 
3
 A good reference for the statistics of model fitting is the NIST Engineering Statistics Handbook. 

(NIST/SEMATECH 2008). 
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Here the dependent variable y is a function f of a set of input data xi, parameters βi, and 

random error ε.
4
  In model fitting, historical values of the dependent variable and input 

data are used to fit the model so as to solve for the values of the parameters βi. These 

fitted values of βi are then used to make predictions by solving the model for future 

values of the input data. In nearly all cases described here the dependent variable is P, oil 

production in a given year, and common input data include the year, URR, or oil price. 

 

In general, I refer to model parameters βi in this report as parameters or free parameters. 

I refer to xi as the input data, or as an input time series if a series of observations (e.g., 

yearly oil price) is used in f. I will often call a given input datum a constraint if it is a 

value that in some instances of the model could be treated as a free parameter, but in this 

case is assigned a fixed value. For instance, in some simple curve-fitting models, the 

value of URR can be left free to vary (therefore a free parameter), but in most instances a 

fixed value is provided for URR in order to constrain the fitting algorithm and improve 

model results. 

 

Also, in order to make the variety of models outlined here comparable, I standardize their 

mathematical notation wherever possible (see Table 1). Therefore, notation used here will 

not always align with notation in the cited work, but mathematical equivalency will be 

maintained. 

                                                 
4
 Other names for these parts of a model are the response variable (y) and predictor variables (xi). Because 

most oil depletion models are not built by statisticians, the random error component is generally not made 

explicit. Authors of such models generally acknowledge implicitly that there is an error term, through 

suggestions that their model is, for example, ―only approximate.‖ 

Table 1. Mathematical notation used in this study 

t Time, typically measured in years 

t0 Initial time period (first year of production or first year of model fit) 

tpeak Year of peak oil production 

tex Year of exhaustion of oil resources 

P(t) or P Oil production in a given year t, equal to Q’(t) or dQ/dt 

P0 Oil production in initial year t0 

Ppeak Oil production in year tpeak, or maximum oil production rate  

Q(t) or Q Cumulative oil production to year t, equal to sum of P(t) from years t0 to t 

Q∞ Ultimately recoverable resources (URR), equal to sum of P(t) from years t0 to ∞. 

D(t) Cumulative discoveries to year t 

R(t) or R Current reserves in year t 

M(t) or M Remaining resources in year t, equal to Q∞ - Q(t). M(t) is larger than R(t) due to 

undiscovered oil and reserve growth. 

rinc Rate of increase of oil production 

rdec Rate of decrease of oil production 

 

 

 



 

UK Energy Research Centre                                       UKERC/WP/TPA/2009/021 

5 

2 Simple models of oil depletion 
The simplest models of oil depletion use estimates of recoverable oil volumes to calculate 

future availability of oil, often by calculating the exhaustion time of known resources. 

 

2.1 Early concerns about oil depletion 
Estimates of the lifetime of remaining oil resources were developed at least as early as 

1883 (Olien and Olien 1993). At that time, US geologists Lesley and Carll predicted 

exhaustion of oil ―in a generation.‖ By the turn of the 20
th

 century, concern about oil 

depletion began to increase due to rapid growth in automobile use. In 1905 the 

automobile enthusiast‘s magazine Horseless Age argued that ―the available supply of 

gasoline…is quite limited, and it behooves the farseeing men of the motor car industry to 

look for likely substitutes‖ (McCarthy 2001). These concerns remained poorly quantified 

until the development of simple mathematical models of oil depletion.  

  

2.2 Reserve to production ratio: The simplest “model” 
of depletion 

The simplest mathematical model of oil depletion is the reserve-to-production ratio (R/P 

ratio). The number of years until reserve exhaustion (tex) is calculated by dividing an 

estimate of current reserves (R), or sometimes remaining resources (M), by current 

production (P): 

 
P

R
tex  , eq. 2 

or,  

 
P

M
tex  . eq. 3 

Because M accounts for reserve growth and yet-to-find oil, the estimate of tex from eq. 2 

will be larger. Figure 2 (left) shows the production profile implicitly assumed by R/P 

models. These bear little relationship to actual production experience. Variations of the 

R/P methodology have been used since at least the early 1900s (Day 1909). If production 

grows exponentially at rate r  after the initial model year t0, as shown in Figure 2 (right), 

then 

  
ext

t

rt RdtPe

0

, eq. 4 

or if we solve for tex,  

 







 1ln

1

P

Rr

r
tex .

5
  eq. 5 

                                                 
5
 Of course, M could also be used in place of R in this model as well. 
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Use of the R/P ratio has a long history. Day (1909; 1909) published such calculations in 

Congressional reports and popular sources, causing significant concern (Olien and Olien 

1993). He argued that oil resources would be depleted in 90 years at then-current rates of 

production, but that with growth only 25 years would be required. Reserve-to-production 

methods have been used continuously since, especially in popular and journalistic 

accounts of oil depletion (most frequently in support of optimistic assessments of 

resource availability).
6
  

 

Reserve-to-production models are deficient. Comparing reserves to production is ―a 

fallacious approach based on circular reasoning‖ (McCabe 1998). Reserves, at least in 

regulated markets, are estimates of what is currently known to be economically 

producible at a given level of confidence, not the total oil in place. Thus, R/P measures 

the inventory of discovered and delineated petroleum deposits, not the exhaustion time of 

the petroleum resource. Also, production does not stay constant and will not decline to 

zero in a single year. It was acknowledged long ago that production would peak and then 

decline, not following the implicit R/P profiles shown above. For example, White (1920) 

calculated an R/P of 14 to 16 years, but argued that the peak would occur ―within five 

years…and possibly within three.‖
7
 

 

For these reasons, R/P models are of virtually no use in predicting oil availability. 

Despite this, they continue to be used because they satisfy a ―natural reaction that most 

people have‖ when they are told a reserve figure: to understand how much oil remains by 

calculating how many years are left if production remains constant (McCabe 1998).
8
 

                                                 
6
 Journalistic use of R/P occurred as early as 1920, when the New York Times (1920) cited a Bureau of 

Mines calculation that the United States ―has only an eighteen year supply.‖ 
7
 White (1922) also gives an intriguing discussion of depletion that sounds remarkably similar to modern 

concerns, despite its formality: ―our prodigal spending of our petroleum heritage may cause its too rapid 

depletion if not its early exhaustion in the midst of our spendthrift career, and at some untoward moment 

send us as beggars to foreign countries for the precious fluid not only to satisfy our extravagant habits but 

even to sustain our industrial prosperity, our standards of living, and our civilization.‖ 
8
 A recent example is Tony Hayward, CEO of BP who stated in June 2008 that ―…Myth number two is that 

the world is running out of hydrocarbons. Not so. The world has ample resources, with more than 40 years 

of proven oil reserves….‖ 
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Figure 2. Left: Production profile assumed by simple reserve-to-production ratio model, with R ≈ 

200 Gbbl (eq. 2) and M ≈ 600 Gbbl (eq. 3). Right: Production profiles for reserve-to-production 

ratio assuming exponential production growth (eq. 4). Each curve has R ≈ 600 Gbbl of oil, at 

growth rates of 0.01, 0.02, and 0.04 y
-1

 in the low, medium and high cases, respectively. 
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3 Curve-fitting models of oil depletion 
Mathematical curve-fitting

9
 models of oil production have been used since the 1950s. A 

variety of models exist, but their general approach is as follows: 

 

1. Define a mathematical function to statistically fit to historical production data. These 

functions do not model causal mechanisms (i.e., production is a function only of time 

or cumulative extraction). The most common form is a bell-shaped logistic function. 

2. Include constraints to improve the quality of projections made from the model fit. The 

most commonly used constraint is that total production must be less than estimated 

URR.
10

 

3. Fit the constrained model to historical data in order to project future production.
11

 

 

Curve-fitting models vary in the function used, in the use of URR as a constraint and in 

the assumption (or not) of symmetry of the model function. 

 

3.1 Hubbert’s logistic model  
The most well-known curve-fitting model is that of M. King Hubbert. Hubbert first 

produced a schematic of his model of resource depletion in 1949, followed by his 

projection of future US oil production in 1956 (Hubbert 1949; Hubbert 1956). While 

some analysts argue that these projections were unprecedented, there were important 

historical antecedents to Hubbert‘s methods. 

 

The idea that oil production follows a bell-shaped profile was advanced quite early. 

Arnold (1916) noted that ―the crest of the production curve is not a sharp peak, but is 

represented by a more or less wavy dome.‖ The work of Hewett (1929) was cited by 

Hubbert (1972) as a source of inspiration. Hewett applied a life-cycle framework to 

resource production, arguing that mineral producing regions would undergo a series of 

smoothed peaks, with the earliest peak in exports, and later peaks in the number of mills 

and smelters, and in production of metals. 

 

In 1949, Hubbert plotted asymmetrical bell-shaped projections of fossil energy 

production over time. No function was defined for the curve; he simply argued that ―the 

production curve of any given species of fossil fuel will rise, pass through one or several 

maxima, and then decline asymptotically to zero‖ (Hubbert 1949). 

 

Ayres made similar projections a few years later (Ayres 1952; 1953). In 1953 Ayres 

predicted that United States peak production of oil would occur in 1960 or 1970 

                                                 
9
 This is not the only way to describe these models. (2003) uses the pejorative term ―trendology‖ to refer to 

curve-fitting methodologies. Wiorkowski (1981) refers to these models as ―black-box‖ models because 

they subsume all effects to a single trend that is a function of time. 
10

 Another constraint used is that the production curve is analogous to the discovery curve but shifted in 

time. 
11

 A related approach fits a mathematical function to historical data on either cumulative production or 

cumulative discoveries and uses this to estimate the URR. These approaches are discussed in detail in a 

companion report (Sorrell and Speirs 2009). 
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depending on the level of ultimate recovery (100 or 200 Gbbl URR, respectively). 

Ayres‘prediction predated Hubbert‘s famous prediction by 3 years, used an identical 

estimate of URR, and arrived at the same peak date (Ayres 1953). Also, in 1952 the 

President‘s Materials Policy Commission study Resources for Freedom, an important and 

widely read study of the day, predicted peaks of 1963 to 1967 in two scenarios (PMPC 

1952). 

 

In March of 1956, Hubbert famously predicted that US oil production would peak 

between about 1965 and 1970 (Hubbert 1956). These two projections differed by the 

value of URR used to constrain the curve (150 and 200 Gbbl, respectively). This 

prediction was subsequently shown to be accurate when United States production peaked 

in 1970. Interestingly, one month earlier than Hubbert‘s prediction, analysts from Chase 

Manhattan Bank published a prediction showing a peak in US oil production in 1970 as 

well (Pogue, Hill et al. 1956).
12

 Also, in June of 1956, Ion predicted a peak between 1965 

and 1975 (Ion 1956). 

 

In 1959, Hubbert first applied the logistic function as a mathematical model for 

cumulative oil and gas discoveries. By plotting cumulative discoveries as a function of 

time, a ―sigmoid‖ curve was generated, which he fit with the logistic function. This curve 

can be extrapolated to find the asymptote of cumulative discovery (or URR). This value 

of URR can then be used to constrain the production curve, as cumulative production 

over all time must be less than or equal to cumulative discoveries.
13

 He does not give 

justification for his choice of the logistic function, stating that  

 
if we plot a curve of cumulative production for any given area, this curve will start from 

zero with a very low slope, because of the slow rate of initial production, and will then 

rise more or less exponentially before finally leveling off asymptotically to some ultimate 

quantity…  

 

Hubbert published papers until the 1980s utilizing these basic methods. He also 

developed related analytical methods, including modeling cumulative discovery as a 

function of exploratory effort (Hubbert 1967). In 1980, he published a full derivation of 

his logistic model (Hubbert 1980). This includes a derivation of the logistic curve from 

an assumption that the rate of growth of cumulative production forms a parabola (that is, 

the growth rate will be zero at the beginning and end of production from a region). The 

resulting function for cumulative production is  

  )(

0
01

)(
tta

eN

Q
tQ






 . eq. 6 

Here a governs the spread of curve and N0 is a dimensionless factor equal to 

 
0

0
0

Q

QQ
N


  . eq. 7 

                                                 
12

 Hubbert cites this text in his 1956 paper, so it is known that he read their work. The text of this article 

states that the peak will be in the ―1965-1975 decade‖ but their plots show the peak in 1970. 
13

 Hubbert also shifted the cumulative discovery curve by a fixed time increment to fit cumulative 

production data. It is unclear how primary this method was in his model fitting. 
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In this equation, Q0 equals the cumulative production in year t0. Production in year t is 

given by P(t), the derivative of Q(t) with respect to time: 

 
 2)(

0

)(

0

0

0

1

)(
)(

tta

tta

eN

eaN
Q

dt

tdQ
tP








 . eq. 8 

Figure 3 plots cumulative production Q(t) (left) and annual production P(t) (right) from 

Hubbert‘s logistic model. 

 

In order to solve for the free parameters in the model (Q∞ and a), Hubbert developed a 

technique now called ―Hubbert linearization‖ (Deffeyes 2003). He started with an 

assumption of a parabolic form for the differential equation governing the logistic curve:  

 
2bQaQ

dt

dQ


 . 
eq. 9 

This parabola has no constant term, because dQ/dt = 0 when Q = 0. We also know that 

the growth rate must also equal zero when all oil has been produced (Q = Q∞), so aQ∞ − 

bQ∞
2
 = 0, and thus  Qab / . Therefore, 

 
2Q

Q

a
aQ

dt

dQ





, 
eq. 10 

and we can divide both sides of this equation by Q: 

 Q
Q

a
a

Q

dtdQ




/

, 
eq. 11 

Hubbert realized that this equation can be plotted as a straight line in (dQ/dt)/Q vs. Q 

space. Solving this linear equation for the x-intercept (with (dQ/dt)/Q = 0) gives the value 

of Q∞.
14

 This technique has seen a modern resurgence as a variation of the conventional 

Hubbert technique (Deffeyes 2003). It simply represents a transformation of the model 

into a space where logistic behavior appears linear. This improves the ability of the eye to 

                                                 
14

 Similar techniques have long been used to model the production from individual fields (Arps, 1945). 

However, at the field level, the post-peak decline in production is normally assumed to take an exponential 

form, leading to a linear relationship between p(t) and Q(t) when the data are transformed into logarithmic 

space. 
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Figure 3. Left: Cumulative production in a logistic oil production model. In all cases URR is 600 

Gbbl, and Q0 is 0.2 Gbbl at time t0 =1. a equals 0.25, 0.35, and 0.5 in the low, medium, and high 

cases, respectively. Right: Production in a logistic oil production model, using same settings as 

cumulative production curves. 
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spot a logistic trend and deviations from it, but offers no difference in the mathematical 

properties of the fit.
15

 

 

3.2 Other curve-fitting models 
A variety of Hubbert-like curve-fitting models exist. These models share properties of the 

Hubbert method while relaxing or altering some of its assumptions. Some key 

assumptions of Hubbert‘s mathematical method include:
16

 

 

1. Production profile is given by the first derivative of the logistic function; 

2. Production profile is symmetric (i.e. maximum production occurs when the resource 

is half depleted and its functional form is equivalent on both sides of the curve);  

3. Production follows discovery with a constant time lag;  

4. Production increases and decreases in a single cycle without multiple peaks. 

 

Curve-fitting models that relax some or all of these assumptions are described below. 

 

3.2.1 Gaussian models of oil depletion 
In contrast to the logistic function, a Gaussian model of oil production is used by a some 

researchers (Bartlett 2000; Brandt 2007): 

 











 


2

2

2

)(

)(


peaktt

peakePtP , 
eq. 12 

where ζ is the standard deviation (width of the curve). Brandt (2007) uses an asymmetric 

version of the Gaussian curve to test for symmetry in production curves:  

 










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eq. 13 

where  

 )(
1

)(
peakttk

incdec
dec

e
tf










. 
eq. 14 

In eq. 14, ζinc and ζdec are the standard deviations on the increasing and decreasing sides 

of the production curve. k governs the rate at which σ shifts from the increasing to 

decreasing value. Note that for small values of t, ζinc dominates, while ζdec dominates at 

large values of t. Schematic plots of conventional and asymmetric Gaussian functions are 

given in Figure 4. 

 

3.2.2 Exponential models of oil depletion 
Exponential decline in production at the field level was noted as early as 1908 (Arps 

1945). In 1916 Arnold argued that ―the rate of decrease [is] based on the previous year‘s 

                                                 
15

 Caithamer (2007) argues that fitting a line to linearized data at certain points in production history would 

result in infinite oil production being projected. While the behavior of the transformed data will eventually 

settle and allow projection to the axis, it is unclear how soon one can be certain that this has occurred. 
16

 Hubbert (e.g.,1982) argued repeatedly and forcefully that the production profile in reality need not be 

symmetric or bell-shaped in reality, but his mathematical models were always based on this simplified 

formulation.  
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production, becoming gradually less and less.‖ Exponential regional production curves 

are often justified by analogy with field-level models of exponential production decline, 

but it is unclear whether this analogy holds rigorously.
17

  

  

Exponential growth or decay is characterized by a constant percentage change in the rate 

of production per year. It is given by the equation
)(

0
0)(

ttr
ePtP


 , where production in an 

initial year (P0) grows by the rate r after the initial year t0. A simple model of exponential 

increase and decrease is defined as follows: 
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17

 For example, if each of the fields in a region exhibit exponential depletion, will the aggregate production 

curve for the region also exhibit exponential decline? Depending on the timing of the projects, this is not 

necessarily the case (see Figure 7). Also, if the actual function followed resembles a combination of 

functional forms, such as the suggestion by Meng and Bentley (2008) that production is bell-shaped on the 

increasing side and exponential on the decreasing side, then they need not aggregate to an exponential 

curve at all. 
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Figure 4. Symmetric (medium) and asymmetric (low, high) Gaussian oil production profiles. 

Cumulative production over all years ≈ 600 Gbbl for three curves. In all cases σinc = 10 years and 

tpeak = 25 years. σdec = 20, 10, and 5 years in low, medium, high cases, respectively. 
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Where rinc and rdec are the absolute values of the rates of exponential increase and 

decrease. A schematic of the exponential production model is shown in Figure 5.  

