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Preface 

This report has been produced by the UK Energy Research Centre’s Technology and 

Policy Assessment (TPA) function.  

The TPA was set up to address key controversies in the energy field through 

comprehensive assessments of the current state of knowledge. It aims to provide 

authoritative reports that set high standards for rigour and transparency, while 

explaining results in a way that is useful to policymakers.  

This report forms part of the TPA’s assessment of evidence for near-term physical 

constraints on global oil supply. The subject of this assessment was chosen after 

consultation with energy sector stakeholders and upon the recommendation of the TPA 

Advisory Group, which is comprised of independent experts from government, academia 

and the private sector. The assessment addresses the following question: 

What evidence is there to support the proposition that the global supply of 

‘conventional oil’ will be constrained by physical depletion before 2030? 

The results of the project are summarised in a Main Report, supported by the following 

Technical Reports: 

1. Data sources and issues 

2. Definition and interpretation of reserve estimates 

3. Nature and importance of reserve growth 

4. Decline rates and depletion rates 

5. Methods for estimating ultimately recoverable resources 

6. Methods for forecasting future oil supply  

7. Comparison of global supply forecasts 

The assessment was led by the Sussex Energy Group (SEG) at the University of Sussex, 

with contributions from the Centre for Energy Policy and Technology at Imperial College, 

the Energy and Resources Group at the University of California (Berkeley) and a number 

of independent consultants. The assessment was overseen by a panel of experts and is 

very wide ranging, reviewing more than 900 studies and reports from around the world. 

Each technical report examines one set of issues relevant to the assessment of global oil 

depletion. Technical Report 5: Methods of estimating ultimately recoverable resources 

examines the methods for estimating the size of oil resources in a region, focusing in 

particular on the extrapolation of historical trends. It also summarises and evaluates the 

estimates that have been produced for size of global resources and assesses their 

implications for future oil supply. 
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Executive Summary 

The date of ultimate exhaustion of the oil resource is largely irrelevant to the „peak oil‟ 

debate. Instead, the primary focus of this debate is the rate of production (typically measured 

in barrels per day) and the reasons why that rate must eventually decline. But while the 

absolute size of an oil resource is less important than the potential rate of extraction of that 

resource, disputes over the former nevertheless play a prominent role in the peak oil debate. 

This is especially the case for conventional oil which continues to dominate global oil supply. 

Other things being equal, larger estimates of the resource size for conventional oil lead to 

more optimistic forecasts for future global oil supply – and vice versa. Hence, the 

„pessimists‟ and „optimists‟ about future global supply often have very different views on the 

volume of conventional oil resources that are likely to be economically recoverable. 

A central concept in this debate is the ultimately recoverable resources, or URR, for a field or 

region, or the amount of oil estimated to be economically extractable over all time. A variety 

of methods may be used to estimate URR and these may be applied at levels of aggregation 

ranging from a single well to the entire world. One group of methods relies more upon 

geological information and is more appropriate for less explored regions, while a second 

group relies more upon the extrapolation of historical trends and is more appropriate to well-

explored regions. In both cases, the methods can either be extremely simple, relying solely 

upon aggregate data from a region, or highly complex, requiring either detailed geological 

information or data from individual fields. As with the URR estimates themselves, the 

relative merits of these different methods is the subject of intense and frequently polarised 

debate.  

The primary objective of this report is to describe and evaluate these different methods. 

Primary attention is paid to the methods based upon the extrapolation of historical trends, 

since these are widely used by the analysts concerned about global oil depletion. A second 

objective is to summarise and evaluate the estimates that have been produced for the global 

URR of conventional oil and to assess the implications for future oil production. Of particular 

interest is the relative plausibility of the optimistic and pessimistic estimates and the 

implications of both for medium-term oil supply.  

The main findings of this report are as follows 

Methods and principles 

 There are a variety of methods for estimating URR and many variations on the basic 

techniques. „Geological‟ techniques are more appropriate for relatively explored regions 

while „extrapolation‟ techniques are more appropriate where exploration is advanced. The 

confidence bounds on these estimates are commonly very large and the few studies that 

compare different techniques show they can lead to quite different results. Accuracy can 

be improved through analysing disaggregate regions, but this is resource intensive and 

generally requires access to proprietary data. All estimation techniques have identifiable 

limitations and it is important that estimates are accompanied by confidence intervals and 

full details about the methodology and assumptions made. 

 The extrapolation techniques differ in degree rather than kind and share many of the same 

strengths and weaknesses. But a key practical difference is that field-size distribution and 

discovery process techniques require data on individual fields, while simple curve-fitting 
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only requires aggregate data. All assume a skewed field size distribution and diminishing 

returns to exploration, with the large fields being found relatively early. But these 

assumptions will only hold if depletion outweighs the effect of technical change and if the 

region is geologically homogeneous and has had a relatively unrestricted exploration 

history. This is frequently not the case.  

 Assumptions about the field size distribution and discovery process underlie most of the 

extrapolation techniques. It is generally acknowledged that the majority of oil resources 

are contained in a small number of large fields, with around 100 oil fields accounting for 

up to half of global oil production and up to 500 fields accounting for two thirds of 

cumulative discoveries. Most of these fields are relatively old, many are well past their 

peak of production and most of the rest will begin to decline within the next decade or so. 

The remaining reserves at these fields, their future production profile and the potential for 

reserve growth is therefore of critical importance for future global supply. 

 The proportion of total resources contained within small, undiscovered fields continues to 

be disputed. While the observed lognormal size distribution of discovered fields is likely 

to be the result of sampling bias, there is insufficient evidence to conclude whether a 

„linear‟ or „parabolic fractal‟ better describes the population size distribution. While 

technical improvements and higher prices should make more small fields viable, many 

will remain uneconomic to develop and the exploitation of the rest will be subject to 

rapidly diminishing returns. As a result, the competing estimates of the resources 

contained in small fields should be of less significance to future supply than the potential 

for increased recovery from the giant fields. 

Curve fitting techniques 

 The popularity of curve-fitting techniques to estimate URR derives from their simplicity 

and the relative availability of the required data. But many applications of curve-fitting 

take insufficient account of the weaknesses of these techniques, including: the inadequate 

theoretical basis; the sensitivity of the estimates to the choice of functional form; the risk 

of overfitting multi cycle models; the inability to anticipate future cycles of production or 

discovery; and the neglect of economic political and other variables. In general, these 

weaknesses appear more likely to lead to underestimates of the URR and have probably 

contributed to excessively pessimistic forecasts of oil supply. 

 Curve fitting to discovery data introduces additional complications such as the 

uncertainty in reserve estimates and the need to adjust estimates to allow for future 

reserve growth. The common failure to make such adjustments is likely to have further 

contributed to underestimates of resource size.  

 Tests of curve fitting techniques using illustrative data from a number of regions has 

shown how different techniques, functional forms, length of time series and numbers of 

curves can lead to inconsistent results. But although the results raise concerns about the 

reliability of curve-fitting estimates, the degree of uncertainty may be expected to decline 

in the future as exploration matures.  Also, accuracy may be improved by using the 

lowest possible level of spatial aggregation, distinguishing between onshore and offshore 

regions and adjusting for future reserve growth using functions derive from the technical 

literature. 

 The literature on curve-fitting techniques has generally paid insufficient attention to the 

statistical issues involved, such as goodness of fit, missing variables and serial correlation 

of the error terms. Where data is available, some of the limitations of curve fitting may be 
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overcome with the use of hybrid models that incorporate relevant economic and political 

variables. But despite their better fit to historical data, such models may not lead to 

substantially different estimates of the URR. 

 These limitations do not mean that curve fitting should be abandoned, but do imply that 

its applicability is more limited than commonly assumed and that the confidence bounds 

on the results are wider than is commonly assumed. Where possible, resource assessments 

should employ multiple techniques and sources of data and acknowledge the uncertainty 

in the results obtained. 

Global Estimates 

 Estimates of the global URR for conventional oil vary widely in their methods, 

assumptions and results. Comparison is complicated by the differing definitions of 

„conventional oil‟ and the more pessimistic estimates of the global URR result in part 

from an excessively narrow definition. Further difficulties arise from the use of 

competing reserve definitions and differing time-frames for the definition of URR, 

together with uncertainty over OPEC reserves and the inconsistent treatment of reserve 

growth. The information currently available does not allow strong constraints to be placed 

on the last two variables. 

 Estimates of the global URR of conventional oil have been trending upwards for the last 

50 years and this trend shows little sign of diminishing. Contemporary estimates fall 

within the range 2000-4300 Gb, while the corresponding estimates of the quantity of 

remaining resources fall within the range 870 to 3170 Gb. This wide range leads to a 

corresponding uncertainty in the projections of future global oil supply and the date of 

peak production.  

 The USGS estimated a global URR of 3345 Gb in 2000 and in 2008 the IEA revised this 

upwards to 3577 Gb. Despite being much larger than previous estimates, the repeated 

assertions that the USGS estimates are „discredited‟ or „over-optimistic‟ appear at best 

premature. Global reserve growth appears to be matching the USGS assumptions, the size 

of recent discoveries may have been underestimated, there are continuing restrictions on 

exploration in the most promising areas and a more recent study by Aguilera et al’s 

comes to comparably optimistic conclusions. However, the IEA estimate relies upon a 

large contribution from EOR that they anticipate will take decades to be realised while 

some of Aguilera et al’s assumptions appear questionable. 