 

A notable exponential projection was made by analysts from the US Energy Information 

Administration (Hakes 2000; Wood, Long et al. 2000). The projection utilizes 

probabilistic USGS estimates of recoverable reserves with a globally-aggregated 

exponential depletion model to produce profiles with very sharp peaks. They assume that 

production growth continues at about 2% per year until the global remaining-resources-

to-production ratio (M/P) reaches 10 years,
18

 at which point production declines in order 

                                                 
18

 This assumption derives from US experience. When US production peaked, the proved reserves-to-

production ratio equaled about 10 years. But the USGS data used in the EIA model includes reserves, yet-

to-find oil, and reserve growth until 2030 at a given probability (i.e., remaining resources). Thus, their 

application of the R/P rule actually represents a M/P model. 
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Figure 5. Exponential model of oil production. All profiles have cumulative production of ≈ 600 

Gbbl over years shown. All curves are symmetric, with growth rates of 1, 2, and 4% per year in 

low, medium, and high cases respectively. 

 

 
Figure 6. Projections from the Wood et al. EIA study (Wood, Long et al. 2000). Note the rapid 

rate of decline in production due to the assumption of decline under a constant R/P of 10 years. 
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to keep M/P equal to 10 years. This results in a 10% decline in production per year. Some 

results from this projection are shown in Figure 6.  

 

Also, Hallock et al. (2004) use a modified exponential methodology. Production 

increases in each country to meet domestic demand plus an increment for new world 

demand. The production rate increase for each nation is capped at a different rate 

depending on the scenario (at 5%, 7.5%, or 15%). Once cumulative production reaches 

50% of URR (or 60% in other scenarios), production declines exponentially. The growth 

rates around the peak (between 45 to 55% depletion) are modulated to smooth the peak.  

 

A key problem with exponential models is the interaction between aggregation and 

decline rates (Cavallo 2002). In the EIA model, production increases until the global R/P 

ratio reaches the target value. This is very different than a model where each country or 

region behaves according to the same R/P rule. The difference is illustrated in Figure 7. 

The left plot shows a globally aggregated exponential depletion model (as in the work of 

Wood et al.), while the right plot shows the same total quantity of oil produced but with 

production divided between 10 regions that independently follow the same R/P rule. In 

reality, the appropriate decline rate will vary by scale, and will generally be highest at the 

field level, with slower decline observed in aggregated regions. 

 

Empirical evidence for exponential behavior exists. Exponential and exponential-like 

production declines have been observed at the field level for decades (Arps 1945). And 

there is evidence that production declines exponentially for larger regions as well. For 

example, Pickering (2008) found that annual production in a given region is often a linear 

function of the country‘s proved reserves in that year. This, in essence, represents a fixed 

R/P production rate, or exponential decline. He found that the slopes of the linear 

relationship between reserves and production in non-OPEC ―fringe‖ and ―small fringe‖ 

countries suggested 4.6 and 3% exponential decline. Brandt (2007) found a median value 

of rdec= 2.6% for 74 post-peak regions. On the other hand, Skrebowski (2005) argues that 

overall depletion from existing sources is likely 4 - 6%. 
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Figure 7. Two exponential production models. In both cases, production for each region increases 

at 2% per year and decreases at 10% per year, as in Wood et al., and cumulative production in 

both cases is ≈ 600 Gbbl. Left: production follows the R/P decline rule in the aggregate (as in 

Wood et al.). Right: each of 10 regions individually follows the same R/P decline rule with 

different sized resource endowments. 
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3.2.3 Linear models of oil depletion 
Linear models of oil production are used infrequently [e.g., (Hirsch, Bezdek et al. 2005; 

Brandt 2007)], although they represent the most simple formulation of a rising and falling 

production curve. A linear production profile can be defined as 
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where Sinc and Sdec are the absolute values of slopes on the increasing and decreasing 

sides of the production curve. A special case is the symmetric case where Sinc = Sdec. 

Despite its simplicity, the linear model provides a relatively good approximation to the 

production profile of some oil producing regions: Brandt (2007) found that it was the best 

fitting model for 26 out of 139 studied regions (see Figure 10). 

 

 

3.2.4 Multi-cycle and multi-function models 
In contrast to models where production rises and falls in a single cycle, multi-cycle and 

multi-function models attempt to recreate the non-smooth production profiles seen 

empirically. Multi-cycle behavior was noted by Hubbert (1956), who argued that Illinois 

was a multi-cycle region: 

 
The first period of discovery, beginning about 1905, was based on surface geology with 

meager outcrop data. Consequently in about five years most of the discoveries amenable 

to this method had been discovered...It was well known geologically, however, that the 

whole Illinois basin was potentially oil bearing, which was later verified when a new 

cycle of exploration using the seismograph was initiated in 1937. 

 

Multi-cycle models have been developed by Laherrere and Patzek (Laherrère 1999; 2000; 

2003; Patzek 2008). These models fit the sum of a number of independent logistic 

production cycles to the overall production data, as shown in Figure 8. Ideally, each 

additional cycle represents the production of a well-defined resource that can be 

differentiated from the main body of production. Laherrere argues that ―almost every 

country can be modeled by at most four cycles in which discovery peaks are correlated 

with corresponding production peaks after a time-lag giving the best fit‖ (Laherrère 

1999). He shows two examples of this, but has not illustrated its generality.  

 

Mohr and Evans (2007; 2008) built a multi-function model that uses a bell curve but 

models disruptions by postponing the bell curve at the point of a disruption. The 

disrupted period is modeled with one or more simple polynomials, after which the bell 

curve resumes, shifted to account for the additional cumulative production that occurred 

during the period of disrupted production: 
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Here Pbell is production from a bell-shaped curve model. The fi  are a series of n 

polynomials anchored on each side at n+1 disruption points, which occur at times ta0 to 

tan. After the period of disrupted production, the underlying bell-shaped model is shifted 

to the point where the disruptions end. Guseo and Dalla Valle (2005; 2007) also include 

exogenous shocks in a model of technological diffusion that they apply to oil depletion 

modeling. 

 

One problem with these methods is the arbitrary addition of production cycles. The 

quality of model fit to data can be improved by adding more cycles, but the better fit of 

the more complex model is often not justified by the additional model complexity. For 

example, In Mohr and Evans (2008) the bell curve is interrupted by two first-order 

polynomials, one second order polynomial, and one third order polynomial. This adds 

between 11 and 16 free parameters to the model, depending on if the breakpoints tai are 

also chosen by algorithm, resulting in danger of spurious overfitting. One approach to 

address this concern is with information-theoretic approaches, as discussed in Section 7 

(Burnham and Anderson 2002; Motulsky and Christopoulos 2004).  

 

The second problem is that additional cycles are inherently unpredictable. They might 

represent new discovery cycles enabled by advances in exploration technology, such as 

the case with Illinois and the introduction of the seismograph; or by new production 

technologies, such as thermal EOR applied to heavy oil deposits; or by the discovery of a 

new type of deposit that was previously unknown, such as very deep offshore oil. Lynch 

(2003) argues that this technique ―destroys the explanatory value of the bell curve‖ 

because ―not knowing whether any given peak is the final one renders [predictions] 

useless.‖ At the least, without a priori justification for additional cycles such a modeling 

approach can quickly degrade into what Burnham and Anderson (2002) call ―data 

dredging.‖ These concerns, and the broader principle of parsimony, are discussed in 

Section 7. 
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Figure 8. Multi-cycle production model with cumulative production over all years of ≈ 600 Gbbl 

of oil. Three cycles have 350, 150 and 100 Gbbl ultimate production each. These might represent, 

for example, production from primary, secondary, and tertiary (EOR) technologies. 
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3.2.5 Asymmetric smooth curve-fitting models 
A variety of asymmetric smooth curve-fitting based models of production have been 

developed but not widely used. Not long after the work of Hubbert, Moore (1962; 1966) 

used the Gompertz curve to fit cumulative production and discovery data: 

 
tbaQtQ )( , eq. 18 

where a and b are fitting constants (a is defined as the ratio of the initial value of 

cumulative production Q0, to the value of ultimate production Q∞, which allows Q = Q0 

when t = 0). The Gompertz curve is asymmetric: the decline is slower than the increase. 

Wiorkowski (1981) argued that the Gompertz curve used by Moore resulted in a poor fit 

to historical data. 

 

Figure 9 (left) shows the skew normal production profile, or SNPP, developed by 

Hammond and Mackay (1993) for use in projecting UK oil production: 

 tneAttP )( , eq. 19 

where A is a scaling coefficient, n is a shape factor (larger n results in low peak delayed 

in time), and α is the ―peak position factor‖ (larger α value shifts peak forward). This 

model was used to project UK oil and gas production, although it resulted in overly 

pessimistic projections of the peak in UK oil production. The same function was also 

used by Feng et al. (2008) to forecast Chinese oil production, although they refer to it as 

the Generalized Weng equation.  
 

More recently, Kaufmann and Shiers (2008) built an asymmetric bell-shaped model that 

continues directly from historical production data (see Figure 9, right). It is solved 

iteratively as a set of 3 equations. The growth equations can be simplified as follows:
 
 

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35 40 45 50

Year

P
ro

d
u
c
ti
o
n
 (

G
b
b
l/
y
)

Low

Med

High

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40 45 50

Year

P
ro

d
u
c
ti
o
n
 (

G
b
b
l/
y
)

Low

Med

High

 
Figure 9. Two asymmetric bell-shaped models. Left: Production profile of the skew normal 

production profile (SNPP) model of Hammond and Mackay (1993). All curves have total 

cumulative production over all years of ≈ 600 Gbbl. Parameter settings for low, medium, and 

high cases are A = (1, 8, 52); n = (2.35, 2, 1.8); and α = (0.2, 0.3, 0.5), respectively. Right: 

Asymmetric growth model of Kaufmann and Shiers (2008). Cumulative production sums to ≈ 600 

Gbbl in all cases. Growth and decay rates (rinc, rdec) are (0.51, 0.165), (0.545, 0.545) and (0.575, 2) 

for low, medium and high cases, respectively.  
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. eq. 20 

These equations are constrained by the requirement that cumulative production is always 

less than URR. The resulting production curve (Figure 9, right) is used to generate 

projections of the required rate of development of substitutes for conventional petroleum 

(SCPs). 

 

Berg and Korte (2008) built three models (each a system of differential equations) that 

expand upon Hubbert‘s logistic differential equation. They add aspects of simulation 

models, as described in Section 4. Their first model adds demand to the Hubbert model. 

Another model adds a third differential equation governing the dynamics of additions to 

reserves. Their differential equation governing reserves forces discoveries to decline as 

cumulative reserves additions increase,
19

 but does not account for technological change 

that also occurs as reserves are depleted.  
 

3.3 Difficulties with curve-fitting models 
Curve-fitting models are simple models that reduce many complex phenomena, to a small 

number of equations. This results in difficulties that are widely discussed in the literature 

(e.g. Lynch 2003), include a reliance on estimates of URR, assumptions of symmetry, 

and assumptions of bell-shaped production profiles. 

 

3.3.1 Is URR a reliable constraint? 
Estimates of URR are a key input to curve-fitting models. Caithamer (2007) notes that 

unconstrained fitting of the logistic model to pre-1970 global production data predicts 

2.57 x 10
15

 bbl URR, about 3 orders of magnitude greater than USGS resource estimates. 

This is because there is not enough information in pre-peak production data to generate 

stable values of model parameters without the aid of constraints.
20

  (This situation 

improves the further into the production cycle a region becomes, as the possibilities for 

divergent futures become increasingly narrow.) 

 

However, using URR to constrain curve-fitting models is problematic. First, estimates of 

URR have been too low in the past. This type of error has plagued curve-fitting models, 

especially with regard to projections of world production (Lynch 1999; Lynch 2003).
21

 

                                                 
19

 )1(/ DdTdD  where D is cumulative reserves discovered, normalized to reach a maximum value of 1. 
20

 This is because 1970 was at least 35 years before the peak in production, meaning that there was still 

significant uncertainty with respect to any signal provided by the data. Also, arguments of this type should 

not be taken too far: unconstrained models of 3 or 6 parameters will not be used in practice because we do 

have additional information to bring to bear on the problem (e.g., we know to ignore results suggesting 

URR of 10
15

 bbl). 
21

 For example, Lynch (2003) notes that Campbell increased his value of global URR from 1,575 Gbbl in 

1989 to 1,950 Gbbl in 2002. 
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Estimates of URR can be too low for two reasons: they can underestimate new 

discoveries and they can underestimate reserve growth. Both of these problems have 

traditionally been observed. 

 

Another more fundamental problem is that while URR is used as a fixed constraint in 

curve-fitting models, there are serious problems with viewing URR as a static value. 

Adelman and Lynch (1997) argue that ―the mistake is not mere underestimating of URR. 

It is the concept of URR as a fixed amount, rather than a dynamic variable.‖ The reason 

is that URR is fundamentally a hybrid economic-physical concept. If oil resources 

suddenly became less valuable, then the same physical endowment of resource deposits 

would result in a lower value of URR. Or alternatively, if consumers are willing to 

sacrifice more (i.e., pay more) for a unit of petroleum, then URR will grow with no 

changes in physical properties of the resource. The differences between physical and 

economic views of resources are discussed in greater detail in Section 7. 

 

The seriousness of the URR problem is a point of disagreement among researchers. Some 

argue that increases in estimates of global URR have leveled off, and that we are 

asymptotically reaching the true value of URR, especially if consistent 2P reserves data 

are used (Bentley, Mannan et al. 2007).
22

 Others disagree, suggesting that URR values 

will likely continue to grow (McCabe 1998), and that hydrocarbons will be produced 

from resources that are currently not included in estimates of URR.
23

  

 

3.3.2 Are bell-shaped models better than other model 
types? 

Hubbert‘s use of a bell-shaped production profile, together with its reasonable fit to many 

regions (most notably the US), has created a desire to justify the use of such curves with 

rigorous scientific reasoning.  While Hubbert (1980) noted the roots of the logistic 

equation in 19
th

 century population biology, he never gave a detailed explanation for his 

choice of this model.  

 

Recently, Rehrl and Freidrich (2006) described a simple thought experiment that 

generates logistic behavior from the interaction of information and depletion on oil 

discovery rates. First, they assume that geologic and technical information, I, is directly 

proportional to cumulative discoveries, D:
24

 

 DI  . eq. 21 

Next, they assume that the rate of discovery is also directly proportional to the amount of 

information that we have, and by the equation above, therefore proportional to 

discoveries: 

                                                 
22

 2P reserves are said to represent more realistic and stable reserve estimates than the proved reserves 

commonly reported in the United States and other countries. This conservatism is argued to be the reason 

behind the significant reserve growth observed in the US. 
23

 Given that current estimates of URR neglect some 60-70% of known oil in place (oil that will be left 

behind by current extraction technologies), Lynch (1999) argues that stable URR estimates make the 

―unrealistic assumption that technological progress will effectively cease.‖ 
24

 They note that this model is simple, as there is ―no justification why the regarded proportionalities should 

be linear to the first power,‖ and proceed given that this is the simplest possible relationship.  



 

UK Energy Research Centre                                       UKERC/WP/TPA/2009/021 

19 

 I
dt

dD
 , eq. 22 

and so  

 D
dt

dD
 . eq. 23 

This is the differential form of exponential growth. They call this the ―information effect‖ 

whereby an increase in cumulative discoveries further increases our ability to find more 

oil.
  

Next, they describe the opposing ―depletion effect,‖ whereby discoveries hamper future 

discovery by reducing the amount of oil left to be found. They argue that a reasonable 

form of this relationship is 

  DQ
dt

dD
 

, 
eq. 24 

which suggests that discoveries drop to zero as D approaches Q∞. We can combine these 

two statements of proportionality with an arbitrary constant a: 

 
2)( aDDaQDQaD

dt

dD
 

. 
eq. 25 

Note that eq. 25 is the differential form of the logistic curve (this time in discoveries 

instead of production). Thus, they argue that simple relationships can generate a logistic 

discovery function. But, it does not necessarily follow that production would follow a 

logistic path as well. In free market conditions under ample demand, it is reasonable to 

assume that oil discovered will be promptly brought into production,
25

 resulting in a 

consistent lag between discovery and production. In reality, economic and political 

constraints can alter investment and production.  

 

Other authors use the central limit theorem (CLT) to justify bell-shaped models.  In 1952 

Ayres foreshadowed this argument: ―For some single oil fields the peaks can be relatively 

sharp, but for the sum of effects of many oil fields in many countries the peak can be 

expected to be blunt.‖
 26

 There is unfortunately little basis for applying the CLT to oil 

production curves in general (McCabe 1998; Babusiaux, Barreau et al. 2004; Brandt 

2007). The CLT acts to generate a Gaussian distribution when distributions that are 

independent of one another are summed or averaged. Dice provide a good example. 

Rolling one fair die will result in equal probability of obtaining the values 1 to 6 — a 

uniform distribution. Rolling 5 dice and summing the results will give a range from 5 to 

30, but the distribution will not be uniform. The value 5 will rarely be obtained, while the 

value 15 will be obtained much more commonly (because many combinations of the dice 

result in a sum of 15). If the dice were rolled and summed many times, a plot of the 

distribution of results would appear Gaussian. 

                                                 
25

 Since so much of the cost, and risk, in oil and gas development is in the exploration stages, producers 

have little incentive to hold back production once the riskiest portion of the process has resulted in a 

successful discovery. 
26

 Ayres (1952) cited the insights of statistical physics as a justification: ―All of modern physics is founded 

upon the conception of predictability of the sum of large numbers of unpredictable events. The larger the 

number of events, the greater the probability of prediction.‖  
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The crucial difference is that while field-level production curves are summed to produce 

an aggregate curve, they are not independent. Production from an oil field is determined 

at least in part by the decisions of the producers. And producers across regions, nations, 

and even at a global level, face common stimuli. At a regional level these include 

transport costs, availability of refining capacity for a given type of crude, and regulatory 

pressures (such as state or provincial environmental mandates). At a national level, 

politics can alter production decisions, particularly in nations with central control over 

production, but even in nations with independent oil companies. And, globally, both long 

and short-term trends (such as the modern spread of automobility to Asian nations or 

demand reductions caused by the 1970s oil crises) influence producers simultaneously 

across the globe.  

 

Given that there is some degree of independence between producers, some smoothing 

clearly occurs with aggregation. This amount of smoothing varies by region. But, the 

shape of the global historical production curve is so non-Gaussian that it is very unlikely 

to have arisen from the summation of tens of thousands of truly independent production 

profiles. 

 

Other arguments for bell-shaped curves exist.
27

 Bentley et al. (2000) note that a sum of 

triangular field-level profiles generates a bell-shaped curve if the largest fields are found 

first. These ideas are discussed in Section 5 and shown in Figure 20. Also, Cleveland and 

Kaufmann (1991) suggest that the bell-shaped production profile is the result of physical 

changes in the resource base causing the long-run cost of production to increase. This 

increase in cost induces the peak and decline in production. These ideas are discussed in 

Section 6.  

 

Thankfully, the historical record provides us with some evidence regarding the usefulness 

of bell-shaped curves. While many production curves are well-approximated by bell-

shaped profiles, a good number of production profiles deviate from bell-curve-like 

shapes: some are significantly more pointed than the bell-curve (Hirsch 2005; Brandt 

2007), while others have multiple peaks separated by significant amounts of time 

(Hubbert 1956; Laherrere 2003; Patzek 2008).  

 

Brandt (2007) compared the fit of six simple (3 and 4 parameter) curve-fitting models to 

139 oil production curves at a variety of scales (US states and regions, countries and 

multi-country regions) Geological definitions for regions (e.g., basins or plays) were not 

used because of lack of data. He compared symmetric and asymmetric versions of a 

Gaussian bell-shaped model, a linear model and an exponential model. This comparison 

                                                 
27

 Also, Guseo and Dalla Valle (2005; 2007) argue a model of technological diffusion containing ―early 

adopters‖ and ―word of mouth‖ adopters as the basis for the bell-shaped profile. On the other hand, Weiner 

and Abrams (2007) give a physical explanation for logistic production curves. They build a simple physical 

model of oil depletion as draw-down of fluid from a sealed container containing gas and fluid under 

pressure. This conceptually appealing approach does not account for other factors affecting the rate of oil 

production from a deposit over time (water influx, multi-phase flow effects, etc.) 
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used Akaike‘s Information Criterion (see Section 7 for more information) to account for 

the different functional forms and numbers of parameters across the models.  

 

Most generally, he found that these simple models worked reasonably well as a group: 

out of 139 production curves analyzed, only 16 were found to be significantly non-

conforming to any of these simple models.  But he found less strong evidence to choose 

one functional form over another. If only symmetric models were allowed, then the 

Gaussian model was found to be the most successful, fitting best in 59 regions, while 

only 26 regions were best fit by each of the exponential and linear models. If symmetry 

was not required, the asymmetric exponential model was found to be best fitting in 25 

regions, compared to 14 regions for the asymmetric Gaussian model, which was the next 

most successful. To illustrate how excellent the fit to these disparate models can be, 

Figure 10 shows six regional production curves that were each fit best by one of the six 

tested models.  
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  A. Gaussian     B. Asymmetric Gaussian 

 

 
  C. Exponential    D. Asymmetric Exponential 

 
  E. Linear    F. Asymmetric Linear 

  

Figure 10. Six model types applied to regions where they were found to be the best fitting model.  
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3.3.3 Are production profiles really symmetric? 
Lastly, we can ask whether production profiles are best represented with symmetric 

models. The motivation for symmetric production models is typically that they are more 

parsimonious than asymmetric models. Is this simplification supported by available data? 

 

The historical record again provides insight here. PFC Energy studied 18 post-peak 

countries, finding an average level of depletion of 54% at the start of decline, with the 

majority of regions peaking at between 40 and 60% of estimated URR (PFC 2004). These 

percentages are likely to decline, because they were calculated relative to estimates of 

URR, which are more likely to increase than to decrease.
28

  

 

Other indications from historical production data suggest that production tends to be 

asymmetric, with the decline slower than the increase. Brandt (2007) found that the 

production-weighted mean rate of exponential decline was approximately 4% less than 

the production-weighted mean rate of increase (≈ 2% vs ≈ 6% increase) for 74 post peak 

regions, ranging in size from US states to sub-continents. In nearly all cases (67 out of 74 

regions) the rate difference (rinc – rdec) was found to be positive.  

 

This observation aligns with the intuition that improvements in technology will make the 

production decline less steep than the increase. This was noted as far back as Hubbert 

(1956), who argued that ―a more probable effect of improved recovery will be to reduce 

the rate of decline after the culmination…‖. Renshaw (1981) also gives a theoretical 

reason for this. If a single cumulative production sigmoid is instead replaced with, say, 

the sum of 5 sigmoids which represent resources of differing difficulty of extraction, the 

net effect on the summed curve is commonly to slow the rate of decline. That is, harder-

to-extract resources are accessed more slowly and act more to lessen the decline in 

production rather than to postpone the peak.
29

 

 

These data suggest that production profiles tend to be slightly asymmetric, with slower 

rates of decline than rates of increase. Whether this complexity should be included in a 

model of oil depletion depends on the purpose for which a model is being developed and 

the level of detail that is required by such a purpose. This broader issue of model 

complexity is analyzed in Section 7. 

                                                 
28

 Thus, a region that was originally thought to have peaked at 54% depletion of URR might instead later be 

recalculated to have actually peaked at 49% of URR, if URR grows between the first and second estimate. 
29

 Interestingly, Renshaw draws this result from the psychological work of Thurstone in the 1930s on the 

learning function as applied to learning tasks of varying difficulty. 
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4 Systems simulation: resources, discovery 

rates, and technologies 
Simulation models differ in modeling philosophy from curve-fitting models. Instead of 

fitting a simple pre-defined function to historical data in order to project future 

production, simulation models explicitly represent physical and/or economic mechanisms 

that govern oil discovery and extraction. They then let broader behavior of the oil 

production system (such as the shape of the production profile) emerge from this 

underlying structure.  

 

The simulation approach remedies a key problem of curve-fitting models noted by Taylor 

(1998): ―No cause-and-effect relationship exists between time and the exploitation of 

crude oil.‖ Simulation modelers would argue instead that a complex causal chain 

connects time and oil extraction. Population growth and economic expansion caused 

increased demand for oil. This has induced the oil industry to search for and produce oil. 

Exploration affects our prospects for finding oil in the future by simultaneously 

increasing our knowledge of the subsurface and by removing another oil field from the 

stock of yet-to-find deposits. And all the while, scientific advances in technologies 

ranging from seismography to steel alloys have altered the oil industry immeasurably 

over the last century. 

 

Simulation models attempt to capture some of this causal structure, but they exhibit a 

wide range of complexity. Some are quite simple ―toy models‖ with a few equations 

governing discovery probabilities and demand growth. Others are built from dozens of 

equations and sub-modules, and are therefore difficult to describe in succinct 

mathematical form.  

 

4.1 Simple simulations of exploration and extraction 
The simplest simulations of the oil finding process are scarcely more complex than 

curve-fitting models. For example, Bardi (2005) built a simple model based on the work 

of Reynolds (1999). Reynolds characterized the resource finding and extraction process 

as the activity of agents searching for resources over a number of model years.
30

 Bardi 

builds on this model, defining the probability of finding unit of resource in a given model 

year t as pr(t): 

 )]([
)(

)( tQQ
Q

tk
tpr  



 eq. 26 

where k(t) is an ―ability factor.‖
31

 In each cycle of the model, the agents consume some of 

their resources to survive and to fuel the search process. Bardi's model includes 

population growth, whereby agents with a surplus of resources can reproduce 

                                                 
30

 In the Reynolds model the agents are shipwrecked islanders, and the resource is defined as tins of 

provisions washed ashore and buried in the sand. 
31

 In the simplest version of the model, k(t) is set to a constant. It can also vary with time, i.e., to increase 

over time due to technological learning. This would therefore increase the probability of finding a unit of 

resource in opposition to the effect of cumulative extraction. 
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(representing economic growth). Agents are removed from the simulation as 

undiscovered resources are depleted and their stock of resource drops to zero.
32

 

 

One version of Bardi‘s model
33

 also includes a simple representation of exploration 

technology, multiplying the term exp[-P(t)/L(t)] by the finding probability pr(t). As P(t) 

increases, this term decreases, representing the exhaustion of known prospects within an 

exploration cycle. Over the long-term, the function L(t) increases, representing the 

progress of technology and reducing the negative impact of this effect on the finding 

rate.
34

 

 

In Bardi's simplest case, the model produces a roughly symmetrical bell-shaped 

production profile [the decline is somewhat steeper than the incline, similar to the 

findings of Reynolds (1999)]. His more complex cases produce exponential-like 

production profiles, with steeper rates of decline than rates of increase. 

 

4.2 Complex simulations of finding and extraction 
Davis (1958) produced the earliest complex simulation of the oil finding and 

development process.
35

 He linked a series of correlations to project future reserves 

additions based on exploratory effort, and assumed that production in each year is limited 

to a set fraction of reserves. His model iterated through a number of steps in each year. 

By assuming that production is limited to a fraction of existing reserves, Davis essentially 

adopted a depletion formulation similar to that of Wood et al described above (the fixed 

R/P exponential method).  But, instead of this function being constrained by an 

exogenous fixed estimate of URR, it is fully incorporated into an economic model of 

discovery and production. As reserves continue to be discovered along the constrained 

production path, the sharp peaks of the Wood et al. model do not occur. Davis‘ model 

predicted a peak and decline in US oil production between 1964-1973. 

 

4.2.1 System dynamics and oil depletion: A series of 
models 

The simulation approach of Davis (1958) was echoed in later models that used the 

methods of system dynamics to model the extraction and depletion of resources. System 

dynamics models focus on the importance of time, rates of change, and system feedbacks 

as they model the interaction of the many parts of the oil extraction process. While a 

                                                 
32

 Bardi notes that a drawback of this model is that the units of resource are all the same size, clearly a 

simplification given the variation in crude oil deposit size. 
33

 This is Bardi‘s model 3, which incorporates explicit ―technology factors‖ into the success rates. It is not 

clear from the article if this factor is in addition to the ―ability factor‖ k(t), or if this acts in the place of the 

ability factor. 
34

 In the Reynolds model, L(t) is the Hubbert logistic function, in effect hard-wiring the dynamics of the 

Hubbert curve into the finding probability. In the Bardi model, a simpler linear increase in technology as a 

function of time is used. 
35

 This was early in the computing age. The obvious novelty of computer modeling is illustrated by the 

inclusion of an appendix which shows photographic reproductions of punch cards used and gives a 

complete flow chart of equations. It also notes that ―the running time to calculate and punch approximately 

6,500 output cards for one run is about 4 1/2 hours.‖ 
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number of these models were developed over the course of the 1970s and 1980s, only a 

few representatives will be discussed (www.hubbertpeak.com 2008).
36

 

 

Naill developed an early system dynamics model of natural gas discovery and production 

(Naill 1973). The model is based around two main state variables: unproven reserves and 

proven reserves (see Figure 11, top). As oil is discovered, it is moved from unproven 

reserves (a fixed quantity defined at the model outset) to proven reserves. As resources 

are consumed, they are removed from proven reserves.  As unproven reserves decrease, 

the cost of exploration increases, reducing the return on investment and therefore the 

incentive for exploration. On the other hand, as proven reserves increase, the R/P ratio 

increases, reducing the oil price and reducing investment in exploration. A reduction in 

price reduces revenue to producing companies, which serves to dampen exploration. This 

feedback serves to stabilize the model. 

 

Figure 11 shows all major causal relationships in the model. An arrow connecting 

quantities represents their interaction, with the sign attached representing the ―polarity‖ 

of influence: a positive sign indicates that an increase in one factor leads to an increase in 

the other, while a negative sign indicates the opposite. Loops with an overall positive sign 

represent positive feedbacks, while those with a negative sign represent negative 

feedbacks. 

 

Each causal interaction (arrow in the diagram) is quantified with a graphical correlation, 

mathematical function, or small group of functions. For example, the correlation between 

unproven reserves and the cost of exploration is shown in Figure 12. The resulting 

                                                 
36

 These models had their roots in the MIT System Dynamics Group, which produced the World3 model for 

the Club of Rome, the basis of the book The Limits to Growth and its successors (Meadows, Randers et al. 

2004). These models included the Naill natural gas model as described below, its extension to the larger 

energy system called COAL1, later modifications COAL2, and FOSSIL1. FOSSIL2 was later developed by 

Naill and others at the US Department of Energy (DOE). FOSSIL2 has been improved and renamed 

IDEAS and is still maintained for the DOE (www.hubbertpeak.com 2008). 

 
Figure 11. Causal-loop diagram showing all major relationships in Naill’s (1973) model of natural 

gas exploration and production. Loop 1 represents the finding loop, while Loop 2 represents the 

extraction loop. 
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production profile from Naill‘s baseline run is shown in Figure 13. Note that production 

(―usage rate‖) drops precipitously from the peak, resulting in much steeper decline rates 

than have been observed empirically. Also, note that the rate of production drops more 

quickly than the level of reserves. This causes a spike in the R/P ratio after the production 

peak (not plotted in this figure), which has not been empirically observed to this author‘s 

knowledge.
37

 

 

Later extensions to the system dynamics models of resource depletion were made by 

Sterman and others (Sterman 1983; Sterman and Richardson 1985; Sterman, Richardson 

et al. 1988; Davidsen, Sterman et al. 1990). These models included investment in 

technology, imports, and synthetic fuels. The complexity of these models is evident in the 

exploration portion of the Davidsen et al. model, shown in Figure 14. This more complex 

causal loop is functionally analogous to Loop 1 in Naill‘s model. Note that undiscovered 

                                                 
37

 In the case of the United States, the R/P ratio has undergone a relatively smooth decline from about 18 

years to about 10 years from 1918 to 1994, with no increase after peak production in 1970 (McCabe 1998). 

 
Figure 12. Relationship between fraction of resources remaining to be discovered (FURR) and the 

cost of exploration (COE) in Naill’s model, corresponding to relationship between unproven 

reserves and extraction cost shown in upper-left corner of Figure 11. 

 

 
Figure 13. Natural gas production (labeled “usage rate”), proven reserves, unproven reserves, 

and discovery rate from Naill’s model of natural gas exploration and extraction (Naill 1973). 
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oil is now not a static quantity, but is the product of the total resource base and the 

parameter called ―fraction discoverable.‖ The fraction discoverable is an endogenous 

technological parameter that is a positive function of oil company revenues. The result is 

that as revenues increase oil companies invest in technologies that increase the fraction of 

oil recoverable.
38

 Loops of comparable complexity govern the extraction and price 

formation portions of the model.  

 

This model results in impressive reproduction of US historical data. This is illustrated by 

historical and modeled demand for conventional petroleum, shown in Figure 15 (left). 

But, as Figure 15 (right) shows, the model predicted significant production of synthetic 

fuels by the year 2000, which was not realized. The authors claim that the only 

significant exogenous data inputs are GNP and the price of imported oil (Davidsen, 

Sterman et al. 1990). But, some tens of major input data are required for the model to 

operate, as are a number of functional relationships between model parameters and input 

data (Sterman and Richardson 1983). 

 

                                                 
38

 A similar technological parameter affects the extraction process, increasing the fraction of discovered oil 

that is technically recoverable. 
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Figure 14. Causal diagram of exploration loop in model of Davidsen et al. (1990). Similar causal 

loops are reported in other papers by the Sterman group. 

 

 

  
Figure 15. Results from Davidsen et al. (1990) system dynamics model of US petroleum 

exploration and extraction. Left: Excellent reproduction of observed demand for conventional oil. 

Right: Modeled breakdown between domestic production, imports, and synthetic fuel production. 

Note the significant production of synthetic fuels by the year 2000, which did not come to pass. 
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4.2.2 Simulating the oil transition: Depletion as a starting 

point 
The simulation models described above raise a fundamental question: as oil depletion 

progresses, what will we use instead of oil? Answering this question requires simulating 

not just oil extraction, but simulating the production of oil and a variety of competing 

substitutes for conventional petroleum (SCPs).
39

 

 

The earliest projections of a transition to SCPs were by Ayres (1952; 1953), who 

discussed a transition to coal-based synfuels (although they were not mathematically 

based). The earliest mathematical models of the oil transition were the system dynamics 

models of Naill et al., which modeled the transition from oil and gas 

(www.hubbertpeak.com 2008). In the economic literature, this problem was framed as a 

transition to ―backstop‖ resources. This terminology was popularized in Nordhaus‘ 

classic model of transitions to nuclear power in the electricity sector and synthetic fuels 

in the transport sector (Nordhaus 1973). Later, Basile and Papin (1981) and Edmonds and 

Reilly (1983) built models of oil production within the context of the larger energy 

system.  

 

The Basile and Papin (1981) projections utilized the MESSAGE energy systems model, 

which divided the world into 7 regions. They project the ―maximum potential 

production‖ — not the actual production of fuels — by region, subject to a number of 

constraints. A variety of SCPs are included, such as enhanced oil recovery, tar sands, 

deep offshore, shale oil, and synthetic liquids from coal. These constraints include limits 

on reserve additions (likely limited by a URR-like quantity, although not specified), the 

rate of capacity build up, and production ceilings for some fuels (e.g., oil shale) 

representing environmental constraints. 

 

                                                 
39

 Note that models that incorporate aspects of the transition to SCPs are discussed elsewhere in this review, 

including those of Kaufmann and Shiers (2008), Hirsch et al. (2005), and Sterman, Davidsen and others 

(e.g., Davidsen, Sterman et al. 1990). 

 
Figure 16. High scenario projection from Basile and Papin (1981), units are GWyr/yr. Category 1 

oil is low-cost, conventional oil, while categories 1A, 2 and 3 represent increasingly expensive 

hydrocarbon sources (e.g., deep offshore, tar sands). “Synliq” represents synthetic refined fuels 

produced from coal. 
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In this model, declining production of a resource is triggered by the resource reaching a 

minimum R/P value, at which point production undergoes exponential decline. The 

minimum R/P is different for different resources: 15:1 for conventional oil, 7.5:1 for 

EOR, and 25:1 for heavy oil. No justification is given for these assumptions of different 

constraining R/P ratios. This model predicted the peak of low-cost conventional oil 

around the year 2000, with successive waves of more expensive resources introduced as 

low-cost oil production declined (see Figure 16).  