 In a simple logistic model, increasing the global URR by one billion barrels would delay 

the date of peak production by only 4.7 days. This result is not substantially changed if a 

more sophisticated model is used, that allows for varying degrees of asymmetry in the 

production cycle (Kaufmann and Shiers, 2008). For a range of assumptions about the size 

of the global URR and the rate of change of production before and after the peak, the date 

of peak production is found to lie between 2009 and 2031. Delaying the peak beyond 

2030 requires optimistic assumptions about the global URR combined with a relatively 

steep post-peak decline rate and/or slower rates of demand growth than are 

conventionally assumed. Forecasts that predict no peak before 2030 should be evaluated 

on this basis.  

 Even if the larger URR estimates are correct, it does not necessarily follow that the 

resource can or will be accessed at the rate required to maintain global production at a 

particular level. If these resources can only be accessed relatively slowly at high cost, 

supply constraints could inhibit demand growth. Furthermore, if producers lack the 
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incentive to maximize production, demand growth could be constrained further – 

especially in the importing countries. Hence, the primary issue for the period to 2030 is 

the rate at which the resource can be accessed and produced. 
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1 Introduction 

1.1 Why do we need to estimate resource size? 

Concerns about global oil depletion are often misleadingly characterised as concerns about 

„running out of oil‟. The image is one of a tank being slowly drained and eventually running 

dry, which implies that the main concern is precisely when this will occur. But while oil is 

clearly a finite resource, the date of ultimate exhaustion of this resource is largely irrelevant 

to the „peak oil‟ debate. Instead, the primary focus of this debate is the rate of production 

(typically measured in barrels per day) and the reasons why that rate must eventually decline.  

There are well-established physical and geological reasons why the rate of production from 

both individual fields and oil-producing regions typically rises to a peak and subsequently 

declines (Bentley, 2009). However, these physical determinants are mediated by a multitude 

of technical, economic and political factors that make forecasting future supply a hazardous 

undertaking. While the estimated size of the resource is an important variable in such 

forecasts, it is not necessarily the most important one. For example, the global resource of 

„non-conventional oil‟ is acknowledged to be several times larger than that of „conventional 

oil‟ (IEA, 2008),
1
 but these resources are costly and difficult to exploit, require significant 

amounts of energy to extract, transport and refine and are associated with serious 

environmental impacts. Most importantly, if these resources can only be accessed relatively 

slowly, they may not compensate for the decline in production from more conventional 

sources and hence may not have much influence on the date of global peak production. 

But while the absolute size of an oil resource is less important than the potential rate of 

extraction of that resource
2
, disputes over the former nevertheless play a prominent role in the 

peak oil debate. This is especially the case for conventional oil which continues to dominate 

global oil supply. Other things being equal, larger estimates of the resource size for 

conventional oil lead to more optimistic forecasts for future global oil supply – and vice versa 

(Bartlett, 2000; Bentley, et al., 2009). Hence, the „pessimists‟ and „optimists‟ about future 

global supply often have very different views on the volume of conventional oil resources 

that are likely to be economically recoverable. This disagreement is compounded by 

confusion and disagreement over the meaning of key terms and concepts (e.g. „conventional‟) 

and even over whether the physical size of the resource is relevant at all (Adelman, 1993). 

A central concept in this debate is the ultimately recoverable resources, or URR, for a field or 

region. This is defined as the amount of oil estimated to be economically extractable from a 

field or region over all time. The URR can be broken down into a number of different 

components, as summarised in Box 1.1. Current estimates of the global URR for conventional 

oil fall within the range 2000 to 4300 Gb which compares to cumulative production through 

to 2007 of 1128 Gb.
3
 This represents a quite remarkable range of uncertainty for such a 

                                                 
1 There is no single definition of these terms and ambiguity over their meaning is a major source of confusion in the „peak 

oil‟ debate. Conventional oil is taken here to include crude oil, condensate, and natural gas liquids (NGLs) and to exclude oil 

sands, shale oil and extra heavy oil, as well as substitute liquids derived from natural gas, coal and biomass. For more 

background on the definitions of these terms, see the companion report by Speirs and Sorrell (2009). 
2 Often stated as: “…it's the size of the tap, not the size of the tank”. 
3 These figures include natural gas liquids (NGLs).   
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fundamental quantity and in turn contributes to a corresponding uncertainty in the projections 

of future global oil supply.   

Box 1.1 Components of ultimately recoverable resources 

At any point in time, the URR for a region may be broken down into the sum of the following: 

 Cumulative production: the total amount of oil that has been produced from the region since 

production began. 

 Reserves: the volume of oil estimated to be extractable from known deposits in the region under 

defined technical and market conditions. 

 Yet to find: the volume of oil estimated to be economically extractable from unknown deposits in 

the region (i.e. those that have yet to be discovered). 

While cumulative production should be known relatively accurately, estimates of reserves and yet to 

find resources are inherently uncertain. For example, the level of confidence in reserve estimates is 

typically indicated by the terms proved reserves (1P), proved and probable reserves (2P) and proved, 

probable and possible reserves (3P). Similar distinctions can be made for estimates of yet to find 

resources, although this is less common. All such estimates rely upon assumptions about the 

geological features of the region, the technology of resource extraction and the economics of oil 

production. 

The sum of cumulative production and reserves in a region is commonly referred to as cumulative 

discoveries. Estimates of cumulative discoveries tend to grow over time, as a result of improved 

technology and other factors. This is commonly referred to as reserve growth although it is more 

accurately described as cumulative discovery growth, as it is the estimates of cumulative discoveries 

that are growing, rather than declared reserves.  While poorly understood, reserve growth is of critical 

importance for future oil supply. 

For individual fields, the URR represents the sum of cumulative discoveries and estimates of future 

reserve growth. For a geographical region, the URR represents the sum of cumulative discoveries, 

future reserve growth and yet to find resources. The remaining resources for a region are all the 

resources that have yet to be produced, calculated by subtracting cumulative production from the 

estimate of URR. 

A variety of methods may be used to estimate URR and these may be applied at levels of 

aggregation ranging from a single well to the entire world. One group of methods relies more 

upon geological information and is more appropriate for less explored regions, while a 

second group relies more upon the extrapolation of historical trends and is more appropriate 

to well-explored regions. In both cases, the methods can either be extremely simple, relying 

solely upon aggregate data from a region, or highly complex, requiring either detailed 

geological information or data from individual fields. As with the URR estimates themselves, 

the relative merits of these different methods is the subject of intense and frequently polarised 

debate.  

The primary objective of this report is to describe and evaluate these different methods. 

Primary attention is paid to the methods based upon the extrapolation of historical trends, 

since these are widely used by the analysts concerned about global oil depletion. We seek to 

identify the relative strengths and weaknesses of these methods, the degree of uncertainty in 

the associated URR estimates and the conditions under which they are more or less likely to 

produce reliable results. A second objective is to summarise and evaluate the estimates that 

have been produced for the global URR of conventional oil and to assess the implications for 
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future oil production. Of particular interest here is the relative plausibility of the optimistic 

and pessimistic estimates and the implications of both for medium-term oil supply. 

As with other elements of the UKERC study, the report is based upon a systematic review of 

the academic and technical literature, in this case drawing upon more than 900 studies from 

around the world. To supplement the literature review, we have also analysed data from a 

number of oil-producing regions in order to assess the reliability of extrapolation methods 

under different conditions and to highlight a number of the relevant statistical issues. As well 

as drawing conclusions relevant to the UKERC study we hope that this report can provide a 

reference source for future work in this area. 

1.2 Structure of the report 

The report is structured as follows. Section 2 introduces some key concepts and definitions 

and summarises the methods available to estimate ultimately recoverable resources (URR). 

Particular attention is paid to the phenomena of reserve growth and to the distribution of 

petroleum resources between different sizes of field. It shows how the field size distribution 

underpins many of the methods for estimating URR and how global oil resources tend to be 

concentrated in a small number of large fields. The methods of estimating URR are grouped 

into four categories, namely geological assessments, expert assessments, field size 

distribution approaches and historical extrapolation techniques. The latter are widely used by 

those concerned about peak oil and form the primary focus of the remainder of the report. 

Section 3 is the core of the report. It describes and evaluates the extrapolation methods of 

estimating ultimately recoverable resources, which involve analysing historical data on 

production or discoveries in a region and extrapolating this to derive an estimate of the URR. 

While these techniques vary greatly in their data requirements and level of sophistication, 

they share the common assumptions that: a) the field size distribution is highly skewed, with 

the majority of oil being located in a small number of large fields; and b) these large fields 

tend to be discovered early in the exploration process, with subsequent discoveries being 

progressively smaller and the product of increasingly greater effort. The extrapolation 

techniques are shown to fall into two broad groups, namely curve-fitting techniques which 

use aggregate data for a region and discovery process models which require data on 

individual fields. Curve-fitting techniques, in turn, are classified into three groups, namely 

production over time, discovery over time and discovery over effort, which each encompass 

three individual techniques. Section 3 describes each technique, identifies its historical 

origins and contemporary application, evaluates its strengths and weaknesses, clarifies its 

relationship to other techniques and identifies the conditions under which it is more or less 

likely to be reliable. It also introduces a standard mathematical notation that is used 

throughout the remainder of the report and which can assist the interpretation of the empirical 

literature. 