 

Greene and others recently developed a model of the transition from oil to SCPs (Greene, 

Hopson et al. 2003; Greene, Hopson et al. 2004; Greene, Hopson et al. 2006). This 

model projects demand for liquid fuels using a recursive demand function, such that 

demand for a given year is dependent on demand in the previous year. This allows 

simultaneous solution of all years of the model, and results in a smooth transition to  

SCPs. The relationship between cost and depletion is modeled using a logistic function
40

 

which causes an increase in production cost as a resource becomes depleted: 
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eq. 27 

where prt is the price of the resource in region r, year t, Qrt is cumulative production, Q∞r 

is URR in region r, and αr and β are fitting constants.
41

 This function is plotted in Figure 

17. Note that this function performs an analogous role to the correlation shown for the 

Naill model above (Figure 12): it defines the relationship between resource depletion and 

increases in the cost of production. The resulting reference case projections for 

hydrocarbon production are shown in Figure 18.  

                                                 
40

 This model is a sigmoid function with its axes reversed. This functional form for cost as a function of 

depletion was adapted by Greene from Rogner (1997). 
41

 αr is the intercept, which varies by region and is set by initializing data, while the slope parameter β 

governs how quickly cost increases as a function of depletion level. β is equal in all regions and for all fuels 

due to lack of data on depletion slopes for individual regions. 

 
Figure 17. Relationship between production cost and resource depletion from Greene et al. (2003). 

Note that the function is undefined for values below 5% and above 95%, as the logistic function 

asymptotically approaches -∞ or ∞. 
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Brandt and Farrell (2008) recently modeled oil depletion and the transition to 

unconventional resources in a framework similar to that of the above models. It includes 

tar sands, oil shale, and synthetic fuels from natural gas and coal. In this model, 

production of a given resource in each of 17 model regions is limited by a minimum ratio 

of remaining resources to production (M/P). When this minimum M/P is reached, 

production must decline to keep M/P from dropping, resulting in exponential decline.
42

  

 

                                                 
42

 Production that maintains a constant M/P ratio under decline is equivalent to exponential decline, with 

the percentage decline given by the reciprocal of the M/P ratio. For example, if M/P is held constant at 10 

and in year 1 there are 100 units of remaining resources, then p will be 10. In the next year p will be 9 

based on M of 90, followed by p of 8.1 based on M of 81, etc. 

 
Figure 18. Production of conventional oil and oil substitutes in the Reference/USGS case of 

Greene et al. (2003). Note the smooth transition to heavy oil and bitumen after the peak in non-

Middle East production. 
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Depletion in the Brandt and Farrell model is based on the logistic depletion function of 

Greene et al. (eq. 27). In this model, each year in the model is solved independently 

without foresight (the solving algorithm cannot see future demand or resource 

endowments as it is solving the model for a given year). Because the rate of investment in 

SCP capacity is limited, the result is a non-smooth transition to SCPs, as shown in Figure 

19. Oil prices increase rapidly around the time of peak production to induce investors to 

build SCP production capacity. This results in reduced demand and delayed investment in 

alternatives to petroleum, causing a temporary drop in demand around the peak in 

production.  

 

4.3 Difficulties with simulation models 
In contrast with the difficulties faced by curve-fitting models – which largely stem from 

their extreme simplicity – the difficulties encountered by simulation models generally 

arise from their complexity. 

 

Systems dynamics models, because of their complexity, require the quantification of a 

large number of relationships and correlations, often in the face of conflicting or 

nonexistent data. Consider, for example, the ―fraction discoverable‖ parameter of the 

Davidsen et al. model. This is the fraction of oil deposits that are theoretically 

discoverable as a function of cumulative investment in exploration technology. Such a 

relationship would ideally be empirically derived, but this is likely impossible. Even 

given an accurate time series of monetary investment in exploration technology, one 

would require historical data on the fraction of unknown deposits that would have been 

discoverable (in theory) with a given level of technology. It is difficult to imagine how 

one might construct such a series. Certainly reasonable assumptions can be made despite 

this lack of data, but such dependence on assumptions certainly reduces some of the 

utility of building a more complex model. 

 

 
Figure 19. Transition from conventional oil to substitutes for oil in high supply/medium demand 

scenario from Brandt and Farrell (2008). Left: production of oil, tar sands/extra-heavy oil, gas-to-

liquid synfuels and coal-to-liquid synfuels (bottom to top). Note the drop in demand resulting 

from the spike in price necessary to induce investment in alternatives.  
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Second, systems dynamics models tend to be finely balanced between positive and 

negative feedbacks. If positive feedbacks in the model are too strong, the result can be 

rapid growth and sudden, wrenching decline. This effect is evident in Naill‘s results, and 

is quite common in system dynamics models of resource depletion.
43

 The gentle decline 

observed in real-world production data is due to mitigating factors (e.g. negative 

feedbacks) that exist in the real world but are clearly absent from such models.  

 

Models of the transition to SCPs suffer from similar problems. They are complex, with 

data inputs that are difficult to obtain. They have historically tended to overestimate the 

ease and speed of a transition to SCPs (as seen in both Sterman et al. and Basile and 

Papin models). This is likely because of the similar errors to those in system dynamics 

models: they likely do not include negative feedbacks that exist in the real fuel 

production system and that result in systemic inertia. This systemic inertia makes the shift 

to SCPs more slow than is predicted by these models.  

 

                                                 
43

 The classic example of ―overshoot and collapse‖ is the World3 model (Meadows, Randers et al. 2004).  

Other resource depletion models built in this framework suffer from similar problems, such as the general 

natural resource utilization model of Behrens (1973). 
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5 Bottom-up models: Building up oil depletion 

from the field level 

5.1 Near-term predictions using detailed datasets 
Bottom-up models use detailed knowledge of existing and newly discovered oil fields 

and/or their associated development projects to ―build up‖ projections of production from 

larger regions (such as a basin, nation, or the world). They tend to focus on the largest 

and most important oil fields. They typically include simple models of decline from 

existing fields, and they often include new fields using estimates of plateau production 

rates. 

 

Bottom-up models were suggested as early as the 1960s by Moore (1966), who argued 

that ―acceptable techniques are available for short-term projections based on current and 

planned activities.‖ Bottom-up modeling has become an increasingly prominent method 

as discoveries have slowed and an increasing fraction of future oil is expected to come 

from already-discovered fields (Bentley and Boyle 2007). 

 

The most widely published model with bottom-up characteristics is that of Campbell and 

co-authors, produced since the mid-1990s (starting with Campbell and Laherrere 1995). 

This model was originally produced for Petroconsultants SA, using detailed proprietary 

data, including reserves and production data at the field level for significant global fields, 

adjusted using the judgment of the authors (Bentley and Boyle 2007). Estimates of yet-to-

find oil were added based on statistical approaches such as regional creaming curves.
44

 

This resulted in country-level projections of future production. A number of publications 

have been generated using the same core model, updated as additional data become 

available (Campbell 1995; 1996; 1997; 1998; 2000; 2004). 

 

Campbell‘s (1995) model combines bottom-up and curve-fitting methods. The basic 

approach is as follows:  

 

1. A field-level database is modified with judgment by the authors to estimate country-

level values of URR. 

2. Countries are classified into those which have produced more than 50% of their URR 

(post-midpoint) and those which have not (pre-midpoint). 

3. Production from pre-midpoint countries rises until they reach their midpoint. After 

the midpoint, production declines at the depletion rate prevailing at the midpoint. 

Countries past midpoint are assumed to continue to decline exponentially at the 

current decline rate.  

                                                 
44

 A creaming curve plots volumes discovered as a function of new-field wildcat wells. This is used to 

project undiscovered oil by assessing the asymptote of the discovery curve. This technique is controversial 

for a number of reasons, and has been criticized (Lynch 2003). See the discussion in Sorrell and Speirs 

(2009). 
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4. Persian Gulf producers are swing producers. The difference between projected 

demand and supply from the rest of the world is made up by swing producers until 

they reach their midpoints.  

 

In the 1995 version of Campbell‘s model, the peak is projected before the year 2000, 

while more recent versions of the model predict peak production in 2010 or slightly 

beyond (Campbell 2003). 

 

Another bottom-up model is maintained by Smith of EnergyFiles Ltd. (Smith 2008). This 

model is based on field-level data where available, and otherwise on a variety of data 

sources aggregated at the operator, basin, or country level, depending on data 

availability.
45

 These projections include all fossil hydrocarbon liquids excepting synthetic 

fuels produced from coal, natural gas, and oil shale.  

 

 In the EnergyFiles model, production at the field level is projected using historical field 

decline rates (including expected EOR projects), and announced plateau levels for new 

fields. For fields not yet in decline, decline rates vary with field characteristics: 5% 

decline rates for onshore fields 15% for offshore fields and 3% for regions where data are 

unavailable (Smith 2008).
46

 Undeveloped fields are modeled using estimated plateau 

production rates and decline rates. Thus, a simple ―midpoint peak‖ assumption is not 

used. 

 

A useful schematic of the bottom-up approach is presented in Figure 20 (Smith 2006; 

Smith 2008). On the left is an idealized representation of bottom-up modeling of an 

offshore basin: some 40 oil fields are discovered in order of size, developed with a 2-3 

year lag, produce at a plateau level for a short time, and then decline exponentially over 

time. This produces a smooth, bell-shaped curve. On the right is a graph of actual field-

level offshore UK oil production, where we see divergence from this ideal: fields were 

not discovered strictly in order of size, and significant disruptions to production occur. 

 

Miller (2005) built a bottom-up model that uses field-level reserves and production data, 

as well as published production plans for the largest oil fields. Field-level data are used 

for approximately 70% of global supply, with the remainder aggregated at, e.g., the state 

or province level (Bentley and Boyle 2007).
47

  Production from significant oil fields in 

each country is extrapolated to 2030, using reserves as a constraint and continuing the 

historical decline rate if the field is in decline. Small fields are aggregated and projected 

in aggregate. 

 

                                                 
45

 Bentley and Boyle (2007) state that the underlying data for reserves and historical production are based 

on publically-available data, while Smith (2008) seems to suggest that some proprietary data are used. 

Nevertheless, it appears that most of the EnergyFiles data were collected from a wide range of publically 

available sources. 
46

 Smith notes that there is subjective judgment involved in building a bottom-up model. Therefore these 

decline rates are not used for a field if other information suggests a more suitable value. 
47

 Bentley and Boyle (2007) suggest that 15% of production is modeled at state or provincial level, and 

15% from small fields aggregated as ―other production.‖ 
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Technological change is included in Miller‘s model, addressing one of the criticisms of 

other models. It is represented as an increase in URR per field at a uniform rate of 0.2% 

per year.
48

 Since this is a relatively low estimate of possible reserve growth, it could 

contribute to relatively pessimistic supply forecasts. Conversely, political and economic 

delays in investment are not included, which could make the projections optimistic in the 

rate at which undiscovered oil can be converted into yearly production (Miller 2005). 

Miller‘s model predicts a peak in non-OPEC production around 2009, with a global 

supply shortfall arriving by 2020, dependent upon OPEC investment patterns. 

 

Skrebowski (2004; 2005; 2006; 2007) maintains a database of oil field ―megaprojects‖ — 

oil field development projects above a threshold size.
49

 As large projects provide the 

majority of new oil output, this approach provides insight into short-term capacity 

increases. Despite the inclusion of gross output from hundreds of projects in the database, 

the net result of new capacity additions is difficult to calculate. This is because aggregate 

production statistics do not allow easy separation of the effects of new projects from 

depletion at existing fields (Skrebowski 2007).  

 

Skrebowski‘s approach removes some uncertainty in the 3-5 year period of capacity 

addition (2004). Unfortunately, new fields that are smaller than the threshold size are not 

included in the database, therefore causing potential underestimation of production. This 

effect is likely small because large oil fields provide the majority of production.
50

 

Another acknowledged difficulty is that additions to capacity from new discoveries must 

be projected based on development timelines. These timelines often slip, an effect that 

can only be estimated. Since these uncertainties work in opposing directions, they may 

partially cancel each other out. 

 

                                                 
48

 As technological change is not the only source of reserve growth, it is unclear how Miller accounts for 

other sources of reserve growth. 
49

 The threshold field size for this database was lowered from 100 kbbl/d in 2004 to 40 kbbl/d in 2007, 

allowing for the inclusion of smaller projects and therefore reducing the potential for error. 
50

 A future with many more small oil fields and fewer large ones might change the importance of this 

uncertainty. 

  
Figure 20. Left: Idealized bottom-up model with field-level offshore production summed to 

provide aggregate production profile (Smith 2008). Right: Actual production profile generated 

from (largely) offshore production in the UK, showing that fields were not discovered in order of 

size and that production can be disrupted (Smith 2006). 
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Cambridge Energy Research Associates (CERA) also use a similar approach to 

projecting future supply, relying on detailed proprietary databases of oilfield projects 

(Dittrick 2006; Jackson 2006). Jackson argues that their bottom-up methodology reduces 

the level of uncertainty by ―an order of magnitude‖ when compared to curve-fitting 

methods (Jackson 2006). Because their methods, data, and assumptions are not made 

public, their results are difficult to critique. PFC Energy, another consulting group, has 

also developed a bottom-up model, but they too provide little detail on methodologies 

presented (PFC 2004). It is notable, however, that PFC forecasts an early peak in oil 

production, in a similar manner to Smith and Miller, while CERA‘s forecasts are 

comparatively optimistic. 

 

5.2 Opportunities and difficulties with bottom-up 

models  
Of the model types described in this report, bottom-up methods seem to hold the most 

promise, in principle, for accurate projections of future production. This is especially true 

for the short- to medium-term projections. By accounting for decline and investment at 

the field level, bottom up models allow the modeler to directly build up aggregated 

growth and decline rates. This removes uncertainty about the proper functional form for 

the aggregated production profile: the profile emerges directly from summing individual 

field-level production data. These models could also allow sensitivity analyses of great 

detail, such as estimating how much slowing of aggregate decline rates would result from 

a given investment in EOR projects. 

 

While bottom-up models clearly have advantages over other reviewed model types, the 

literature describing them is generally of poor quality. This is for a number of reasons. 

For one, most articles are not peer reviewed. This is largely because they rely 

fundamentally on proprietary databases augmented with the modeler‘s judgment and 

experience. While these characteristics are the source of the advantages of bottom-up 

models, they simultaneously make the models susceptible to criticism and difficult or 

impossible to reproduce (Lynch 2003). This situation is worsened by the fact that the 

methods used in the models are typically not explained in detail.  

 

More fundamentally, uncertainty about the future is not removed by modeling at the field 

level. The proliferation of data that gives these models their strength also results in the 

need for many more assumptions: what is the decline rate for each field? What is the 

discovery trend in each region, and is this likely to change with additional investment? 

As an example, Lynch notes that Campbell increased his value of global URR from 1,575 

Gbbl in 1989 to 1,950 Gbbl in 2002, despite his reliance on a field-level dataset. Also, it 

is difficult to include projects that lessen the decline rate at existing fields, such as infill 

drilling, workovers, or EOR projects. This ―stealth oil‖ is difficult to track because it is a 

distributed response across tens of thousands of global oil fields in response to higher oil 

prices.
51

 Many such projects will, by necessity, be left out of even the most complete 

                                                 
51

 Additions to supply from existing fields are likely to manifest as a decline in the absolute value of the 

decline rate. Skrebowski (2004) assumes a 4% decline for the ≈ 20 Mbbl of oil production that is in decline. 
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database, and it is unclear how a modeler might accurately estimate the number of such 

projects that might occur.  

 

Some of this uncertainty about improved recovery is closely related to the issue of 

reserve growth (Thompson, Sorrell et al. 2009). Reserve growth is the appreciation in 

reserves over time as fields become better understood, conservative early estimates are 

revised upwards, and tertiary production technology is installed. Reserve growth clearly 

differs from the case where improved recovery projects or workovers speed rates of 

production but do not affect the overall recoverable volume. It is unclear in these models 

how modeled development projects can be rigorously classified as either causing reserve 

growth or not. 

 

So, numerous questions remain for bottom-up models: what are the decline rates in each 

field or group of fields? What equations or methods of informal judgment are used to 

generate yet-to-find volumes of oil by region? How exactly is EOR modeled? More 

transparency in these areas would certainly improve the usefulness of bottom-up models. 

 

                                                                                                                                                 
Projects to improve flow in these fields could result in the overall rate of decline of these fields dropping to, 

for example, 3.5%. 
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6 Economic models of oil depletion 
Economists understand natural resources and natural resource depletion differently than 

natural scientists. Rather than focusing on physical aspects such as depletion rates or 

field-size distributions, economists focus on investment, responses to changes in the oil 

price, optimal extraction paths, and substitution of different energy resources. Economic 

models of resource depletion can either be theoretical or empirical. 

 

The first section below describes economic optimal depletion theory (ODT). A more 

thorough review of the voluminous optimal depletion literature is beyond the scope of 

this paper, but Krautkraemer provides accessible reviews (Krautkraemer 1998; 

Krautkraemer and Toman 2003). I then describe empirical econometric models of oil 

depletion. Again, the large amount of literature makes this topic difficult to cover in 

detail. Kaufman (1983) and Walls (1992) provide useful, if less recent, reviews.
 52

 

 

6.1 Economic optimal depletion theory 
The primary concern of exhaustible resource economics is resource allocation over time. 