Section 4 uses data from ten regions to investigate the consistency of URR estimates from 

curve-fitting techniques; that is, the extent to which one estimate differs from another. For 

each region, it compares the estimates obtained from different extrapolation techniques, and 

also from the same technique using different length of time series, different choices of 

functional form and different choices for the number of curves. The results raise serious 

concerns about the reliability of these techniques, at least when (as is often the case) they are 

applied at the country or regional level. Some reasons for these inconsistencies are discussed 

and the conditions under which more reliable estimates may potentially be obtained are 



 

UK Energy Research Centre  UKERC/WP/TPA/2009/020 

4 

highlighted. In particular, it is recommended that the techniques are best applied in well-

explored regions at the lowest possible level of spatial aggregation, distinguishing between 

onshore and offshore regions and (if possible) between different types of exploratory activity. 

It is also important that the discovery estimates are adjusted to allow for future reserve 

growth. 

Section 5 explores some of the statistical issues raised by curve-fitting techniques and argues 

that much of the current literature fails to address these issues adequately. It introduces 

problems of model specification and comparison, missing variables and serial correlation of 

the error terms and uses a case study to both illustrate these issues and show how they may 

potentially be addressed. Using examples from the literature, it shows how the inclusion of 

economic and political determinants of discovery and/or production can improve the model 

fit and allow the dependence of URR on energy prices and other factors to be directly 

explored. However, there are relatively few examples of this type and it is not obvious that 

such „hybrid‟ models will lead to substantially different estimates of the regional URR. 

Section 6 provides an overview and evaluation of global URR estimates and assesses their 

implications for future global oil supply. It first summarises and compares some global URR 

estimates that have been made in the past, illustrates how these have grown over time and 

looks in more detail at three of the more prominent estimates. It then summarises the methods 

and results of the US Geological Survey (USGS) World Petroleum Assessment 2000, 

evaluates whether the subsequent experience is consistent with these estimates and examines 

how they have recently been updated by the IEA and Colorado School of Mines. It then 

examines the implications of the uncertainty in global URR estimates for the date of peak 

global production and argues that delaying the peak beyond 2030 requires very optimistic 

assumptions about the size of the global URR and also implies a relatively steep post-peak 

decline rate. 

Finally, Section 7 provides a brief summary of the main findings. 
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2 Concepts, definitions and methods 

2.1 Introduction 

This section introduces some key concepts and definitions relevant to ultimately recoverable 

resources (URR) and introduces the main methodological approaches that are available to 

estimate the size of those resources. It argues that URR estimates are necessarily uncertain 

and dynamic and subject to a wide range of institutional, economic and technological 

influences. Estimates of URR may be derived for levels of aggregation ranging from a single 

reservoir to the entire world and for both unexplored and heavily explored areas. They may 

also be obtained by using either very simple or highly complex techniques. In all cases, 

however, such estimates of best expressed as a probability distribution rather than a „most 

likely‟ value. 

The structure of this section is as follows. Section 2.2 clarifies the definition of URR and 

relates this to a standard method for classifying petroleum resources, namely the Petroleum 

Resources Management System (PRMS). Section 2.3 identifies the different levels of 

aggregation for which estimates of URR may be developed and provides some relevant 

background on oil formation. Section 2.4 introduces the concept of cumulative discoveries 

and examines the tendency of these estimates to grow over time - so called „reserve growth‟. 

Section 2.5 investigates how petroleum resources are distributed between different sizes of 

field within a region and shows how this fact underpins many of the methods of estimating 

URR. Finally, Section 0 examines these methods and classifies them under four categories, 

namely: a) geological assessments; b) expert assessments; c) field size distribution 

approaches; and d) historical extrapolation. While each approach is summarised, it is the 

extrapolation methods that form the primary focus of the remainder of the report. 

2.2 What are ultimately recoverable resources? 

As with oil and gas reserves (Thompson, 2008), the concept of ultimately recoverable 

resources
4
 (URR) is defined and interpreted in different ways by different individuals and 

organisations. Since those holding optimistic views on the future global oil supply frequently 

interpret the term differently from those holding more pessimistic views, quantitative 

estimates of URR are an enduring focus of dispute. The BP Statistical Review defines URR 

as follows: 

“URR is an estimate of the total amount of oil that will ever be recovered and produced. It is a 

subjective estimate in the face of only partial information. While some consider URR to be 

fixed by geology and the laws of physics, in practice estimates of URR continue to be increased 

as knowledge grows, technology advances and economies change. Economists often deny the 

validity of the concept of ultimately recoverable resources as they consider that the 

recoverability of resources depends upon changing and unpredictable economies and evolving 

technologies.”(BP, 2008)  

                                                 
4 Some authors use the term „ultimately recoverable reserves‟. However, this is misleading since it fails to acknowledge the 

basic distinction between reserves and resources that is reflected in the majority of classification schemes. An alternative and 

more accurate term is Estimated Ultimate Recovery (EUR). 
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Reflecting the economists‟ viewpoint, Adelman (1991) rejects the notion that estimates of 

URR can play a useful role in forecasting future oil supply. 

“Mineral resources are essentially inexhaustible……how much remains in the ground is an 

amount unknown, probably unknowable and ultimately unimportant. „Finite limited resources‟ 

is therefore an empty slogan. Only cost and price matter.” (Adelman, 1991) 

In contrast, estimates of URR play a central role in Hubbert‟s forecasts of future US and 

global oil supply and in the work of subsequent authors such as Campbell (1997) and 

Laherrère (2003; 1999b). These authors forecast future production from a region by fitting a 

curve to historical data on oil production and projecting this forward into the future (see 

Section 3). Estimates of the URR for the region are used to constrain these forecasts by 

setting limits to the area under the curve. Without this constraint, such projections would be 

more difficult to perform, especially in regions that have yet to reach their peak of production 

(Caithamer, 2008). However, such „curve-fitting‟ techniques can also be used to estimate the 

URR for the region. Two key assumptions of this approach are that the URR for a region can 

be estimated reasonably accurately from the historical pattern of discovery or production in 

that region and that these estimates will be relatively unaffected by future changes in costs, 

prices and technology. Critics strongly dispute both of these assumptions (Lynch, 2004; 

Nehring, 2006a; b; d), leading to a highly polarised debate: 

“….In general, [URR] estimates produced by analysts who stress the physical aspects of oil 

discovery and production are well below those produced by analysts who stress the economic 

aspects. Each group generates estimates that are heralded by adherents and ridiculed by 

opponents, regardless of the merits of the estimation process itself. If the estimate confirms 

one's a priori expectations about the scarcity or abundance of remaining oil resources then 

adherents argue that the estimate is accurate and unbiased, the methodology is rigorous and 

scholarly, and the estimators' integrity and qualifications are beyond reproach. If the estimate 

contradicts one's a priori expectations then opponents argue that the data used to make the 

estimate are inappropriate, the methodology is fraught with bias, and the analysts obviously 

have an „axe to grind‟.” (Cleveland, 1991) 

To assist in the interpretation of URR estimates, it is helpful to review a typical classification 

scheme for petroleum resources and reserves. As described by Thompson (2008), a variety of 

such schemes have been used over the years, but international standardisation has yet to be 

achieved. The chosen scheme is the Petroleum Resources Management System (PRMS), 

which was introduced in 2007 by the Society for Petroleum Engineers (SPE), the American 

Association of Petroleum Geologists (AAPG), the World Petroleum Council (WPC) and the 

Society of Petroleum Evaluation Engineers (SPEE). This system embodies many of the 

features of earlier classification schemes and is expected to be influential.
5
 

The PRMS reflects two variables relevant to resource evaluation, namely: a) varying 

knowledge about the existence, quality and magnitude of hydrocarbon deposits; and b) the 

varying extent to which these are likely to be technically and economically recoverable under 

current and anticipated future conditions. A two-dimensional classification scheme based 

upon these dimensions was first introduced by Mckelvey (1972). In this (and most other) 

classification system, „reserves‟ are defined as recoverable and commercial volumes of 

identified hydrocarbons associated with known fields, while the more inclusive term of 

„resources‟ also includes hydrocarbons that have yet to be discovered (sometimes termed „yet 

                                                 
5 However, the PRMS is complex with numerous subdivisions, which could be a drawback (Weeks, 1975). 
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to find‟ or YTF) as well as those that have been discovered but have yet to become either 

technically possible or economically viable to recover. The PRMS classification scheme is 

illustrated in Figure 2.1 and some of the relevant terms are defined in Box 2.1. The main 

innovation of the PRMS compared to earlier systems is that estimates of recoverable 

resources are linked to investment in specific projects. The full classification system includes 

considerably more guidance on issues such as the definition and economics of projects and 

the methodologies of resource estimation (WPC, 2007).  

Box 2.1 Key definitions in the Petroleum Resource Management System 

 Total petroleum initially in place: includes the quantity of petroleum that is estimated, as of a 

given date, to be contained in known accumulations prior to production plus estimated 

quantities in accumulations that have yet to be discovered. 

 Discovered petroleum initially in place: the quantity of petroleum that is estimated, as of a 

given date, to be contained in known accumulations prior to production. 

 Undiscovered petroleum initially in place: the quantity of petroleum estimated, as a given 

date, to be contained within accumulations yet to be discovered. 

 Production: the cumulative quantity of petroleum that has been recovered at a given date. 

 Reserves: the quantities of petroleum anticipated to be commercially recoverable by the 

application of projects to known accumulations under defined conditions. Reserves must be 

discovered, recoverable, commercial and remaining and may be further categorised in 

accordance with the level of certainty associated with the estimates (Thompson, 2008). 

Proved reserves (1P) are estimated to have a 90% probability of profitable extraction, based 

upon assumptions about cost, geology, technology and future oil prices. Proved and probable 

(2P) reserves include additional volumes that are thought to exist in discovered accumulations 

but are estimated to have only a 50% probability of profitable extraction. Proved, probable 

and possible (3P) reserves include additional resources that are estimated to have only a 10% 

probability of being profitable. 

 Contingent resources: those quantities of petroleum estimated, as of a given date, to be 

potentially recoverable from known accumulations, but where the applied projects are not yet 

considered mature enough for commercial development due to one or more contingencies. 

Contingent resources may include, for example, projects for which there are currently no 

viable markets or where commercial recovery is dependent upon technology under 

development. As with reserves, these are further categorised in accordance with the level of 

certainty associated with the estimates.
6
  

 Prospective resources: those quantities of petroleum estimated, as a given date, to be 

potentially recoverable from undiscovered accumulations by application of future 

development projects. Prospective resources have both an associated chance of discovery and 

a chance of development. As with reserves, these are further categorised in accordance with 

the level of certainty associated with the estimates. 

 Unrecoverable: that portion of discovered or undiscovered petroleum initially in place which 

is estimated, as a given date, to not be recoverable by future development projects. A portion 

of these quantities may become recoverable in the future as commercial circumstances change 

or technological developments occur. 

                                                 

6 The scheme recognises that some ambiguity may exist between the definitions of contingent resources and unproved (2P 

and 3P) reserves. Contingent resources are not expected to be developed and placed into production within a „reasonable‟ 

timeframe. 
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Figure 2.1 Resources classification in the Petroleum Resource Management System 

 

The PRMS uses the term „Estimated Ultimate Recovery‟ (EUR) instead of URR and clarifies 

that this is not a resource category in itself, but: 

“…a term that may be applied to any accumulation or group of accumulations 

(discovered or undiscovered) to define those quantities of petroleum estimated, as of a 

given date, to be potentially recoverable under defined technical and commercial 

conditions plus those quantities already produced.” (WPC, 2007) 

Several points are apparent from this definition. First, resource estimates require specification 

of the hydrocarbons covered, the classification scheme used, the timeframe for which the 

estimate is made and/or the associated technical and economic assumptions. It is frequently 

difficult to compare resource estimates owing to the lack of clarity over such issues (Andrews 

and Udall, 2003). Even where a single classification scheme is used, the associated estimates 

may be made using different technological and economic assumptions, which may not be 

stated explicitly. 

Second, all resource estimates, including estimates of URR are inherently uncertain - 

although the degree of uncertainty should decline as exploration and production proceeds. 

Unfortunately, many estimates of URR are „deterministic‟, in that they present a single point, 

or „best guess‟ estimate of likely outcomes (Rogner, 1997). Such estimates are potentially 

misleading, since they fail to capture or express the possible range of outcomes (which is 

likely to be greater for contingent and prospective resources than for reserves). Also, the 

underlying assumptions may not be reported and it may not be clear whether the „best guess‟ 

represents the mean, median or mode value of a range (NPC, 2007). As discussed in 

Thompson (2008), a better approach is to present the full range of possible recoverable 

volumes, together with their estimated likelihood (i.e. a probability distribution).  
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Third, resource estimates are inherently dynamic since they depend upon the economic and 

technical conditions prevailing at the time the estimate is made, together with assumptions 

about how those conditions may change over a specified period of time into the future. 

Increasing prices will make marginal resources (including smaller field sizes)
7
 profitable, as 

well as inducing technical improvements that reduce production costs and boost recovery 

factors. Increasing prices will also encourage exploration and the development of associated 

technologies that will help to identify and access prospective resources and allow more 

accurate assessments of their magnitude. Over time, resources will shift from one category to 

another and the degree of geological and economic uncertainty should fall. The visual 

representation in Figure 2.1 could therefore be misleading, since the relative size of each 

category will vary widely, both over time and from one region to another. For example, in 

mature regions such as the United States cumulative production and identified reserves 

should be much larger than contingent and prospective resources, while the opposite should 

be the case for relatively unexplored regions. 

2.3 Levels of aggregation for estimates of ultimately 

recoverable resources 

All estimates of ultimately recoverable resources require specification of the geographical 

and geological level of aggregation to which they apply. The relevant level may be defined 

through geological, political or economic considerations or a combination of the three. It may 

range from individual reservoirs to the entire world. Box 2.2 defines some of terms used by 

geologists and the oil industry for classifying the appropriate level of aggregation of 

petroleum resource estimates, while Box 2.3 provides some relevant background on the 

geological formation of petroleum. Different countries and institutions have slightly different 

definitions of the terms in Box 2.2 and both the definitions themselves and the relative use of 

these different levels of aggregation has changed over time. For example, Sleipner in Norway 

is classified as one oil field, but a comparable geological structure in the UK continental shelf 

(UKCS) would probably be classified as four separate fields (Rosing and Odell, 1984). 

Similarly, smaller fields that were previously classified as separate in US records have 

subsequently been merged into larger fields as exploration progressed (Drew, 1997). 

Inconsistencies such as these can greatly complicate the analysis and interpretation of the 

relevant data. 

                                                 
7 As technology improves, extraction costs fall and oil prices increase, it will become economic to recover oil from smaller 

fields. However, this process will be limited by the „energy return on investment‟ (EROI) (Cleveland, 1992a). Since oil 

exploration and production is necessarily associated with energy consumption, at some point more energy will be required to 

extract the resource than is obtained from it. Whether or not this coincides with the economic limit on minimum field size 

will depend upon the relative price of the different energy carriers involved, together with associated economic factors such 

as the availability of investment subsidies. 
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Box 2.2 Geological levels of aggregation in petroleum resource assessment 

 Petroleum Well: A well may be are drilled to find, delineate and produce petroleum, with 

some wells being drilled to inject fluids to enhance the productivity of other wells. The URR 

of a producing well is typically calculated by extrapolation of its past production 

performance, using standard formulae for „decline curves‟ (Chaudhry, 2003) 

 Petroleum Reservoir/Pool: A reservoir is a subsurface accumulation of oil and/or gas whether 

discovered or not, which is physically separated from other reservoirs and which has a single 

natural pressure system. Pool is an older term for reservoir and accumulation is an alternative 

term.  

 Petroleum Field: A field is an area consisting of a single reservoir or multiple reservoirs of oil 

and gas, all related to a single geological structure and/or stratigraphic feature. Individual 

reservoirs in a single field may be separated vertically by impervious strata or laterally by 

local geological barriers. When projected to the surface, the reservoirs within the field can 

form an approximately contiguous area that may be circumscribed. However, other sources 

define a field simply as a contiguous geographic area within which wells produce oil or gas. 

In either case, the boundary of a field may shift over time and two or more individual fields 

may merge into one larger field (Drew, 1997). Oil fields are classified on the basis of their oil 

to gas ratio and may either be discovered (located by exploratory drilling), under 

development, producing or abandoned. The number of wells in a producing field may range 

from one to thousands.  

 Petroleum Prospect: A prospect is a geological anomaly that has some positive probability of 

containing reservoirs of recoverable hydrocarbon and is considered to be a suitable target for 

exploration. This generally requires a sufficiently high probability that all four elements of 

petroleum formation, namely source rock, migration pathway, reservoir rock and viable trap, 

are likely to exist (Box 2.3). The boundaries of a prospect may also be influenced by legal and 

economic considerations, such as the availability of leases for exploration.  

 Petroleum Play: A play is an area for petroleum exploration, containing a collection of oil 

prospects which share certain common geological attributes and lie within some well-defined 

geographic boundary. The specific geological attributes may vary from one play to another 

and may refer to geologic time intervals, rock types, structures or some combination thereof. 

Plays have varying levels of exploration maturity with the term „conceptual play‟ referring to 

a region where no discoveries have been made. 

 Petroleum Basin: A basin is a single area of subsidence which filled up with either 

sedimentary or volcanic rocks and which is known or expected to contain hydrocarbons. 

Since subsidence is slow and filling is continuous, there may be little surface depression, even 

when the „basin‟ contains many kilometres of accumulated fill. Sedimentary basins are the 

primary source of petroleum, as a result of organic carbon getting progressively buried, 

heated and compressed.  

 Petroleum System: A petroleum system is “….the essential elements and processes as well as 

all genetically related hydrocarbons that occur in petroleum accumulations whose provenance 

is a single pod of active source rock” (Magoon and Sanchez, 1995). A petroleum system 

therefore includes the source rock, migration pathway, reservoir rock and trap (Box 2.3). The 

components and timing relationships are typically displayed in a chart with geologic time 

along the horizontal axis and the system elements along the vertical axis. The concept was 

first introduced by Dow (1972) and now forms the basis of the resource assessments 

conducted by the USGS. 