That is, do we consume resources now or consume them later? Or, by consuming 

resources today, do we damage our prospects of maintaining a high quality of life 

tomorrow?
53

  

 

The chief theory of nonrenewable resource extraction over time is called optimal 

depletion theory (ODT). This theory has as its foundation the work of Hotelling (1931), 

who formalized the key insight underlying ODT: rational resource producers should 

equate the future value of a unit of resource in the ground with the value they would 

receive if the resource was sold and the profits invested.
54

 This suggests that the value of 

a unit of resource in the ground, less marginal extraction costs, should rise at the rate of 

interest.
55

 The problem can be stated most simply as a problem of maximizing the net 

present value (NPV) of welfare, W, over a number of time periods: 

 





0

)]([max
t

t

q dteqcpqW  , eq. 28 

where price p times quantity consumed q is the utility gained from consumption of 

resources, while c(q) is the cost of producing the resource and δ is the discount rate which 

                                                 
52

 This discussion will not address the views of ―cornucopians‖ who reject the concept of scarcity and do 

not recognize inviolable tradeoffs between consuming resources now or later (Simon 1996; Huber and 

Mills 2005). They see increasing returns to human effort and little human-induced danger to ecological 

systems. 
53

 In this question, ―tomorrow‖ is generally (although not always) defined to include future generations.  It 

should be noted that there are significant difficulties with the way that future generations are represented in 

traditional optimal depletion theory (Howarth and Norgaard 1990). 
54

 Formally, producers should account for demand growth affecting the demand curve in future periods. 

This aspect is typically absent in the simplest models, although see discussions in Watkins (2006) and 

Holland (2008). 
55

 Hotelling further argued that this rational behavior results in the socially optimal path of extraction; that 

the net present value of resource extraction over time is maximized by producers acting in their self 

interest.  
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converts the stream of benefits to their present value. Note the difference in economic 

notation: p is the price and q is the amount produced (equivalent to P in models reviewed 

above). The stock of resource, x, is constrained as follows: 

 0)(lim,   txq
dt

dx
t , eq. 29 

Or, in words, the change in the stock of resource is equal to that extracted in a year, and 

consumption over all time must not result in negative quantities of resources remaining. 

This is therefore the problem of depleting a known deposit of a single resource over a 

finite amount of time. qtqcpqH )()(   

 

This problem can be solved by creating a (current value) Hamiltonian
56

 function from the 

integrand (Conrad and Clark 1987, p. 123): 

 qtqcpqH )()(  . eq. 30 

In this equation μ(t) = λe
δt
, or the present value of the ―shadow price‖ λ of the resource 

(the value of a unit of resource in the ground). The two first-order conditions for 

optimality are found by differentiating H with respect to the rate of production (q) and the 

stock of the resource (x) such that: 

 0
dq

dH
, and  

dx

dH
. eq. 31 

Thus from the first condition, 

 0)(
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 t
dq

qdc
p  , or 
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qdc
pt
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)(  , eq. 32 

and from the second, 

  0 , or 






, eq. 33 

because the derivative of H with respect to x is zero. These two results are the primary 

results of ODT: the value of a unit of resource in the ground (μ) is equal to its price less 

the marginal cost of extraction (the additional cost of extracting one more unit of 

resource, or dc(q)/dq); and that μ grows at the rate of interest.  

                                                 
56

 The Hamiltonian function is adapted from classical mechanics. It is generally useful in constrained 

optimization problems, here being equal to the objective function, or the quantity to be maximized, pq- 

c(q), less the shadow price multiplied by the constraint governing the stock of the resource (dx/dt = q).  



 

UK Energy Research Centre                                       UKERC/WP/TPA/2009/021 

45 

 

Most attention in the exhaustible resource literature has focused on the optimal path of 

prices, not production profiles (Krautkraemer and Toman 2003). A typical example of an 

optimal production path for a single resource deposit is shown in Figure 21. Production 

starts high and declines over time due to the declining value (in present value terms) of 

production in future years. Such a path obviously does not reproduce historically 

observed behavior. 

 

6.1.1 Extensions to optimal depletion theory 
A number of extensions have been made to ODT. These were developed chiefly during 

the 1970s and 1980s because of increased interest in resource depletion resulting from 

high oil prices. Some of these extensions have the effect of generating more realistic 

production paths with peaks. 

 

Modeling production costs 

If depletion increases the marginal cost of production (that is, producing an additional 

barrel becomes costlier as the resource is depleted) then dH/dx does not equal zero as in 

eq. 33 because c(q) is replaced with c(q,x). If dc/dx is negative (extraction costs increase 

as the resource is depleted), then there is additional incentive to hold the resource in the 

ground, and its value increases at less than the rate of interest (Fisher 1979).  

 

An important variant is provided by Slade, who replaces c(q,x) with c(q,x,t), such that 

production cost varies with time in addition to the level of cumulative extraction. Such 

behavior might result from technological change in the oil industry. If cost declines with 

time ( 0/ dtdc ), this model results in price paths that are ―U-shaped‖ and production 
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Figure 21. Modeled time path of extraction in optimal depletion model of a single deposit. The 

total resource size is 100 units, the discount rate is 5%, and cost is directly proportional to 

quantity produced. Price is constant at $15 per unit. The extraction cost function c(x) is equal to 

1x*x (cost per unit increases linearly with rate of production, total cost increases quadratically).  
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profiles that can exhibit peaks. (Slade 1982).
57

 U-shaped paths arise when technological 

change brings down production costs rapidly the early years of an industry. After a 

relatively long period of low production costs, depletion takes hold, causing cost 

increases as good exploration prospects are exhausted and production from existing fields 

drops. Cleveland (1991) found such a long-term trend in US long-run average cost of oil 

production, with the low point of the curve being the mid 1960s, just before the 1970 

peak in US production. Cleveland and Kaufmann argue that this U-shaped cost trend (as 

predicted by the theory of Slade) is responsible Hubbert-type behavior in general.  

 

Exploration and depletion of multiple deposits 

Rather than maximizing the value of a single deposit of known size, oil producers face a 

complex problem of exploring for and depleting a number of deposits of uncertain size. 

Pindyk (1978) built an ODT model that includes exploration as well as extraction of 

resources: 

 dtewCqRCpqW
t

t

wq 





0

21, )]()([max  , eq. 34 

where C1 is the cost of production as a function of reserves R, and C2 is the cost of 

exploration as a function of exploratory effort w. This maximization is subject to two 

constraints: 

 qxR   and ),( xwfx  , eq. 35 

where x equals cumulative additions to reserves, and therefore the rate of change of R is 

equal to the difference between additions to reserves and extraction q. Note that the rate 

of change of x is a function both of exploratory effort (increasing) and cumulative 

additions to reserves (decreasing). The analytical solution to this problem is beyond the 

scope of this review. This solution has interesting properties: the oil price path is U-

shaped, and if the initial reserves are small (as in an industry like the oil industry where 

deposits require significant exploration), then the optimal time path of extraction first 

increases and then decreases after a peak. Note again the contrast to the optimal path of 

depletion of a single deposit, as shown in Figure 21.  

 

Focus on the backstop: depletion as a transition 

Given economists‘ interest in the substitution of energy resources, it should not be 

surprising that ODT models have been developed that explicitly allow a transition to 

SCPs (e.g. tar sands or oil shale). In economic nomenclature, these substitutes are called 

―backstop‖ resources. 

 

Optimal depletion models with backstop resources began with the seminal work by 

Nordhaus on long-term energy transitions (1973). Other models include those with 

polluting backstop technologies (Hoel 1978), and pollution-free backstop technologies 

[numerous, see citations in Tahvonen (1997)]. A common result of models with backstop 

resources is that resources are consumed in order of increasing cost.  

                                                 
57

 In the U-shaped path, prices are high in the early years of resource extraction, low throughout most years 

of production, and high again in later years as depletion outweighs the ability of technical change to reduce 

the cost of extraction 
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6.1.2 Reconciling optimal depletion theory with observed 

behavior 
Observers have noted that predictions from simple ODT models bear little resemblance to 

actual natural resource extraction paths (Krautkraemer 1998). However, Holland (2008) 

illustrated that the extended models described above can production paths with peaks. He 

argues that at least four model features can cause peaking behavior: 

 

1. Demand increases over time, inducing producers to delay extraction to later time 

periods even given the disincentive resulting from discounting of future profits.
58

 

2. Technological change results in exogenous decreases in production cost that 

temporarily outweigh the disincentive due to discounting (e.g., Slade 1982); 

3. Exploration for new deposits occurs (e.g., Pindyck 1978); 

4. Production can move to new sites or new resource types over time. 

 

Given that all four of these causal features exist in the oil industry, this development 

bridges a gap between what economic theory suggests is optimal and what has occurred 

in reality. To illustrate these types of impacts, Figure 22 shows the impact of adding 

some of these features to the simple model that generated Figure 21.
59

  

                                                 
58

 Watkins (2006) notes the importance of the demand function on the production path: ―An oft neglected 

aspect of Hotelling‘s seminal paper was the role of his demand function, which set a maximum price, 

reached as output approached zero…In general, the higher the price anticipated when the rate of production 

becomes small, the more protracted the period of operation.‖ Or, in the case of Figure 22, the increase in 

demand results in production that rises to a peak before falling. 
59

 First, we alter the production cost function so that production cost increases as the stock is depleted and 

decreases as time passes (as in Slade 1982): C(t) = ap(t) + bQ(t) - ct, where C(t) is the cost to extract one 

unit of resource, p(t) is production in year t, and Q(t) is cumulative production, and a, b, and c are fitting 

parameters. For the plot above, a = 2, b = 0.05, and c = 1. Second, we model demand growth by increasing 

the real price received by the resource producer by 1.5 units per year t. This incentivizes production in later 

years.  
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Figure 22. Optimal depletion of a fixed resource under conditions that produce a “peak.” 

Production path labeled “quantity” is the same as Figure 21. Other paths show quantity produced 

when cost varies with stock or when demand grows.  
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6.2 Econometric models of oil depletion 
Econometric models are data-rich statistical models that project supply and demand using 

economic variables such as price and extraction cost (Kaufman 1983; Pindyk and 

Rubinfeld 1998). Econometric oil supply models project the volumes of oil or gas 

produced over time as a function of the oil price (typically linear or log-linear), extraction 

costs, number of exploratory wells drilled, or other economic variables that vary over 

time. A group of ―hybrid‖ econometric models have also been developed that incorporate 

non-economic and physical/geologic aspects of oil supply.  

 

6.2.1 Early econometric models of oil and gas supply 
Econometric models of oil and gas supply were first developed by Fisher (1964). A 

number of models from the 1970s and 1980s followed the general form of the Fisher 

model, but I will only describe one example here. See the reviews of Kaufman (1983), 

Dahl (1998) and Walls (1989) for more information. 

 

The model of Erickson and Spann (1971) is an early example of a Fisher-type model. 

They model the quantity of oil and gas discovered (in district j, year t) as the product of 

the number of wildcat wells drilled, Wjt, the success ratio Fjt, and the average size of new 

discoveries, Sjt or Njt for oil and gas, respectively. Thus, discoveries of oil Djt are given by 

jtjtjtjt SFWD  . The three equations for W, F, and S are log-linear. For example, the 

average size of new oil discoveries Sjt is modeled as: 

 
4827162514

1,3210 loglogloglog

ZZZXX

FgpS

jtjt

tjjtjtjt







 
, eq. 36 

where β0 to β8 are fitting parameters, pit and git are input oil and gas prices, Xjti are 

variables representing Texas prorationing, and Zi are dummy variables that distinguish 

between four studied districts. The other equations share similar functional forms. 

 

Fisher-type models have serious weaknesses. Most glaring is that they include no 

information about the geological nature of oil resources.
60

 For example, the above 

equation implies that with a positive value of β1, high enough oil and gas prices mean that 

the average size of discovered oil and gas deposits could continue to increase indefinitely 

through time, which is clearly false (i.e., the size of discoveries is modeled as a log-linear 

function of price, with no ability to account for long-term trends like declining 

exploration prospects). Also, these models are specified in a somewhat ad-hoc fashion, 

without justification from the insights of optimal depletion theory (Walls 1992). 

 

In practice, the performance of these models was poor. In the Erickson model some 

parameters had unexpected magnitudes and signs (Erickson and Spann 1971; Walls 

                                                 
60

 A formulation that is highly dependent on price makes much more sense for a product that is produced in 

a factory in response to a given demand. Oil and gas are clearly different in that they are derived from 

deposits laid in place over geologic time. No price increase will result in the deposition of new hydrocarbon 

deposits - it can only induce use of more intensive extraction technologies or the conversion of other fuels 

into petroleum substitutes. The topic of substitution is discussed in Section 7.  
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1992). The results were often not robust, as exemplified by Pindyk finding significantly 

different results when fitting the Erickson model later to another dataset (Kaufman 1983; 

Dahl and Duggan 1998). Lastly, results vary widely across models of this type. For 

example, estimates of the short-run price elasticity of oil supply vary from 0.31 to 3.9 

across 7 Fisher-type models surveyed by Dahl (1998).
61

 

 

6.2.2 Models derived from theories of intertemporal 

optimization 
In the 1980s, econometric models were developed that had functions derived from the 

insights of economic ODT (Walls 1994). Such models were originally produced by Epple 

(1980; 1983), Walls (1989) and others. Because their form is suggested by theory, such 

models are preferable in principle to the more ad-hoc models described above. 

 

Pesaran (1990) gives an example of this ODT-based approach (although his model also 

models some physical aspects of oil production). First, he directly derives his estimated 

equations from an ODT model with exploration. Producers are assumed to maximize 

expected discounted profits subject to a given information set Ω: 
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This is very similar to Pindyk‘s (1978) model with exploration described above. Again, 

ptqt is revenue in year t, C(qt,Rt-1) is extraction cost, and wtxt is exploration cost (wt is the 

cost of a unit of exploration activity and xt is the amount of exploration). Because this is a 

discrete time optimal depletion model, β is defined as 1/(1 + r), with r being the rate of 

interest.  

 
Pesaran‘s model attempts to capture some physical aspects of oil production. He defines 

the production cost as a function of quantity produced (qt) and the reserves of the 

previous year (Rt-1): 
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where the δi  are fitting parameters.62 The inverse relationship between costs and the 

previous year‘s reserves (in the δ3 term) is included to account for the impact of ―pressure 

dynamics of the petroleum reservoirs on production costs.‖ Also, Pesaran includes in his 

exploration model aspects of the discovery process by using an exponential discovery 

function inspired by Hubbert (1969) and Uhler (1976). Thus, discoveries F are a function 

of exploration effort xt  in year t and cumulative exploration effort, Xt-1: 

                                                 
61

 Such disagreement is not unexpected given that the studies likely covered different time periods or 

regions. But variation in modeled elasticities of more than an order of magnitude is clearly problematic if 

the goal is finding values useful for practical applications. 
62

 A problem with this model‘s use of reserves (as well as in the Pindyk and other models) is that the 

commonly reported reserves (1P) do not represent the total oil in place, and therefore might not be useful as 

a signal of impending depletion. 
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Note that discoveries are an increasing function of exploration effort xt (with ρ <1, so 

diminishing returns apply), and an increasing-then-decreasing function of cumulative 

exploration Xt-1. Therefore, the initial period of exploration leads to increased knowledge 

and therefore more discoveries, but eventually the depletion effect dominates and 

discoveries decline. 

 
The derivation of Pesaran‘s econometric functions is beyond the scope of this paper. One 

interesting result from this model is that the price responsiveness of oil supply declines as 

reserves decline. Later work critiqued Pesaran‘s model for its aggregation level 

(Pickering 2002). For example, Rt in his model are yearly aggregated UK proven 

reserves, obscuring any differences that might result from field or producer 

heterogeneity.  

 

6.2.3 Hybrid models of oil and gas supply 
Pesaran‘s (1990) model above can be considered a ―hybrid‖ econometric model. Hybrid 

modeling combines traditional economic variables like the oil price with variables that 

represent non-economic aspects of oil supply. Such variables include the sizes and 

distributions of oil reserves, or the correlation between depletion and extraction costs. 

Hybrid models vary in the extent to which they are based on economic or 

geologic/physical factors. Walls (1994) and Dahl (1998) survey these models in detail. 

 

Some hybrid models are structured as comparatively minor modifications of traditional 

econometric models, such as the Pesaran (1990) model above. Another model of this type 

was constructed by Moroney and Berg (1999). They built four models in which US oil 

production is a simple log-linear combination of economic and non-economic 

variables:63 

                                                 
63

 Here we present their Model IV, with Model I including just the geophysical elements (linear term plus 

reserves), Model II including just the price and regulatory elements (real oil price and Texas Railroad 

  
Figure 23. Agreement between model predictions and data from Model IV of Moroney and Berg 

(1999). Model IV contains a lagged production term to account for the inertia in production 

systems. This did not completely remove the serial correlation problems seen in their other 

models (note runs of consecutive positive and negative residuals). 
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where RESRV represents oil reserves, RP is the real price of oil, TRC accounts for the 

prorationing decisions of the Texas Railroad Commission, and dum1 accounts for 

possible changes due to a shift in data sources. This model reproduces historical data 

nicely, as shown in Figure 23. Three of their models experienced severe problems with 

serial correlation of the residuals, while Model IV presented in Figure 23 is improved in 

this respect but still exhibits serial correlation. This can be seen in the fact that the model 

consistently under- or over-predicts production over consecutive years.64 

 

Other hybrid models act by augmenting curve-fitting models with economic variables. 

The first such attempts were by Uri (1982) who converted the Hubbert model and 

Gompertz models to econometric hybrid models. For example, in Hubbert‘s logistic 

differential equation 
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Uri modifies Q∞ to address the economic critique that URR is not a static value but 

depends on the oil price and technological change: 
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Here αi and b are fitted parameters, pt are lagged prices and T is a measure of 

technological change. Through experimentation, it was found that k = 2 provided the best 

fit. Since no clear metric for technological change was available, Tt is replaced with 
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eq. 43 

Kaufmann (1991) critiques this model because URR depends solely on price and a 

decaying technology parameter. Thus, in the long-run URR is essentially linearly related 

to price, implying that no limit to oil resources exists given a high enough oil price. 

 

Later, Kaufmann (1991) built another hybrid model based on Hubbert‘s work. His 

procedure has two parts: first he fits a logistic Hubbert curve to oil production data in the 

lower-48 states. He then attempts to account for deviation of the data from the Hubbert 

model by fitting the residuals (the deviations between the predicted and actual values) to 

an econometric model that accounts for economic and political factors. His equation 

models the residual in each year t, Rt, as a function of economic and political variables: 

 CPTRCOGRPRPR ttt
  543)53(2)21(1  , eq. 44 

                                                                                                                                                 
Commission prorationing) and Model III being the same as Model IV but without the term accounting for 

lagged production. 
64

 The Durbin-Watson statistic improves from ≈ 0.4 (severe serial correlation) to 1.5 (moderate serial 

correlation).  
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where α and βi are the coefficients of the linear regression, and time series variables 

including: the running average of real oil prices lagged 1 to 2 years (RP(1-2)) and 3 to 5 

years (RP(3-5)), the price of oil relative to gas (OGt), the fraction of allowable production 

in Texas under the Texas Railroad Commission (TRCt), and the first difference of the 

production curve after its peak (PC’, included to account for asymmetry). 

 

Such a hybrid formulation assumes, in effect, that geologic and physical factors cause oil 

production to broadly rise and fall, while economic variables alter the observed path 

around this underlying trend. They argue that the bell-shaped curve ―mimics physical 

changes in the resource base‖ caused by depletion. This model accounts quite nicely for 

the deviations from the Hubbert model, as shown in Figure 24.
65

  

                                                 
65

 In a complementary effort, Cleveland and Kaufmann (1991) also altered Hubbert‘s model of discoveries 

as a function of exploratory effort to include economic variables. Thus, Hubbert‘s model suggested that 
heYPEYPE  0
, where YPE is the yield of oil per unit of effort (bbl/ft drilled) and h is cumulative footage 

drilled. Cleveland and Kaufmann augmented this with economic factor such that rph eeeYPEYPE   0
, 

where p is the wellhead price of oil and r is the rate of exploratory drilling.  

 
Figure 24. Fit of Kaufmann’s (1991) hybrid econometric model (solid line) to lower-48 states US 

production data (dots) as compared to traditional Hubbert model (dashed line).  
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More recently, Kaufmann and Cleveland (2001) built a model that does not rely on 

Hubbert‘s logistic function: it instead includes the average real cost of production from 

Cleveland‘s (1991) long-term historical analysis.  The inclusion of average production 

cost data (which rise sharply shortly before the peak in production in 1970) obviates the 

need for an exogenous bell-shaped function as in Kaufmann‘s (1991) analysis. This 

model also allows for asymmetric responses to price increases and decreases (e.g., a price 

maximum can have effects that are not undone by later price reductions).   

 

Figure 25 shows that this model reproduces historical rates of change of production (the 

first difference of the production curve) with much greater fidelity than the simple 

Hubbert model. They claim that this shows that ―Hubbert got lucky‖ in his prediction of 

the 1970 peak and that the peak in his model fortuitously aligned with the increases in 

production cost that occurred before 1970. But it is unclear how this production cost 

increase can be causally distinguished from the effects of depletion (in other words, the 

production cost increase could be the mechanism by which depletion acts to cause a bell-

shaped peak). 

 

6.3 Difficulties with economic models  
The difficulties and problems associated with economic models of oil depletion parallel 

closely in form the difficulties with curve-fitting and simulation models. Optimal 

depletion models are overly simple, as was discussed with curve-fitting models. And 

econometric models tend toward complexity that makes them difficult to formulate and 

less robust than a simpler model. 

 

  
Figure 25. Results of Kaufmann and Cleveland’s (2001) econometric model. Annual change in oil 

production (solid line) is compared to model output (dotted line) and predictions from Hubbert’s 

model (smooth dashed line). 
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6.3.1 Optimal depletion theory: Simplicity as a benefit and 

a difficulty 
The models of optimal depletion theory are intentionally simple. By keeping the models 

simple, causation in the model can be traced and understood, and they can be solved 

analytically by a skilled mathematician. This simplicity can be contrasted with the more 

complex models, which are generally solved by optimization algorithms and are can be 

difficult to understand. 

 

A result of this simplicity is that these models lack empirical grounding. For example, 

Tahvonen finds ―eleven optimal regime combinations‖ in his model (Tahvonen 1997). 

This proliferation of solution regimes suggests the need for empirically-derived functions 

and parameters to reduce uncertainty. Alternatively, Withagen argues that models of the 

oil industry need ―considerable further work…to understand the micro-foundations of the 

industry cost function‖ (Withagen 1998).  

 

A good example of the difficulties of simple models is given by the production cost 

functions used in ODT models. For example, Pindyk models per-unit extraction costs as 

inversely proportional to reserves, Rmc / , where m is a free parameter. In this way, as 

reserves decrease, costs increase. Ruth and Cleveland (1993) use historical data to fit 

parameters (econometrically) to Pindyk‘s equations of optimal exploration and depletion. 

They generalize somewhat from Pindyk‘s equation, setting Rc  , where β is < 0 (cost 

is a decreasing function of the reserve size).
66

  Unfortunately, this equation fits observed 

data with an R
2
 of only 0.26. Discussing this poor fit, they note that ―extraction costs are 

influenced by many other factors than stock size, which itself is only an approximation of 

depletion.‖ Or, put differently, there is no reason to believe that costs should be a simple 

inverse function of the reserve size. 

 

Slade‘s (1982) model suggests an improvement to this simple formulation by making cost 

a function of time, so as to allow technological change. But, our understanding of the 

effects of technological change on oil depletion is provided by only a sparse set of papers. 

Cuddington and Moss (2001) study exploration using a metric of the raw number of 

technologies developed, but not their effectiveness at increasing exploration success. 

Livernois (1987) generated econometric cost functions for water-injection under 

depletion. And Norgaard (Norgaard 1971; Norgaard and Leu 1986) analyzed the role of 

technology in mitigating cost increases associated with increased drilling depths.  

 

Another fundamental difficulty of ODT is the assumption that resource producers are 

knowledgeable about the extent and nature of resource deposits. This assumption is 

implicit in the fact that in ODT resource producers optimize net present value over all 

models years simultaneously (Howarth and Norgaard 1990). In contrast, Reynolds‘ 

(1999) model of uncertain exploration suggests that the oil price can increase very rapidly 

after the peak in production, as depletion can ―sneak up‖ on producers with incomplete 

knowledge of resource availability. 

                                                 
66

 They find that β = -1.49, so cost declines somewhat faster as a function of the size of reserves than in the 

Pindyk model, where β = -1. 
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6.3.2 Difficulties with econometric modeling of oil supply 
Despite the quite impressive agreement between econometric models and data shown 

above, these models have their own set of shortcomings. It is easiest to dismiss the 

econometric models with no inclusion of geology or technology, especially for use in 

long-term projections. Kaufman (1983) argues that these models ―have not done well‖ at 

predicting production more than few years in advance, most likely because ―the 

functional forms employed in most econometric models do not conform closely to the 

physical character of exploration, discovery and production.‖  

 

One uncertainty is the role of costs and prices in governing production of fuels. 

Kaufmann (1991) notes that while real oil prices were declining between 1947 and 1970, 

US oil production increased significantly, but during the dramatic increase in world oil 

prices between 1970 and 1985, US oil production dropped significantly. If we assume 

that US producers could freely respond to market prices, this is the opposite reaction 

from what one would expect. As an explanation, Kaufmann suggests that depletion-

induced cost increases dominated the economics of production. He argues that a U-

shaped production cost path caused an inverse reaction in production: production rises 

and then peaks and falls as costs drop and then rise again. After such paths were 

suggested by Slade (1982), Cleveland (1991) found evidence for a U-shaped long-run 

average production cost curve in the US.  

 

Lynch (2002), generally a staunch advocate of economic analysis, finds little hope for 

econometric models of oil depletion: he goes so far as to call their forecasting 

performance ―abysmally bad.‖
67

 In practice he argues that they have been too pessimistic, 

because depletion is often included but technological change is not included to 

compensate. Even if this bias were removed, he argues that improved econometric 

models would be very data intensive in an industry with notoriously poor data 

availability.   

 

And, despite the good match between the models above and historical data, this fidelity is 

generally fragile. This is because predictions made with these models typically fare 

poorly only a few years beyond the fitted data. This is because the large number of 

parameters included in most econometric models allows for good flexibility in fitting the 

model to data. But such a good fit is fragile because the parameters included are dwarfed 

by a huge number of omitted variables (for which data are likely not available). The 

values of these variables omitted variables will change in future years, stymieing 

predictions based on the old fitted parameters (Lynch 2002).  

 

 

Also, Krautkraemer (2003) notes that econometric models ―have not coped well with 

what appear to be basic nonlinearities in the relationship between unit supply cost and 

                                                 
67

 This is not to single out econometric models in particular, as Lynch levels as strong or stronger critiques 

against other oil depletion models, particularly curve-fitting models. 
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reserves.‖ This critique can be applied more generally: there is no reason to suspect that 

the relationships in exploring for and producing oil should generally be linear or log-

linear. Analysts make such simplifications to allow tractable econometric models to be 

built, but they can only approximate real world behavior.
68

  

 

It is vital to note that these critiques are very similar to those that have been applied to the 

non-economic models above. This confluence of difficulties across model types is 

discussed next in Section 7. 

 

                                                 
68

 Kaufman (1983) also argues that ―much precision is lost in translation of a descriptively rich verbal 

argument to models of the form employed by most econometric model builders to date.‖ 
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7 Synthesizing thoughts: What have we 

learned?  
This section presents synthesizing thoughts about oil depletion models reviewed here. 

First, we compare the characteristics of the reviewed models along a number of 

dimensions, describing trends in variation and convergence across model types. Next we 

discuss using these models for prediction, including evaluating the quality of model fit to 

data and the role of complexity in prediction. We conclude with thoughts on one way of 

improving future oil depletion models. 

 

7.1 A variety of model types 
The model reviewed here vary in specificity, phenomena represented, time scale, and 

geographic scope. Importantly, they also vary in disciplinary worldview and in 

underlying assumptions about how the world works. For the purposes of this discussion, 

we will emphasize 4 ―dimensions‖ of variability. Three of these dimensions were shown 

in Figure 1: intellectual orientation (physical or economic), scale (field-level or global), 

and degree of model detail (theoretical or mechanistic). We present this diagram again 

(see Figure 26) to provide a basis for this discussion. The fourth dimension discussed 

here is model complexity (not presented in Figure 26).   

 

The models included in this review occupy nearly all quadrants of the model space shown 

in Figure 26. Example models A and B each reside solely in a single quadrant of the 

figure. Model A is a global, theoretical model that is based on physical aspects of oil 

production. An example of this type is Hubbert‘s global logistic model (Hubbert 1980). 

Model B, on the other hand, is a mechanistic model that operates at the sub-national 

level, built within an economic framework. An example is Fisher‘s sub-national 

econometric model of oil and gas exploration (Fisher 1964).  

 

Model C, on the other hand, ―builds‖ from one quadrant to another. An example is 

Smith‘s (2008) bottom-up model. His model is physical in nature, and more mechanistic 

than, for example, the Hubbert model. It uses data at the field level to build up a global 

projection of oil availability. Alternatively, Model D includes both economic and 

physical characteristics simultaneously in a mechanistic framework. An example of this 

might be the simulation model of Greene et al. (2004), which forecasts production in 11 

multi-national regions, incorporating both economic and physical aspects of oil 

production. 
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Models also vary in their complexity. Models can be very simple, such as the R/P model, 

which solves for one free parameter (exhaustion time) by dividing two input data points 

(current reserves and current production). They can also be very complex, such as the 

Davidsen et al. (1990) model which requires numerous data inputs and projects 

production of multiple fuels as well as crude oil imports.   

 

All major models discussed in this review are classified below in Table 2 along these four 

dimensions of variability. Precise classification of a model is often difficult, and each of 

these axes represents a spectrum along which models can exist at a number of points. The 

terms used in Table 2 are defined in the text box below.  

 

 

  
Figure 26. Different model types placed in depletion modeling space. Models A and B reside in 

one model quadrant. Model C builds up from a field-level basis to project global production. 

Model D straddles economic and physical portions of the diagram. See text for further discussion. 
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Dimensions of model variation 

The symbols used in Table 2 (presented in bold) are defined as follows: 

 

Models have mechanistic or theoretical character: 

 Mechanistic (M) models have functions representing detailed economic, technological, or physical 

aspects of the oil production process.   

 Theoretical (T) models rely on general, simple functions relating oil production to a small number 

of input parameters, generally with time as the key independent variable. 

 

Models can also be physically or economically based: 

 Physical (P) models focus on physical, geological, technological, or engineering aspects of oil 

production. Examples include models that use empirically-based decline functions. 

 Economic (E) models rely on or are justified by economic aspects of oil production, such as oil 

price, demand for oil and oil products, and extraction costs. 

 

Models are built at a variety of scales: 

 Field-level (F) models project production at individual oil fields, while basin-level (B) models 

project production from a geologically-defined basin. Sub-national (Sub-N) models forecast 

production from geologically arbitrary sub-national regions (e.g., states or provinces), while 

national (N) models project production from a single nation. Multi-national regional (R) models 

forecast production from a region comprising multiple nations (e.g., the North Sea) while global 

(G) models project global production. 

 

Models exhibit a wide range of complexity: 

 Very simple (VS) models require at most 1 input data series (e.g., historical production data), 1-3 

other data inputs (e.g., an estimate of Q∞) and have 1-3 free parameters that are solved (e.g., tpeak). 

Simple (S) models are similar to VS models except they have up to 6 data inputs and and 6 free 

parameters. Models of moderate (M) complexity still require only one time series data input, but 

they require more than 6 input data parameters or solve for more than 6 free parameters.  

 Complex (C) models require more than one time series data input (e.g., yearly production data plus 

yearly oil price) and any number of additional input data, but they only model future oil 

production. Very complex (VC) models are similar to complex models except that they model 

production of more than one resource type (e.g., crude oil, tar sands, and oil shale).  

 

Some models exhibit characteristics of multiple portions of the diagram simultaneously: 

 Models can build from one type of analysis to another. This is represented with an arrow (→). 

Examples include models that build global production projections from field-level modeling (e.g. 

F→G) 

 Models can also integrate multiple model characteristics (+).  For example, a model might include 

both physical and economic reasoning simultaneously (e.g., P+E). 
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Table 2. Classification of reviewed models. See text box above for model classification definitions. 

Author name is first author of first paper for a model type. Year is year of first paper for a model 

type. See text and references for details for each model.  

Author Year Model form 

Mech. / 

Theor. 

Phys. / 

Econ. Scale Complex. 

Pre-curve-fitting models 

Day 1909 Reserve-to-production (R/P) T P N VS
a
 

Day 1909 R/P w/ exponential growth T P N VS
a
 

Ayres 1952 Hand-drawn bell-shaped T P N, G --
b
 

Hubbert 1956 Hand-drawn bell-shaped T P N, G --
b
 

Curve-fitting models 

Hubbert  1959 Logistic cumulative prod. T P N VS 

Moore 1966 Gompertz cumulative prod. T P N VS 

Bartlett 1978 Exponential resource exhaustion T P G VS 

Hammond 1993 Skew-normal production prof. T P N VS 

Laherrere 1999 Multi-cycle logistic T P N S, M
c
 

Hakes 2000 Exponential growth + decline T P G VS 

Hallock 2004 Smoothed exponential T P N→G S
d
 

Hirsch 2005 Linear T P Sub-N, 

N 

VS 

Guseo 2005 Technological diffusion T P+E N, G M 

Rerhl 2006 Logistic-curve justification M→T P -- VS 

Brandt  2007 Asymmetric curve-fitting T P Sub-N, 

N, R, G 

VS, S 

Mohr 2007 Multi-function disrupted  M+T P N, 

R→G 

M
c
 

Berg 2008 Expanded differential model M+T P+E -- M 

Kaufmann 2008 Flexible inverted U-shaped T P G VS
a
 

Simulation models 

Davis 1958 Iterative economic sim. M P+E N C
d
 

Naill 1973 Natural gas production sim. M P+E N C 

Basile 1981 Sim. crude oil and substitutes M P+E R→G VC
d
 

Sterman 1983 Sim. crude oil exploration and 

production 

M P+E N C
d
 

Davidsen 1990 Sim. of crude oil, synthetics 

production plus imports  

M P+E N VC
d
 

Reynolds 1999 Simple sim. of finding buried 

resources 

M→T P -- M 

Greene 2003 Regional sim. of producing oil 

and oil substitutes 

M P+E R→G VC 

Bardi 2005 Simple sim. of finding and 

extracting resources 

M→T P -- M
d
 

Brandt 2008 Regional sim. of producing oil 

and oil susbstitues 

M P+E R→G VC 

Bottom-up models 

Campbell 1995 Bottom-up model w/ proprietary 

database 

M P F, 

R→G 

C
d
 

Skrebowski 2004 Database of projects in 

development 

M P Sub-F, 

F→G 

C
d
 

Miller 2005 Bottom-up model w/ proprietary 

database 

M P F, 

R→G 

C
d
 

Smith 2006 Bottom-up model w/ mostly 

public database 

M P F, 

R→G 

C
d
 

CERA 2006 Bottom-up model w/ proprietary 

database 

M P+E? F→G C
d
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PFC 

Energy 

2004 Bottom-up model w/ proprietary 

database 

M P+E? F→G C
d
 

Economic models 

Hotelling  1931 Optimal depletion theory T E -- VS 

Fisher 1964 Econometric model of oil and 

gas discovery 

M E Sub-N C
f
 

Nordhaus 1973 Economic transition to backstop 

oil substitutes 

T E R→G VC 

Uhler 1976 Hybrid economic-physical 

model of exploration 

M+T E+P Sub-N
e
 C 

Pindyk 1978 Optimal depletion with 

exploration 

T E -- M 

Uri 1982 Hubbert-type economic hybrid T E+P N C 

Slade 1982 Optimal depletion with 

technological change 

T E -- C
f
 

Pesaran 1990 Hybrid econometric model M+T E+P R C 

Kaufmann 1991 Hybrid econometric/Hubbert 

model 

M+T E+P Sub-N C 

Moroney 1999 Hybrid econometric model M E+P N C 

Kaufmann 2001 Econometric model with 

decomposed oil price series 

M E Sub-N C 

a – R/P models are, in fact, simpler than our VS definition because they do not require a historical time 

series to fit the data, but instead only require estimates of reserves and current production. The model of 

Kaufmann and Shiers does not require the full time series of historical production, only cumulative 

production to date. 

b – Ayres and Hubbert did not specify functional forms for their first projections, making their 

classification by complexity impossible. 

c – The complexity of multi-cycle models depends on the number of cycles modeled (Laherrere) or the 

number of disruptions allowed in the model (Mohr and Evans) 

d – Full equations were not given, so best estimate of complexity is made 

e – Uhler makes the claim that the regions of Alberta used in his study, although not geologically 

defined, actually constitute separate geologic plays. 

f – Some economic models (e.g., Fisher or Slade) are applied to multiple resources. They are still 

classified as complex because each resource is modeled with a separate application of the model. This 

can be compared to a very complex model like Greene et al., which uses the same model to 

simultaneously predict the production of a number of competing resources. 