 Petroleum Assessment Unit An assessment unit (AU) is a volume of rock within a petroleum 

system that is sufficiently homogeneous, both in terms of geology, exploration considerations, 

accessibility and risk to be examined using a particular resource assessment methodology. For 

example, fields within a AU should form a sufficiently homogeneous population for historical 

http://www.fettes.com/orkney/Geology/Oil/OIL%20petroleum%20system.htm#migration#migration
http://www.fettes.com/orkney/Geology/Oil/OIL%20petroleum%20system.htm#reservoir#reservoir
http://www.fettes.com/orkney/Geology/Oil/OIL%20petroleum%20system.htm#trap#trap
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extrapolation methods to be reliable. An AU may coincide with a single petroleum system, or 

the latter may be broken down into several AUs. 

 Petroleum Province: A province is an area with common geological properties relevant to 

petroleum formation. Adjacent provinces might have the same original rocks, but be 

considered separate because they have quite different histories. A province may contain a 

single petroleum basin or petroleum system or several similar basins/systems. A province 

typically has an area of several hundred square kilometres and is largest entity defined solely 

on the basis of geological considerations that is relevant for resource assessment. Globally, 

the USGS (2000a) identifies 937 provinces, 406 of which are known to contain petroleum. In 

1995, 76 provinces were estimated to account for 95% of discovered resources.  

Sources: Energy Information Administration (1990); Klett (2004); Magoon and Sanchez (1995) 

Box 2.3 The geological formation of petroleum resources 

Most petroleum is formed from the remains of marine plankton and algae which settled along with 

sediments to a sea or lake bottom to form source rock. After burial, the combination of heat, pressure 

and the absence of oxygen leads to chemical reactions which convert the hydrocarbons first into 

kerogen which is found in various oil shales around the world and then into oil and natural gas. The 

term oil window refers to a temperature range, below which the hydrocarbons remain in the form of 

kerogen and above which the oil is converted into gas. This temperature range is found at different 

depths throughout the world, but typically lies in the range of 4 to 6km.  

The chemical reactions responsible for all formation involve expansion, which leads to the fracturing 

of rocks and migration of the oil to areas of lower pressure. The oil either escapes to the surface or 

accumulates in porous and permeable reservoir rock such as sandstone and limestone that are capable 

of storing the oil in its pore spaces. High-quality reservoir rocks have high permeability and porosity 

as a result of the pore space taking up a large percentage of the overall volume, while low quality 

reservoir rocks have the opposite. High permeability facilitates the movement of oil through the rocks 

to the producing well, thereby lowering costs and improving productivity. The degree of porosity may 

vary throughout the reservoir, leading to isolated pockets of oil. 

For oil and gas to accumulate and remain, the reservoir rocks need to be sealed by a less porous and 

largely impermeable rock known as a trap. To persist over millions of years, the trap needs relatively 

unaffected by geophysical changes that could introduce fractures. Typical traps include anticlines, 

faults and salt domes. 

Timing is crucial in oil formation. First, the reservoir must be deposited prior to oil migrating from the 

source rock; second, the trap must be in place prior to oil migrating; and third, the source rock must be 

exposed to the appropriate temperature and pressure for a sufficiently long period of time. This 

combination of conditions is relatively rare, with the result that oil and gas is only found in a few 

sedimentary basins around the world. Much oil has escaped over geological time, although in some 

areas (e.g. Alberta), heavy residues remain near the surface and can be mined. 

Estimates of URR may be derived for any of the levels of aggregation indicated in Box 2.2, 

but different techniques (or combinations of techniques) may be more or less suitable for 

each. More aggregate estimates may be derived by summing estimates developed at a lower 

level, but such estimates need to be summed probabilistically (e.g. via a Monte Carlo 

simulation) rather than arithmetically and the frequent failure to do this can lead to 

misleading results (Pike, 2006; Thompson, 2008). Aggregate estimates may also be derived 

by the extrapolation of discovery and production trends for the aggregate region. While this 

approach is generally simpler and has fewer data requirements, it may also be less accurate.  
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While the highest „geological‟ level of aggregation is the petroleum province, resource 

assessments are frequently conducted at the country or regional level. Such geographical 

boundaries may encompass several distinct petroleum provinces, basins and/or systems, and 

portions of these may extend into neighbouring countries or regions. The lack of geological 

homogeneity within such boundaries can lead to difficulties in country/regional level 

resource assessment, especially when only aggregate data is used (Charpentier, 2003).  

At the same time, geological homogeneity is not the only consideration for developing valid 

resource estimates. If historical data on field discovery is to be used, the stability or 

homogeneity of the exploration and discovery process must also be considered. For example, 

a petroleum basin that is shared between two neighbouring countries is unlikely to have a 

consistent exploration history. But even where a region is located within a single country or 

jurisdiction, its exploration history can be greatly complicated by economic, political and 

institutional factors, such as the legal procedures associated with leasing areas for 

exploration. As Harbaugh et al (1995) note: “…the orderly development of plays and 

prospects is an ideal that is seldom achieved in practice. Exploratory wells may not be part of 

established plays, and even may be drilled with little or no geological information at locations 

where there is no perceivable prospect.” Hence, the most appropriate level of aggregation for 

resource assessments is likely to vary from one region to another. The USGS concept of an 

appropriate assessment unit is designed to reflect these different considerations. 

2.4 Cumulative discoveries and reserve growth 

Cumulative production (Qt) represents the total amount of oil that has been produced from a 

region since production began, while reported reserves (Rt) represent the estimated volume of 

remaining resources at known fields. As indicated above, reserve estimates are normally 

categorised in accordance with the level of certainty associated with the estimates. So proved 

(1P) reserves are estimated to have a 90% probability of profitable extraction, while proved 

and probable (2P) reserves are estimated to have only a 50% probability of profitable 

extraction. The sum of cumulative production (Qt) and reported reserves (Rt) for a region at a 

particular point in time (t) may be referred to as cumulative discoveries (Dt).  

           (2.1) 

The cumulative discoveries represent all the oil that is known to a given level of confidence 

to have been discovered in that region. The appropriate interpretation of these estimates will 

depend upon the particular definition of reserves that is being used (e.g. R
1P or 

R
2P

). For 

example, cumulative 2P discoveries ( P

tD2 ) May be expected to be larger than cumulative 1P 

discoveries ( P

tD2 ). While cumulative discoveries at a particular point in time could be taken 

as an estimate of the ultimately recoverable resources (URR) for that region, there are two 

reasons why this is likely to be an underestimate: 

 New discoveries: New fields will be discovered and subsequently brought into 

production, thereby adding to cumulative discoveries in a region. In terms of the PRMS 

(Figure 2.1), this may be interpreted as the conversion of prospective resources into 

reserves/production.  

 Reserve Growth: Estimates of cumulative discoveries from known fields will also tend to 

increase as a result of improved recovery factors, the physical expansion of fields, the 

discovery of new reservoirs within fields, the re-evaluation of cumulative discovery 

ttt RQD 



 

 

13 

13 

estimates in the light of production experience, and other factors (Drew and 

Schuenemeyer, 1992; Gautier, et al., 2005; Klett and Gautier, 2005; Klett and Schmoker, 

2003; Morehouse, 1997). In terms of the PRMS classification, this may be interpreted as 

the exploitation of more uncertain reserves (2P and 3P) together with the conversion of 

contingent resources into reserves/production.  

The second process is generally referred to as reserve growth or „field growth‟ or „recovery 

growth‟). However, more accurate terms would be „cumulative discovery growth‟ or 

„ultimate recovery growth‟, since it is the estimates of URR of known fields that are growing 

rather than the reported reserves for those fields. As a result of reserve growth, the 

cumulative discovery estimates for individual fields will typically increase over time. For 

example, a study by Barker, et al. (2004) of 99 Canadian oilfields found that estimates of 

field size (i.e. URR) had grown by 97% since the fields were discovered. In turn, this means 

that the cumulative discovery estimates for a region will also increase over time, even if no 

new fields are found (Attansi and Root, 1994; Drew, 1997; Muller and Sturm, 2000; Odell, 

1973a; Root and Mast, 1993; Verma, 2005).  

Reserve growth has been most closely studied in the United States, where it accounted for 

89% of the additions to US proved reserves over the period 1978 to 1990 (Attanasi and Root, 

1994). While reserve growth also occurs in the other regions of the world, the evidence base 

is much thinner.
8
 However, despite being systematically investigated more than 40 years ago 

(Arrington, 1960), the phenomenon of reserve growth was relatively neglected before the 

1980s (Drew, 1997). An important stimulus to further investigation was the retrospective 

examination of petroleum discovery forecasts for the US, which were found to have 

systematically underestimated future discoveries (Drew and Schuenemeyer, 1992). The 

chosen forecasting methodology relied upon estimates of the size of known fields but failed 

to adjust these estimates to allow for future reserve growth. Since these fields subsequently 

doubled in size within less than 10 years, the volume of new discoveries was also 

underestimated. The USGS World Petroleum Assessment 2000 was the first to systematically 

incorporate reserve growth into a global assessment of petroleum resources – a move which 

has generated some controversy (see Section 6). Subsequent evaluation of this forecast 

suggested that between 1995 and 2003, reserve growth exceeded new-field discoveries as a 

source of global additions to (2P) reserve estimates by the ratio of three to one (Klett, et al., 

2005b). 