 

7.1.1 Trends suggested by model classification 
Table 2 suggests trends across the variety of reviewed models. For example, models have 

tended to become somewhat more complex over time (see curve fitting models in 

particular). Also, modern models exhibit more integration of contrasting modeling 

perspectives. This is especially true in the development of models that mix physical and 

economic characteristics (P+E). Despite an early pioneering effort by Davis (1958), few 

models integrated these perspectives until the 1980s. Another promising trend is the 

recent development of models that attempt to generate assumed theoretical behavior (e.g., 

bell-shaped profiles) from the mechanisms of oil and gas exploration (M → T). 

 

Another important trend relates to model complexity. Simulation and econometric 

models tend to be both more complex and more mechanistic than curve-fitting or ODT 

models. These two dimensions are causally related: if a model assumes that production 

will follow a bell-shaped curve, essentially no mechanistic modeling is required and 



 

UK Energy Research Centre                                       UKERC/WP/TPA/2009/021 

62 

therefore there is no need for complexity. Conversely, every aspect added a model to 

increase its mechanistic specificity requires additional model parameters.  

 

Lastly, a hopeful trend emerges: there is a convergence across models with divergent 

intellectual underpinnings toward the production of approximately ―bell-shaped‖ 

production profiles. Such convergence is desirable: many observed profiles have been 

approximately bell-shaped, and so we should expect models to generate this general 

behavior regardless of their basis. The following (quite divergent) model types each 

produce production profiles with generally rounded peaks:  

 

1. System dynamics models of resource extraction and depletion show rounded, often 

slightly-skewed peaks (see work of Naill or Sterman et al.). These models generate 

peaking as the result of a drawdown of undiscovered oil deposits (a physical effect) 

which then increases the difficulty of finding oil, which reduces the return on 

investment in oil exploration (an economic effect). 

 

2. Oil transition simulations under perfect foresight (for example, Basile and Papin or 

Greene et al.) show smooth peaks that tend to be somewhat less bell-shaped. These 

models generate peaking either through R/P type constraints that limit the rate at 

which the stock of resources can be depleted in a given year, or through increases in 

production cost through a depletion cost multiplier. 

 

3. Capacity investment simulation under uncertainty also shows peaking behavior (e.g., 

Brandt and Farrell). In this case depletion multipliers increase the cost of the marginal 

barrel of oil or oil substitute, resulting in oil price increases and demand reductions. 

Also, R/P type constraints limit the rate of extraction. 

 

4. Probabilistic finding models (see work of Bardi or Reynolds) show peaking behavior 

due to the declining probability of new discoveries as the stock of undiscovered 

resources dwindles and search effort is limited. 

 

5. Some economic optimal depletion models show optimal production profiles with 

peaks. These peaks occur in models that include exploration, exogenous technical 

change, or demand growth (see papers by Holland, Pindyk, Slade, and Tahvonen). 

 

Note that I am excluding from this list all models where peaking is explicitly defined in 

primary model functions, as in nearly all curve-fitting models reviewed above.  

 

7.2 Prediction, understanding, and complexity  
Put plainly, existing models have a poor record of predicting global oil production, and 

many predictions of a global peak have come and gone without confirmation. The recent 

stagnation in global output could be the sign of an impending peak in production — thus 

vindicating a number of recent predictions — but this will not be known for certain for a 

number of years.  

 



 

UK Energy Research Centre                                       UKERC/WP/TPA/2009/021 

63 

Such uncertainty results not so much from the problems of oil depletion models, but from 

the general difficulty of forecasting. As Smil (2003) argues, ―for more than 100 years 

long-term forecasts of energy affairs…have, save for a few proverbial exceptions 

confirming the rule, a manifest record of failure.‖ Clearly, prediction is a much more 

difficult endeavor than fitting functions to historical data. For this reason, it remains 

uncertain how useful any of the models reviewed above — even those that appear to fit 

historical data well — will be for predicting future oil production.  

 

7.2.1 Which model fits historical data best? 
In assessing the usefulness of a model for forecasting, a common approach is to compare 

its fit to historical production data. This is because it is assumed (perhaps reasonably) that 

models which fit historical data more closely will better predict future production. 

Unfortunately, the task of determining which model best fits a historical dataset is not 

straightforward.  

 

Let us again look at the general form of oil depletion models presented: 

   ),,,,,( 321321 xxxfy . eq. 45  

Again, here y is the dependent variable (generally P), xi are data inputs and βi are free 

parameters. The model fitting process consists of searching for values of free parameters 

that reduce the overall error when fitting the model to historical values of y. This often 

involves minimizing the sum of squared error terms ε. Generally, oil depletion models are 

nonlinear, so nonlinear least squares regression is used (NIST/SEMATECH 2008). 

 

The quality of the fit of a model cannot be judged entirely with measures of overall 

mathematical fit. This is the danger of using metrics such as R
2
, which can be misleading. 

R
2
 will nearly always increase when a model is made more complex by adding additional 

parameters (NIST/SEMATECH 2008). This is because each free parameter adds more 

flexibility to the model and therefore virtually guarantees that it will fit the data points 

better. Therefore, statistical measures used to compare models must take into account the 

complexity of each model (Motulsky and Christopoulos 2004). Such methods include 

Adjusted R
2
, which accounts for the number of parameters in the model, or Akaike‘s 

Information Criterion (AIC), which is a result of information theory that allows for the 

comparison of model fit across divergent models (i.e., models that have different 

numbers of parameters and are not similar mathematically).
69

 Some additional 

characteristics of good model fits are described in the text box, What qualities do we look 

for in a good model fit?   

 

There are more subtle criteria that apply to the fitting process. Ideally, there should be a 

priori scientific justification for using a model. This is because models are most useful 

when they can explain what they are modeling.
70

 If there is no theoretical basis for a 

                                                 
69

 ―Similar‖ here has a specific meaning. Some tests (e.g., F-tests or extra sum of squares) require that the 

models being compared are mathematically nested, that is, that the simpler models can be written as special 

cases of the more complex models (Motulsky and Christopoulos 2004). 
70

 As Ramsey (1980) argued about oil depletion models, ―the obtaining of a good fit to a set of historical 

data by some statistical expression not generated by a theory only reflects on the ingenuity of the data fitter 

and says nothing else.‖  
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model, the fitting process can degrade quickly into ―data dredging.‖ Data dredging occurs 

when analysts fit a number of models to a dataset and study the ones that fit best, without 

justification of the model form. This results in misleading statistics of fit. For example, p-

values from such efforts can be misleading because of the discarded fits to other poorly 

fitting models.
71

 To avoid this problem, models should be selected from a group of 

models that is chosen based on the scientific nature of the problem, before any significant 

fitting is performed (Burnham and Anderson 2002).   

 

7.2.2 Empirical comparisons of model fit 
Given the complexities involved, it is not surprising that empirical analyses of model fit 

were not performed during the initial controversy surrounding Hubbert‘s work. Kaufman 

                                                 
71

 One goal of statistical analysis is to eliminate false positives, also known as Type I errors. These occur 

when one finds a relationship or effect when no genuine relationship exists. An example would be finding 

that a given dataset is best described by the Hubbert curve and concluding that Hubbert-like phenomena 

generated the data, when in fact it was simply chance that the Hubbert model fit better than another model. 

Probabilities of a false positive for a single comparison (comparisonwise error rate) are different than 

overall probabilities of error for multiple comparisons (experimentwise error rate). These error rates can be 

very different, particularly if data dredging is performed. This is because a number of models might be fit 

to a dataset, out of which a small number of models with ―good-looking‖ fits might be selected for formal 

testing. This informal initial rejection of some models is actually an implicit test that strongly affects the 

overall probability of obtaining a false positive (Kirchner 2001). For this reason, formal comparisons of 

model fit should be applied. 

What qualities do we look for in a good model fit? 

 An ideal model fit has a number of characteristics. A primary criterion is that we want the smallest 

divergence between the model and the data points being fit. Most curve-fitting procedures operate 

by attempting to minimize a measure of the overall divergence between model and data (e.g., sum 

of squared errors). Another fundamental criterion is that the values found for parameters be 

physically realistic (for example, we would reject a model fit that resulted in a positive exponential 

decline rate, as it would imply that ever-increasing production) (Motulsky and Christopoulos 

2004). 

 The difference between the value that a model predicts for each year and the actual data value is 

the residual. A primary method of analysis of residuals is visual inspection, as all summary 

statistics result in loss of some information (NIST/SEMATECH 2008). An ideal model fit results 

in the residuals 1) being normally distributed; 2) being evenly arrayed above and below the line 

with few consecutive runs of positive or negative values; and 3) having a consistent spread over 

time (not more divergence in one time period than other). Formal tests exist to determine whether a 

fit has each of these characteristics.  

 If there is consistent divergence between the model and data (e.g., a positive residual is likely to be 

followed by another positive residual), then the residuals are said to be serially correlated (also 

known as autocorrelated). This most commonly occurs because the data are being generated in 

part by one or more explanatory variables that are not included in the model formulation (or 

omitted variables) (Pindyck and Rubinfeld 1998).  For example, in fitting the logistic model to 

global production data, predicted values are consistently too high after the 1973 oil crisis. This is 

because the logistic model does not include variables that allow modeling of an oil embargo.  

 Serial correlation is often measured using the Durbin-Watson statistic. A Durbin-Watson value of 2 

indicates that the data are not serially correlated, while values below 1 indicate significant positive 

serial correlation. This test is often performed on econometric models of oil production, but is 

rarely performed on other oil depletion models despite their often obvious problems with serial 

correlation of residuals. Kaufman (1991) notes that the residuals from the Hubbert fit to US 

production data are serially correlated, as are the fits to many other simple functions.  
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(1983) notes that in the 1950s and 1960s ―[no] comparison [was] made, based on 

accepted statistical principles, of the relative qualities of fit to the data or of the predictive 

accuracies of possible alternative models.‖ 

 

The first such analysis was by Wiorkowski (1981), who compared the ability of curve-

fitting models to fit cumulative production and discoveries data. His study focused on 

resource estimates derived from observed data, a different focus than the models 

described here. He developed a Generalized Richards function which can take the form of 

an exponential, logistic, or Gompertz model depending on the value of a single 

parameter. He then compares this flexible function to the Weibull function and finds that: 

1) their quality of fit is almost identical when applied to cumulative production data, and 

2) despite this similar quality of fit, the two models result in significantly different 

projected resource quantities. These results suggested that production data could not, on 

their own, suggest which of the models is better for use in projecting resource 

availability.  

 

The Energy Modeling Forum of Stanford University sponsored two structured 

comparisons of economic and econometric models of oil supply in the 1980s. This effort 

compared the difference between model predictions when differing models are given 

identical input assumptions (e.g., GDP growth and oil prices) (EMF 1982; 1992). No 

post-hoc analyses of model accuracy were found. 

  

As described above in Section 3.3, Brandt (2007) compared the fit of six simple (3 and 4 

parameter) curve-fitting models to 139 oil production curves at a variety of scales (US 

states and regions, countries and multi-country regions) He used AIC to compare 

symmetric and asymmetric versions of a Gaussian bell-shaped model, a linear model and 

an exponential model. He did not find strong evidence to choose one functional form 

over another, and each model type was useful in some regions.  

 

No empirical comparisons between broad model types (e.g., curve-fitting vs. 

econometric) were found in the published literature. However, one general conclusion 

can easily be drawn from the discussion above: more complex models fit historical data 

more closely than simpler models. One example is the model of Kaufmann and 

Cleveland, shown in Figure 24. As discussed above, this increased fidelity is due largely 

to the additional degrees of freedom of more complex models. Despite this better fit to 

historical data, it is unclear that complex models are more useful for projecting future 

production. We address this question next. 

 

7.2.3 Complexity and the purpose of modeling 
Once a model surpasses a relatively low level of complexity (e.g., ceases to be a simple 

curve-fitting model), there is a natural tendency to address shortcomings in its behavior 

by adding additional complexity to the model (e.g., additional functions or modules). 

This approach is doomed to failure as a means of producing more accurate forecasts 

(Smil 2003). Complexity fails because of two fundamental and unavoidable difficulties of 

mathematical modeling in general: many aspects of the real world must, by necessity, be 
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left out of any model, and what is included in a model must necessarily be greatly 

simplified.
72

  

 

Out-of-model effects – features of the world that are not included in the equations of a 

model – are technically infinite in number. Though most such effects will be 

unimportant, in even the most complex model there are numerous that are important 

enough to cause significant deviations between model predictions and observed 

behavior.
73

  

 

Critics of curve-fitting models use technological change as the most often cited out-of-

model effect, and it serves as a useful example. As an example of technological change, 

Figure 27 (left) shows the case of Illinois. Hubbert argued that this state exhibited early 

and late production cycles caused by the introduction of seismography. While these early 

and late cycles are clear in retrospect, an observer from 1915 could be forgiven for 

imagining that the oil industry in that state had run its course. Even if seismography were 

foreseen by this observer, it is fanciful to believe that they could have reliably estimated 

the timing and overall magnitude of the increase in production resulting from this 

technological advance. 

 

Thankfully, we are better prepared than such an observer because our knowledge of what 

is technically and physically possible is significant and is improving over time. But there 

is still great uncertainty with respect to how future technologies will affect the oil 

industry. Given the difficulty of defining functions to represent any single type of 

                                                 
72

 This is a very general problem that goes far beyond oil depletion modeling. And models of oil depletion 

are not significantly less reliable than other types of energy models (Smil 2000; Smil 2003). For example, 

Smil (2008) calls the IPCC integrated emissions models ―computerized fairy tales‖. 
73

 What I call ―out-of-model‖ effects are caused by missing variables, or omitted variables (as they are 

called in the econometrics literature). They are effects that cannot be predicted by the model because the 

model contains no representation that they exist. 

 

 
Figure 27. Examples of “out of model” impacts overwhelming bell-shaped production profiles. 

Left: Oil production in the state of Illinois, fit with the Gaussian model. Note that the best fitting 

Gaussian model has poor explanatory power due to the strong second cycle of production induced 

by the introduction of seismography.  Right: Oil production in Iraq, with best-fitting Guassian 

model. Again, the fit of the Gaussian model is poor, due to chaotic political and economic history 

of the region. 
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technological development, adding numerous technologies in any detail would add a 

tremendous amount of complexity and uncertainty to any model. This is humbling 

because technological change is in many ways a well-contained problem: it tends to be 

cumulative (technologies are not often lost in the modern world) and to move in one 

direction (technologies are not often adopted that result in worse recovery factors or 

higher production costs).  

 

A better strategy than adding complexity to attempt to forecast the progress of technology 

is to estimate bounds on the amount of technical change that could occur with respect to a 

single resource type. This process can be aided by the relevant physical aspects of 

petroleum production.
 
For example, one might estimate a maximum recovery factor more 

easily than guessing at the exact technologies to be applied to oil recovery. Another oft-

cited limit is that the energy expended in producing crude oil should not exceed the 

energy content of the oil itself, placing limits on the intensity of extraction technologies.
74

 

 

Far more difficult to model are ―human factors‖ out-of-model effects, such as political 

disruption, war and conflict, changes in institutional structure or regulation, or demand 

discontinuities. Who in 1965 would have predicted the recent rise of capitalist China or 

the Iran-Iraq war of the 1980s? What about the magnitude and timing of the impact of 

these events on world oil supply and demand? Many such effects are smoothed by the 

actions of the market, but significant deviations from bell-shaped profiles have occurred 

often in the past and are certain to happen again (see Figure 27, right). Even if we 

understood how to quantify such stochastic social phenomena, the complexity required to 

address even a fraction of these societal or political phenomena in detail would 

presumably be far beyond that of any existing model.  

 

The second fundamental problem with complexity as a modeling strategy is that as 

functions are added to a model, data limitations often require them to be in highly 

simplified form. For example, in the model of Green et al., which is as complex as any 

model reviewed here, the rate of increase of extraction costs as a function of the depletion 

level (β, in eq. 27) is equal for all regions and all fuels (Greene, Hopson et al. 2003). A 

model built by this author adopts the same assumption (Brandt and Farrell 2008). This is 

not because it is a good assumption, but because data on which to base a better 

assumption are not available.
75

  

 

These problems of complexity are discussed to illustrate a key point: increasing model 

specificity and complexity is an activity subject to rapidly diminishing returns. It 

generally does little to improve the reliability of predictions, and can have significant 

detrimental impacts on the other key goal of model building: increasing our 

understanding of the behavior of the global oil production system.  
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 There are some difficulties with these arguments, as more than 1 unit of a low-quality energy resource 

(e.g., waste heat from a power plant) might readily be used to gain 1 unit of high-quality energy. 
75

 Oil companies most certainly have data that would allow much better assumptions about the variation of 

production cost with depletion level, but these data are not publically available. 
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7.2.4 Making forecasts: Promise and pitfalls 
To introduce the problem of forecasting global oil production, we will use the case of 

Hubbert‘s 1956 prediction of US oil production as an example. First, while Hubbert‘s 

analysis is well-remembered, no fewer than 7 papers published in the 1950s predicted a 

peak in US production within an approximately 10 year period surrounding the actual 

peak (1962-1973). These predictions are listed in Table 3. 

 

There are two ways to view the fact that multiple authors made quite similar predictions. 

One could argue that this proves that Hubbert‘s method was not extraordinary, as other 

authors using other methods came just as close to predicting the peak date.
76

 

Alternatively, one could argue that a variety of authors using a variety of methods 

produced estimated peak dates clustered in a reasonably tight band around the actual peak 

date. This interpretation suggests that the future of US oil production could be generally 

intuited 10-15 years beforehand using quantitative methods.  

 

Another important lesson from these projections is that while a number of them had the 

peak date approximately correct, all of them underestimated URR. Cumulative 

production already exceeds 200 Gbbl and significant reserves still remain. Thus, 

production has not dropped as quickly as Hubbert (or the other authors of his time) 

predicted (Jackson 2006). 

 
Table 3. 1950s predictions of peak US oil production. 

Author Year of estimate Early peak date Late peak date URR (Gbbl) 

PMPC 1952 1963 1967
a
 NA 

Ayres 1952 1962 1964
b
 100 

Ayres 1953 1960 1968-1970 100 / 200 

Hubbert 1956 1965 1970
c
 150 / 200 

Ion 1956 1965 1970
d
 NA 

Pogue 1956 1970 1972
b
 165 

Davis 1958 1964 1973 NA 

a – Figure presented on p. 103. These peaks are quite angular, rising and then falling in 

linear segments with discontinuities in the slopes. Three scenarios were presented: 1 - 

production grows until 1975; 2 - production has shallow peak in 1967; 3 - production has 

sharp peak in 1963. 

b – These dates come from a single prediction, but it is difficult to determine the precise 

year of peak production from the figure. 

c – In the article text, Hubbert states, ―about 1965‖ and ―about 1970‖, so we use these 

dates. It is difficult to determine precise peak years from the figure. 

d – Ion presents a table (p. 83) which shows production in 1955, 1965, and 1975. 

Production peaks in the West Coast and ―Other States‖ regions in 1965, while it 

continues to growth in the Rockies and Gulf Coast region until 1975. Total production is 

equal in 1965 and 1970, implying that the overall peak is somewhere in this time period. 

He additionally suggests the possibility of a flat peak: ―production in the U.S.A. might 

well reach 400 million tons p.a. (8.3 million b.d.) within a few years and then flatten 

there for twenty years.‖  

 

                                                 
76

 Note that while Hubbert‘s prediction of 1970 pinpointed the exact year of peak production, this was his 

upper range estimate. When comparing his 5 year range to other author‘s predictions, it appears that some 

of the other predictions could be considered just as accurate. 
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With this earlier case in mind, we now discuss the problem of predicting global oil 

production. Of key importance is that the viability of forecasts varies with the desired 

specificity and time scale of the forecast. This is illustrated by Figure 28, which shows 

how forecasts vary with these two parameters.
77

 For example, if one wishes to predict the 

order of magnitude of global crude oil production next year (e.g., will it be approximately 

1 Gbbl, 10 Gbbl, or 100 Gbbl?), no mathematical model is needed: barring a global 

catastrophe, crude oil production will not change significantly over the course of a year. 

A similar case exists if we only wish to know the century of peak oil production. If, 

instead, one wishes to predict basin-level production of multiple hydrocarbon products in 

the year 2050, no model can provide a useful answer. 

 

It is the other cases in Figure 28 that are more interesting. These cases involve using 

simple models to predict general behavior over longer time periods, or using more 

complex models to make near-term predictions.  

 

Simple models can be used to generate estimates of general long-term behavior. For 

example, such models tell us that conventional production of hydrocarbons of the scale of 

50 Gbbl/y in 2100 is extremely unlikely, because all reasonable estimates of URR 

suggest that this is not possible. 

 

If future profiles are even approximately bell-shaped, simple mathematics allows these 

types of predictions: the long periods of rapid growth seen in bell-shaped or exponential-

like profiles result in very high consumption rates near the peak of production. The exact 

shape of the curve is relatively unimportant (Bartlett 1978). This is the reason for the 

                                                 
77

 Many of the disputes in the literature surrounding depletion modeling likely result from a 

misunderstanding (or poor communication) regarding which of these quadrants the predictions from a 

particular model reside in. 

.  

Figure 28. Schematic of the variation in predictions with time scale and specificity. Note that the 

appropriate response to a modeling problem varies depending on the quadrant in which the 

question of interest lies. 
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general agreement between the estimates of Hubbert and his contemporaries (noted above 

in Table 3).  

 

Note that there are numerous caveats and reasons for skepticism here: using a bell-shaped 

model for a well-defined resource type (e.g., onshore light oil) is reasonable if demand 

continues to grow, and if production is unhindered by political interference or economic 

disruption. This is, of course, not strictly the case on the global stage. Also, recall that the 

predictions of Hubbert and his contemporaries underestimated URR (Jackson 2006), and 

that evidence suggests that production declines tend to be less steep than inclines (Brandt 

2007), suggesting that declines after the peak could be more shallow than currently 

thought. 

 

Complex mechanistic models have clear advantages in reproducing short-term 

fluctuations in historical oil production because they have more freedom to allow the 

fitting algorithm to more closely match predictions to data. Predictions made with such 

models will tend to be reasonable for periods in which underlying variables that are 

omitted from the model itself stay reasonably constant, and therefore the fitted model 

formulation still holds. 

 

Unfortunately, it is not clear that complex models have advantages for long-run 

prediction. This is because the uncertainty in a forecast necessarily increases as the time 

scale of the prediction increases. This necessarily increases the model‘s reliance on 

assumptions. In a simple model, these assumptions are few in number, simple to 

communicate, and open to ready critique. The more complex the model, the more opaque 

and difficult this process becomes, and the more these proliferating assumptions 

counteract the benefit of the model‘s increased detail. In the case where a modeler is 

making hundreds of long-range assumptions about future discoveries or recovery rates 

for a field-level bottom-up model, prudence and parsimony suggest that a simpler model 

might be more appropriate.  

 

An example shows the futility of trying to use these models in an inappropriate context. 

Curve-fitting models are poor at making precise short-term predictions because they can 

relentlessly fit one short-term trend after another, even if supplied with consistent 

  
Figure 29. Comparison of projections of UK oil production from Hammond and Mackay (1993) 

(left) and Mackay and Probert (2001) (right), both generated with skew normal production 

profile (SNPP) model. 
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estimates of URR (see Figure 29). Hammond and Mackay (1993) used their SNPP model 

to predict UK oil production of 15 to 70 Mtonne in the year 2000. Unfortunately, the 

curve-fitting algorithm had locked onto what was only a temporary decline. Mackay and 

Probert (2001) later used the same model, showing that actual production in the year 

2000 was above 130 Mtonne, higher even than the peak modeled in the previous paper. 

Inexplicably, the authors call this model ―well tested and tried‖ in the 2001 paper, despite 

its very poor prior performance. This model is neither alone nor exceptional in its poor 

predictive ability. Nearly all simple models would do the same. 

 

A complex field-level bottom-up model could have noted that the decline in UK 

production shown in Figure 29 (right) was due to the Piper Alpha disaster, and predicted 

that production would likely increase after this temporary problem, due to the underlying 

reserve base and installed production capacity. But if the modeled region were less 

mature than the UK continental shelf, the use of a bottom-up model would require a large 

number of assumptions about future discoveries and reserve growth. This would reduce 

its advantages over a curve-fitting model for long-term predictions. 

 

Note that the above discussion has focused on modeling the path of extraction of a 

known resource base, neglecting the uncertainty caused because we do not know the 

appropriate value of URR. While URR is discussed in detail in a companion report 

(Sorrell and Speirs 2009), one point is worth emphasizing here: estimates of URR are 

simultaneously subject to geological, technological, and economic uncertainty. It would 

be very difficult to build a model that accounts for all of these factors in any detail. For 

this reason, the models generally rely on an exogenous value or probabilistic ranges of 

values for URR, such as the USGS estimates (U. S. Geological Survey 2000).  

 

In summary, this author‘s judgment with respect to the predictive value of oil depletion 

models is that:  

 

1. Simple curve-fitting models can provide a rough outline of future production, for a 

given level of URR. The uncertainties involved limit the precision of such estimates to 

the scale of a decade. 

2. More-detailed mechanistic models (e.g., bottom-up models), exhibit greater fidelity in 

reproducing historical data and are therefore more useful for near-term predictions. 

Their insight into development projects (e.g., Skrebowski‘s work) in principle allows 

good predictive ability for a 3-5 year time period, excluding the potential for external 

shocks. This advantage wanes for long-term forecasts because complexity makes 

them over-specified and ―brittle‖ with respect to the uncertainties of future decades. 

3. All models are vulnerable to any number of unforeseeable external shocks (whether 

technological, economic, or political in nature), meaning that none of the reviewed 

models can provide estimates of great precision.  Increasing model complexity does 

little to address this problem. 

 



 

UK Energy Research Centre                                       UKERC/WP/TPA/2009/021 

72 

7.3 Moving forward: Improving oil depletion 
modeling 

A number of ways to improve oil depletion models have been implied by the above 

discussion. Here we will discuss one important opportunity: further integrating the views 

of physical scientists and economists on the problem of resource depletion. A useful way 

of understanding the need for such integration arises from asking a simple question: 

which fuels will be produced after the peak in output of conventionally produced 

petroleum? 

 

Most models outlined above, particularly the curve-fitting models, leave this question 

aside entirely. Some analysts make explicit that they are only projecting output of 

conventional oil (e.g., Campbell‘s recent models are very specific about which resources 

are included). Others do not explicitly outline which resources are included within their 

projections. And often analysts blur the distinction between a decline in conventionally-

produced petroleum and a decline in overall production of liquid hydrocarbons, implicitly 

assuming that a decline in the former is equivalent to a decline in the latter — which need 

not be the case. 

 

This focus on conventionally produced petroleum (regardless of how one defines 

―conventional‖) misses a crucial aspect of the energy supply system: we already do not 

produce oil from a single, well-defined resource with an easily-definable resource base. 

Instead, hydrocarbons are produced from a wide range of deposits using a variety of 

technologies. And the diversity of production strategies will increase significantly in the 

face of a peak of conventional oil output. 

 

Economists have paid significant attention to this issue. They argue that what is important 

for understanding oil depletion is not how much hydrocarbon remains in the ground, but 

the characteristics of hydrocarbon resources and our ability to substitute other resources 

for conventional hydrocarbons.
 78

 This is a key point because a decline in conventional oil 

output will not occur in a vacuum. Instead, it will likely result in significant oil price 

increases, which will induce investment in a wide variety of alternative resources. This 

has happened before. As Deming (2001) argues, ―The history of energy use is one of 

substitution.‖  

 

Some analysts have taken this economic argument to an extreme, committing the 

opposite error of those who focus too exclusively on conventional oil. Van der Veen 

(2006) quotes Linden, who argued that the US peak ―had nothing to do with any geologic 

factors, but was merely a rational reaction to the realities of the global oil market.‖ This is 

nonsense. The United States peak was the combination of a geologic reality (that resource 

depletion caused the cost of adding domestic production capacity to rise to prohibitive 

levels) and an economic reality (that cheap foreign oil was available as a substitute).  
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 McCabe (1998) argued that ―the total amount of any fossil fuel present in the Earth‘s crust (its crustal 

abundance) is an astronomic figure that, while of possible academic interest, is a number that has no 

economic significance.‖ 
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Simplistic arguments on either side of this debate fail because resource depletion is not an 

―all or nothing‖ phenomenon. As oil resources in a region become depleted, the average 

quality of the resource produced will tend to decline because producers will preferentially 

extract the best resources first if they are able. This decline in quality will cause costs to 

increase.
79

 Producers will make compensating investments to mitigate these cost 

increases, but eventually they will induce substitution with a now-cheaper alternative 

energy source. We do not live in a depletion-or-substitution world, but a depletion-and-

substitution world.
80

  

 

Models constructed without attention to this substitution effect are missing a trend 

already well underway. Hydrocarbon substitutes for conventionally-produced petroleum 

(SCPs) are already produced in significant quantities.
81

 Enhanced oil recovery 

technologies in the US produced about 0.6 million barrels per day (Mbbl/d) in 2006, 

mostly steam-induced heavy oil production in California and CO2-EOR in the Permian 

Basin of Texas (Moritis 2006). Production of oil from Canada‘s tar sands reached 1.25 

Mbbl/d in 2006 (ADE 2007). Production from Venezuela‘s extra-heavy oil resources was 

about 0.6 Mbbl/d in 2000 (Williams 2003), and has been relatively steady since. In 

addition, approximately 0.15 Mbbl/d of synthetic fuels are produced from other fossil 

fuel feedstocks, primarily from coal (Fleisch, Sills et al. 2002). And oil shale is produced 

in minor quantities around the world in small facilities, with total world output estimated 

at 10,000 to 15,000 bbl/d (Bartis, LaTourrette et al. 2005). In total, SCP production is 

currently above 2 M crude-oil-equivalent bbl per day, or more than 2.5% of total liquids 

production.  

 

In a world with depletion and substitution, we will likely witness a decline in production 

of conventionally-produced crude oil coupled with a simultaneous increase output of 

SCPs. In this case, we should be concerned with the characteristics of the SCPs that we 

might use instead of conventional oil.  

 

Of particular importance is the rate at which production capacity for SCPs can be built 

relative to the rate of decline of conventionally-produced petroleum. As Hirsch et al. 

(2005) cogently argue, these rates will strongly affect the amount of economic disruption 

that will result from a peak in conventional oil production. This is because the long lead-

times and delays associated with introduction of new technologies can result in shortfalls 

of supply (and therefore oil price increases) if conventional oil production drops more 

quickly than SCP production capacity for can be built.  
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 For example, heavy oil is viscous and hydrogen-deficient compared to conventional crude oil. A 

depletion-induced shift to heavy oil will result in increased extraction costs (due to steam injection, which 

is used to reduce the viscosity of oil to enable it to flow in the reservoir) and increased refining costs (more 

hydrogen input required or expansion of coking capacity).  
80

 McCabe (1998) made a similar argument in contrasting ―closed market‖ and ―open market‖ views of the 

oil depletion problem. 
81

 Here we consider conventionally-produced petroleum as petroleum produced from a well-bore using 

primary and secondary recovery technologies. Tertiary recovery technologies and other means of 

hydrocarbon extraction (e.g., tar sands mining) are considered unconventional technologies. All definitions 

of ―unconventional‖ are, of course, somewhat subjective and can change over time. 
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Another important factor is how intrinsically costly it is to access, extract, and upgrade 

SCPs into refined fuels. These characteristics are usefully described as the ―quality‖ of 

the hydrocarbon resource. The quality of a resource stems from its physical 

characteristics, such as the carbon/hydrogen ratio, which affects upgrading energy 

intensity, or the sulfur content, which affects desulfurization hydrogen demand. These 

intrinsic physical characteristics affect both the energetic value of the product (often 

quantified using the energy return on investment, or EROI) and, of great importance, the 

resulting environmental impacts from producing fuels from SCPs. Because of the lower 

quality of SCP resources, both the energy intensity and environmental impacts of 

producing fuels from them are likely to be significantly greater than those from 

conventional fuels. (Farrell and Brandt 2006). This is the reasoning Dusseault (1997) uses 

when he argues that ―limitations on oil use are therefore more logically related to 

environmental issues such as global warming and urban pollution.‖ 

 

Because this transition to oil substitutes is already underway, models that do not account 

for production of SCPs are sure to be pessimistic with respect to total liquid fuel output. 

Such models are lacking because they do not account for the adaptive ability of our 

energy system. Thus they cannot analyze the already-growing economic, social, and 

environmental impacts of the transition to substitutes for conventional oil. This is 

unfortunate because these impacts are, in fact, the first effects of the peak in conventional 

oil output. 

 

This need to account for both depletion and substitution in oil depletion models points to 

a clear strategy for improving our depletion modeling: include both physical and 

economic aspects of the resource extraction process in our models. Such efforts have 

been made in a number of previous models (see Table 2 above for models that combine 

physical and economic insights), but additional work must continue in this area. While 

such collaboration across disciplines is not easy, the potential benefits to the 

improvement of oil depletion models are large.  
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8 Conclusions 
Miller (2005) provides a single sentence summary of nearly all that can be said with 

certainty about this complex topic: ―The eventual peak of oil production will be 

determined by geology, economics and politics.‖ Geology, by fixing the size and physical 

qualities of deposits of hydrocarbons, sets the limits to what we might extract. 

Economics, by defining how much consumers are willing to sacrifice in order to receive a 

barrel of oil, limits the amount of labor, energy, steel, and other commodities that 

producers will invest into its extraction. And politics will augment or hinder the 

economic returns from finding and extracting oil, resulting in production profiles that 

could differ greatly from those we might expect based on geologic and economic factors 

alone. 

 

Given the many difficulties with our methods of modeling oil production, can these 

models tell us about the future of oil production in future decades? At a gross level, and 

with assumptions and limitations accepted, the answer is ―perhaps yes.‖ But for questions 

of any precision, the answer is a firm and clear ―no.‖ But in either case we should heed 

the advice of McKelvey (1966), who responded wisely to Ryan‘s early criticisms of 

Hubbert‘s models: ―Recognizing their inadequacy, however, it is nevertheless important 

not to loose sight of their value.‖ Therefore, a better question might be, ―What value do 

these models provide?‖  

 

For one, even the simplest models remind us of the truth presented by Hubbert repeatedly 

in his graph of fossil fuel production over millennia: the era of exponentially growing 

consumption of fossil fuels will, with all certainty, be short. Or, as Ayres (1952) argued 

more poetically some years before Hubbert‘s famous prediction, 

 
We seem to have a choice between prediction of expansion for the indefinite future, 

based upon hope, and prediction of the more probable shape of things to come, based 

upon reason. Reason may well prove to be inadequate and therefore misleading, but hope 

would seem to be an even more slim reed to lean upon. 

 

And while simple models cannot show us the future of oil production in detail, they do 

provide as good a means as any other to make approximations of the production of a 

defined resource base under stable market conditions. They might allow, for example, 

useful estimates of the decade of peak production for a given estimate of URR. Such 

decadal accuracy is likely within the bounds of uncertainty placed on the oil market by 

the vagaries of politics or conflict. But, because URR is a complex quantity with both 

physical and economic underpinnings, it will remain uncertain in the real world. Analysts 

should therefore be modest in claims made with such models.  

 

Perhaps most importantly, more complex models that include substitution and 

competition between various energy resources provide us with a framework for studying 

the scale of the economic and environmental impacts of the inevitable transition to 

substitutes for conventional oil. Given that the potential impacts of such a transition are 

profound, this is clearly a contribution of value.  
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