Future reserve growth may be estimated by analysing the historical growth in the estimated 

size of individual fields (Root and Mast, 1993). A growth function ( )(G ) may be estimated, 

representing the ratio of the estimated size of a field   years after it was discovered
9
 to the 

estimated size of the field at the time of discovery.  Typically, growth functions are assumed 

to be independent of the time of discovery of the field. Both annual and cumulative growth 

functions can be calculated and used to convert current estimates of cumulative discoveries 

into future estimates for a specified year, with the amount of growth depending upon the age 

(and sometimes size) of the field. In some cases, reserve growth functions are measured with 

respect to the date of first production from the field, rather than the date of discovery 

(Thompson, et al., 2009b). This is because a discovered field may „lie fallow‟ for many years 

                                                 
8 Relevant references include Klett (2005), Klett and Gautier (2005), Gautier and Klett (2005), Gautier, et al (2005), Klett 

and Schmoker (2003), Klett and Verma (2004), Verma (2000; 2003; 2005), Verma and Ulmishek (2003), Verma, et al. 

(2004; 2001), Watkins (2002), Sem and Ellerman (1999) and Odell (1973b) 
9  
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prior to first production, with most of the development work that contributes to reserve 

growth occurring after production has begun. 

Figure 2.2 shows two examples of cumulative growth functions estimated for onshore US oil 

fields: namely the „Modified Arrington‟ function developed by Verma (2005) and an earlier 

function developed by Attanasi and Root (1994) (which was subsequently found to have 

overestimated reserve growth). Note that the rate of growth is largest in the first ten years 

after discovery and that the current cumulative discovery estimates for 80-year old fields 

(based upon 1P reserves) are nearly seven times larger than those made at the date of 

discovery - and are still growing. While we would expect the annual additions to cumulative 

discovery estimates to decline over time as more of the uncertain/contingent resources are 

converted into proved reserves or cumulative production (i.e. 0)(' G  as  ), this is 

not evident from the estimated function. The onshore United States contained fields of widely 

different ages and Verma (2005) estimates the average growth rate of these fields to be 

2.7%/year. 

Figure 2.2 Illustration of cumulative reserve growth  

 

Source: Verma (2005) 

Reserve growth may partly be a consequence of conservative reserve reporting. For example, 

Laherrère (1999a) has argued that the bulk of US reserve growth can be attributed to the 

reporting of only proved (1P) reserves under SEC rules. This is acknowledged to be a highly 

conservative estimate of future production (Thompson, 2008). As Drew (1997) observes: 

“……Ask a manager in an oil company what the reserves are and he or she will tell you 

that it depends on who is asking. The manager will also tell you that three sets of books are 

kept - one that has the optimistic estimates that are used to sell deals to upper management 

and the stockholders and to give the geologists are good measure for what they have found; 

another has the conservative estimates that the accountants used to borrow money from the 

banks; and a third set has the middling numbers calculated by the engineers for internal use 

in the company.”(Drew, 1997)  

These numbers may be very roughly interpreted as 3P 1P and 2P reserves estimates 

respectively. However, Drew (1997) argues that the phenomenon of reserve growth is not 

confined to cumulative discovery estimates based on 1P reserves: 
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 “…The irony of this summation is that all three sets of numbers are pessimistic - they all 
grow with the passage of time.” (Drew, 1997)  

We would expect, nevertheless, that reserve growth would be smaller for cumulative 

discovery estimates based upon 2P reserves than for those based upon 1P reserves since the 

former are less conservative. Indeed, using the probabilistic interpretation of 2P reserves 

(Thompson, 2008), we would expect cumulative discovery estimates based upon 2P estimates 

to be downgraded as frequently as they are upgraded. However, analysis by Klett and 

Schmoker (2003) suggests that this is not the case. Klett and Schmoker analysed the reserve 

growth of 186 giant oil fields located outside of the US and Canada using data from 

successive editions of the IHS database (Klett, 2005). The cumulative discovery estimates 

reported in this database represent the sum of cumulative production and 2P reserve 

estimates. In contrast, the cumulative discovery estimates reported for US fields and used by 

Verma (2005) and others to develop cumulative growth functions represent the sum of 

cumulative production and 1P reserve estimates. But despite this important difference, the 

percentage reserve growth observed in the giant fields between 1981 and 1995 was very close 

to that predicted from growth functions estimated from US fields. The applicability of these 

growth functions was further reinforced by Klett et al‟s (2005a) evaluation of the USGS 

World Petroleum Assessment which showed that reserve growth over the period 1995 to 

2003 was consistent with expectations. 

Reserve growth is therefore of major importance for any method of estimating URR that 

relies upon cumulative discovery data (i.e. D or B), as well as for future projections of global 

oil supply. Put simply, if reserve growth is underestimated or overlooked, estimates of URR 

will be too conservative and forecasts of future oil supply will be too pessimistic (Nehring, 

2006c; e). But the estimation of future reserve growth is fraught with difficulties. At present, 

relatively little is known about how patterns of reserve growth vary between different types 

and sizes of field (e.g. onshore versus offshore) or between different regions. Similarly, little 

is known about how those patterns are influenced by various institutional, economic and 

technical factors. Since advances in seismic technology allow resources to be estimated more 

accurately, it is possible the URR estimates for newly discovered fields may not grow as 

much as those for old fields. However, this has yet to be established with any confidence 

empirically. Since the analysis of reserve growth is hampered by lack of data and 

inconsistencies within the available datasets, the contribution of reserve growth to future oil 

supply remains a topic of controversy (Drew, 1997). Reserve growth is discussed further in a 

companion report (Thompson, et al., 2009b) and is a recurring theme in much of what 

follows. 

2.5 Field size distributions  

Many methods of resource assessment rely upon assumptions about the size distribution of 

oil fields within a region, where „size‟ refers to current estimates of the ultimately 

recoverable resource from each field. Two fundamental observations are that: 

 Within any given region (e.g. play, basin, system) most of the oil tends to be found in a 

small number of large fields.  

 Large fields tend to be discovered early in the exploration process, with subsequent 

discoveries tending to be smaller and requiring increasingly greater effort to locate. 
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These observations are borne out by empirical observations of exploration histories and the 

size distribution of discovered fields at levels of aggregation ranging from single plays to the 

entire world. However, the precise form of the field (or reservoir) size distribution varies 

from one region to another (Laherrère, 2000a) and is a long-standing focus of controversy 

(Drew, 1997; Kaufman, 2005). For example, Klemme (1984) has highlighted empirical 

relationships between field size distributions and the morphology and size of petroleum 

basins. Depending upon the type of basin, the estimated proportion of URR contained within 

the five largest fields could vary from less than 10% to more than 75%. 

The size distribution of the underlying population of fields cannot be directly observed, but 

can only be inferred from the size distribution of discovered fields (however estimated). Arps 

and Roberts (1958) were one of the first to observe that the latter typically took a lognormal 

form - in other words, the frequency distribution of the natural log of discovered field sizes 

resembled a normal distribution (Figure 2.3). The mode field size therefore occurred in the 

middle of this size range. This observation was subsequently supported by several empirical 

studies, including McCrossan‟s (1969) analysis of reservoir sizes in Western Canada
10

 and 

studies of US data sets by Kaufman (1963) and Drew and Griffiths (1965).  

Figure 2.3 Oil and gas field size distribution for the Denver basin in 1958 

 

Source: Adapted from Arps and Roberts (1958) and Drew (1997). 

                                                 
10 “…it is probably safe to assume on the basis of the present and other published work that a geologically homogeneous 

group of oil deposits should form a unimodal, lognormal size-frequency distribution” (Mcrossan, 1969). Note that Western 

Canada is relatively unique in that reserves have historically been reported on a reservoir rather than a field basis. This 

choice has some important implications. When reservoirs are used as the basis for assessment, the discovery of a new 

reservoir is counted as a new discovery, but where fields are used the discovery of new reservoirs in a field forms a 

component of reserve growth. McCrossan‟s results suggest that skewed size distributions apply as much to reservoirs within 

a field as to fields within a larger region. 
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That oil and gas fields typically had a lognormal size distribution became established as 

conventional wisdom during the 1960s and 1970s and subsequently formed the basis of some 

highly sophisticated „discovery process‟ models which were used to estimate the regional 

URR (Kaufman, 1975b). This was despite the difficulties in making statistical inferences 

about the size distribution of the population of fields from a relatively small sample of fields 

that may not be representative of the population as a whole (Bloomfield, et al., 1979; Drew, 

1997; Kaufman, 1993). These difficulties had been anticipated by Arps and Roberts (1958): 

 “….the “frequency density distribution” strongly resembles the typical bell shaped normal 

Gaussian probability curve. Not too much significance should be attributed to its apparent 

symmetry, because obviously the physical reasons for right-hand and left-hand slopes of this 

curve are quite different. The diminishing number of fields with growing ultimates on the right-

hand side of the mode are, as would be expected, the result of having fewer fields of larger 

size….The tapering off on the left-hand side of the mode, however, must be largely caused by 

economic factors. For instance, under 30,000 barrels of ultimate per well, it may be 

questionable whether an operator should run pipe at all, and many discoveries in this category 

which were found will probably never completed and therefore escape the statistics.” (Arps 

and Roberts, 1958): 

This sampling bias was rediscovered in the 1980s and given the name „economic truncation‟ 

(Attanasi and Drew, 1984; Drew, 1997; Drew, et al., 1988). Schuenemeyer and Drew (1983) 

observed that smaller fields tended to be underrepresented in the sample of discovered fields 

because they were not economic to develop. However, as exploration proceeded, technology 

improved, oil prices rose and/or costs fell, it became increasingly economic to find and 

exploit the smaller fields. This process is demonstrated graphically in Figure 2.4 (A), which 

shows the field size distribution for the Frio Standplain play in Texas as estimated in 1960, 

1970 and 1985. The mode field size shifts progressively to the left as more small fields are 

discovered and developed. Importantly, the population of large fields remains largely 

unchanged.  

The same process is illustrated in the cumulative frequency distribution of Figure 2.4 (B). 

Using log scales, this shows the number of fields (N) in the play that exceed a particular size 

(V) – sometimes referred to as the field rank. As more small fields are discovered and 

developed, the curvature of the lnN(V)-lnV plot is reduced. Similar inferences may be drawn 

from cross-sectional studies that compare field size distributions in different regions, since 

the costs of developing petroleum resources - and hence the minimum viable field size - can 

vary widely from one region to another (Drew, et al., 1982b). These differences are 

especially important when comparing onshore and offshore regions (Drew and 

Schuenemeyer, 1993). 
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Figure 2.4 Observed field size distribution for the Frio-Strandplain play in Texas at three 

different points in time 

 

Source: Cramer Barton and La Pointe (1995) 

Power (1992) has shown how the apparently lognormal distribution of observed field sizes 

may also arise from the second form of sampling bias - namely, that the largest fields tend to 

be discovered first. Power simulated the discovery process for theoretical populations of 

fields whose size distribution took a Weibull form. Importantly, the sampling process did not 

impose any economic truncation. Power found that, as the number of exploratory wells 

increased, the size distribution of discovered fields evolved towards the parent frequency size 

distribution. However, the size distribution of discovered fields could not be rejected as being 

non-lognormal for a wide range of measures of exploratory effort (i.e. number of wells 

drilled). He concluded that the discovery sequence could compound the sampling bias 

introduced by economic truncation, thereby potentially reinforcing the misleading conclusion 

that the population size distribution took a lognormal form. 

On the basis of these and similar observations, Drew and colleagues proposed that the 

population field size distribution was more likely to take a power law form, as follows: 
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            (2.2) 

Where A is a scaling factor and the parameter   defines the shape of the distribution. This 

type of distribution is sometimes termed a „Pareto distribution‟, after Pareto (1987) who 

represented income distribution in a similar way. It is also part of a family of distributions 

known as „probabilistic fractals‟, which have their roots in the work of Mandlebrot (1977). 

Indeed, Mandlebrot (1962) was the first to propose that petroleum and mineral resources 

could be modelled with the Pareto distribution, demonstrating this by an analysis of both the 

surface area
11

 and the ultimate recovery of US oil fields.  

The Pareto distribution is also related to „Zipf‟s law‟ which describes a relationship between 

the size and „rank‟ (N) of discrete phenomena (Deffeyes, 2005; Merriam, et al., 2004; Zipf, 

1949). When oil fields are ranked in descending order of size so that the largest is rank 1, 

Zipf‟s law states that the product of the rank and size is approximately constant. Hence, for a 

field of rank N: NV ~  and .0.1  The applicability of Zipf‟s law is usually investigated 

by plotting field size as a function of rank, while the applicability of a Pareto distribution is 

usually investigated by plotting cumulative frequency (N(V)) as a function of field size. The 

two approaches are equivalent, since the phrase “the Nth largest field has a URR of V” is 

equivalent to saying that “N fields have a URR equal to or greater than V” (Adamic and 

Huberman, 2002). But the Pareto distribution is more general in that it does not constrain the 

value of the exponent ( ). 

While Davies and Chang (1989) have criticised the Pareto model, it appears to be gaining 

increasing acceptance. A version of the Pareto distribution was first adopted by the USGS in 

1989 as part of their regular assessment of US petroleum resources (Houghton, et al., 1993; 

Mast, 1989). If the size distribution of the underlying population follows a Pareto law, a plot 

of the natural log of N against the natural log of field size (as in Figure 2.4 B) should 

approximate a straight line with slope equal to  : 

            (2.3) 

The observed curvature in the cumulative frequency distribution of discovered fields (Figure 

2.4 B) may then be due to biased sampling from a population of fields with a Pareto size 

distribution. To illustrate this, Figure 2.5 uses the same 1985 data as Figure 2.3, but excludes 

the smaller fields whose economic viability is marginal. A straight line provides a relatively 

good fit, with an r
2 

of 0.97. If the Pareto rule applies, the estimated value of   can provide a 

useful basis for comparing field size distributions in different regions.
12

 As 0.1 , the 

volume of oil in small fields forms an increasingly large share of URR. 

                                                 
11 Surface area may be easier to estimate than URR and is expected to be correlated with it. For example, Arps and Roberts 

(1958) estimated that the URR of a field was approximately proportional to the 1.275 power of its surface area. However, the 

relationship will vary from one region to another and will depend in part upon how the surface area of a field is defined. 
12 For example, Coustau (1979) has used this to distinguish between concentrated, normal and dispersed petroleum basins. 

 AVVN )(

VAVN lnln)(ln 
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Figure 2.5 Cumulative frequency plot of field sizes for the Frio Strandplain play in Texas, 

excluding smaller field sizes  

 

Source: Cramer Barton and La Pointe (1995) 

However, Laherrère (1996; 2000a) has questioned whether the Pareto distribution, or „linear 

fractal‟ is the most appropriate one to use:  

“….. A linear fractal implies perfect self-similarity, whereby one complete segment of the 

distribution describes the whole, but in nature, self similarity is imperfect and limited. Natural 

data gives rise to curved, not linear plots.” (Laherrère, 2000a) 

As a result, Laherrère advocates a „parabolic fractal‟, which assumes a quadratic relationship 

between the log of field size and the log of the field rank. Figure 2.6 shows such a plot for the 

Niger delta, using field size data from different periods. While the larger fields exhibit 

reserve growth between 1959 and 1969, their estimated size has remained relatively stable 

since then. The lower part of the curve reveals the discovery of increasingly smaller fields, in 

a similar manner to Figure 2.4. Laherrère extrapolates the curve to estimate that there are 

around 4400 fields exceeding 1MB in size - although he acknowledges that there is a „degree 

of latitude‟ in how the curve is drawn (note that this approach reverses the axes). Laherrère 

argues that the parabolic fractal works well in most cases, but problems can arise with the so-

called „King effect‟ where the largest field is very much larger than the rest. The „King‟ field 

is an outlier to the distribution, but may contain the bulk of a region's oil. 
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Figure 2.6 Cumulative frequency plot of field sizes for the Niger delta 

 

Source: Laherrère (2000a) 

In summary, while the parabolic fractal (Figure 2.6) may represent the underlying population 

distribution of field sizes, it is equally possible that the underlying distribution takes a Pareto 

form, with the curvature resulting primarily from the sampling bias introduced by economic 

truncation and the discovery process. At present, there appears to be no consensus on this 

issue, which contributes to the uncertainty in URR estimates. Also, the relative suitability of 

different functional forms to represent the field size distribution may be expected to vary 

from one region to another  

The proportion of the URR contained in smaller, undiscovered fields may be estimated by 

fitting one of these functions to the size distribution of discovered fields and extrapolating to 

smaller field sizes. The proportion will be greater with a power law distribution, smaller with 

a parabolic fractal and smaller still with a lognormal. For example, Barton and Scholz (1995) 

fitted a power law to six regions and estimated that undiscovered small fields contained 

between 9% and 31% of the regional URR (excluding fields smaller than 30 kb). 

Corresponding estimates are not available at the global level, but are likely to be sensitive to 

the minimum size threshold assumed.  

While technical improvements and higher prices should make more small fields viable, there 

will always be a lower limit imposed by the energy return on investment. As a result, many 

small fields will never contribute to global supply, especially in offshore regions.  

2.5.1 Why big fields matter 

While the precise form of field size distributions remains a source of dispute, there is no 

question that the majority of oil is found in a small number of large fields. Since this is of 

profound importance for the future of global oil supply, it deserves a closer look.  
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One of the first global surveys of crude oil fields was by Ivanhoe and Leckie (1993) who 

grouped fields into ten size categories on the basis of their estimated URR (Table 2.1). The 

370 fields with a URR exceeding 0.5 Gb (i.e. >7 days current global supply of crude oil) 

represented less than 1% of the total number of fields but accounted for three quarters of 

cumulative discoveries. Of particular importance were the 42 „super-giant‟ fields with a URR 

exceeding 5 Gb (i.e. >73 days current global supply) with the largest (Ghawar in Saudi 

Arabia) having a URR of ~140 Gb. The 1300 fields with a URR exceeding 0.1 Gb (i.e. >1.5 

days current global supply) represented only 3% of the total but accounted for 94% of 

cumulative discoveries. The remaining 39000 fields accounted for less than 6% of the total 

and individually contributed only a tiny fraction of global supply. 

Table 2.1: Ivanhoe and Leckie’s estimates of the size distribution of the world’s oilfields  

Category Estimated URR (mb) No. in world 

Megagiant >50,000 2 

Supergiant 5000-50,000 40 

Giant 500-5000 328 

Major 100-500 961 

Large 50-100 895 

Medium 25-50 1109 

Small 10-25 2128 

Very small 1-10 7112 

Tiny 0.1-1 10849 

Insignificant < 0.1 17740 

Total  41164 

Source: Ivanhoe and Leckie (1993)  

Similar results were obtained by Robelius (2007), who provided an updated analysis of the 

world's „giant‟ oilfields using data from a variety of sources. Robelius estimates that there are 

~47500 oil fields in the world, 73% of which are in the United States.
13

 Only 507 (<1%) of 

these are „giants‟, with an estimated URR of more than 0.5 Gb, of which 430 are in 

production and 17 under development. Robelius estimates that the 100 largest fields account 

for 45% of the global production of crude oil (see Figure 2.7) while the giants as a whole 

account for approximately two thirds of global cumulative discoveries. Half of these giants 

were discovered more than 50 years ago. 

                                                 
13 These figures demonstrate that much more exploration has taken place in the US compared to other regions of the world.  

This has implications for the relative suitability of different resource assessment methodologies (Section 4) and suggests 

there is considerable unexploited potential outside the US. 
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Figure 2.7 The estimated contribution of giant oilfields to global crude oil production 

 

Source: Robelius (2007) 

Simmons (2002) defines giant fields as those producing more than 100 kb/d (i.e. 0.14% 

current global supply of crude oil).
14

 He estimates that there are 116 giants under this 

definition which in 2002 accounted for approximately half the global production of crude oil. 

The smallest 62 of these fields accounted for only 12% of production while the largest 14 

accounted for over 20%. In 2007, the average age of the 14 largest fields was 51 years and of 

the 26 giants discovered since 1980, only four produce more than 200 kb/day.  

The most up-to-date estimates are provided by the IEA (2008) who use Ivanhoe's 

classification system and rely largely upon the IHS database. They estimate that 70,000 oil 

fields were in production in 2007, but around 60% of crude oil production derived from 374 

fields (54 supergiant and 320 giant). An additional 84 giant fields were either under 

development or „fallow‟. Approximately half of global production derived from only 110 

fields, 25% from only 20 fields and as much as 20% from only 10 fields, with Ghawar 

accounting for a full 7% (Error! Reference source not found.). Most of the 20 largest fields 

have been in production for several decades and 16 of them are past their peak of production. 

The world‟s second-largest oil field, Canterell, peaked in 2003 and its‟ production has since 

declined by ~70%. 

Hence, while the precise numbers may be uncertain, it is clear that around 100 oil fields 

account for up to half of the global production of crude oil, while up to 500 fields account for 

two thirds of cumulative discoveries. Most of these fields are relatively old, many are well 

past their peak of production and most of the rest will begin to decline within the next decade 

or so. The remaining reserves at these fields, their future production profile and the potential 

for reserve growth is therefore of critical importance for future global supply. 

                                                 
14 Höök, et al. (2009) estimate there are 20 giant fields under Simmons‟ definition which are not giant fields under Ivanhoe's 

definition. 
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2.6 Methods of estimating ultimately recoverable 

resources 

There are a wide range of methods for estimating ultimately recoverable resources, together 

with many variations on the basic techniques. The appropriate choice depends upon the 

nature and level of aggregation of the region under study, the degree of exploration maturity 

and the data and human resources that are available. Since different authors classify the 

methodologies in different ways, it may be more appropriate to think of a spectrum of 

possibilities, involving differing reliance upon: a) geological data and reasoning versus 

extrapolation of historical trends; b) probabilistic estimates (e.g. Monte Carlo simulation) 

versus single-value estimates; and c) theoretical reasoning versus simple curve-fitting. This is 

illustrated in Figure 2.7.  

Figure 2.8 Classification of methods of estimating URR 

Geological reasoning

Trend analysis

Probabilistic Deterministic

Theory based

Curve fitting

 

Most of the methods associated with Hubbert may be characterised as producing single value 

estimates from the extrapolation of curves fitted to historic data on cumulative discovery or 

cumulative production for aggregate regions such as an oil-producing country. There is 

relatively little use of geological judgement or information and the methods are simple to 

apply with data that is often available in the public domain. In contrast, the methods used by 

the USGS and others produce probabilistic estimates from geological assessments of 

disaggregate regions, with extensive use of geological judgement and information (USGS, 

2000a). These methods are complex and resource intensive and rely upon extensive data 

sources that are often inaccessible to third parties. This characterisation is oversimplified, 

however, as there are considerable overlaps between the two approaches, especially for 

regions that are relatively mature stage of exploration and production (Drew and 

Schuenemeyer, 1993). 

All of the different methods have their strengths and weaknesses and while some methods 

may be more or less suitable for particular levels of aggregation and stages of exploratory 

effort, there is unlikely to be a single „best‟ method (Divi, 2004). Indeed, the most reliable 

assessments are likely to be derived from a combination of methods (Ahlbrandt and Klett, 

2005). In what follows, the various methods are classified into four groups, namely: a) 

geological assessments; b) expert assessments; c) field size distribution approaches; and d) 

historical extrapolation (Charpentier, et al., 1995b). The first two of these rely more upon 

geological information and judgement and are more appropriate for less explored regions, 
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while the second two rely more upon the extrapolation of historical trends and are more 

appropriate to well explored regions. The methods associated with Hubbert fall into the last 

category and are the primary focus of this report. 

2.6.1 Geological assessment  

These methods primarily rely upon geological analysis of seismic and other data to estimate 

the resource size. A traditional approach, commonly applied at the basin level, is to estimate 

hydrocarbon volumes by multiplying the estimated sedimentary volume by an estimated yield 

in barrels per cubic kilometre (Gautier, 2004; Weeks, 1952; White and Gehman, 1979). For 

unexplored areas, the values for such calculations are typically based upon measurements or 

estimates from geologically similar regions (analogs) where more information is available. 

The accuracy of such calculations depends in part on the suitability of the choice of 

analog(s),
15

 but given the complexity of the geological determinants, there are considerable 

uncertainties in estimating yield factors even when the geology is relatively well-known. 

With typical yield factors ranging from 0.01 to 2.0 MBO per cubic mile (Divi, 2004), there is 

considerable scope for error: 

“….Unfortunately, none of the wide variety of technological approaches to prediction of 

petroleum resources is trustworthy because each basin is unique.....Not even a geological 

similarity of 99% between basins is enough to guarantee any similarity in petroleum resources. 

One crucial difference in geological parameters can completely negate the effect of all the 

similarities.” (Jones, 1975) 

More modern approaches are commonly applied at lower levels of aggregation, such as the 

petroleum play. These typically use Monte Carlo methods to multiply either point estimates 

or probabilistic distributions of factors such as the volume of the reservoir rocks, the ratio 

between this and the total volume of the sediments, the pore volume of the rocks, their 

average porosity and oil saturation and the average recovery efficiency (Capen, 1976). Many 

of these factors will be highly uncertain and since they are unlikely to be independent of each 

other, the multiplication of probability distributions may be inappropriate. The resulting 

estimates are typically adjusted downwards by „risking‟ procedures, designed to weigh the 

likelihood that the relevant geological conditions (including source, migration, reservoir, trap 

and timing) were sufficiently favourable to generate at least one reservoir larger than the 

minimum field size. As White and Gehman (1979) note: “….the geological and economic 

uncertainties inherent in these questions can be awesome”. Even when exploration is 

relatively mature, there may still be only a limited number of measurements of a subset of the 

relevant parameters. Furthermore, there may be no universally accepted causal relationship 

between these variables and the size of the petroleum resource (La Pointe, 1995). Such 

uncertainties led Hubbert (1981) to question the accuracy of such approaches:  

“.… it is easy to show that no geological information exists, other than that provided by 

drilling, that will permit an estimate to be made of the recoverable oil obtainable from a 

primary area that has a range of uncertainty of less than several orders of magnitude.” (Hubbert, 

1982)  

As exploration proceeds in the majority of the world's petroleum producing regions, such 

methods become less suitable and their limitations less relevant. However, in areas that 

                                                 
15 This may be relatively sophisticated. For example, Gess and Bois (1977) use cluster analysis to find that play most like the 

one being assessed. They describe the plays by 153 parameters and 106 quality judgments transformed into numbers! 
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remain to be drilled, such as most of the Arctic region, resource estimates must necessarily 

have large error bounds. 

2.6.2 Expert assessment  

These methods use formal procedures to combine the expert judgment of several geologists 

regarding the probability distribution of potential resources in an area (Baxter, et al., 1978; 

Gautier, 2004). Typically, each geologist first reviews the relevant information and then 

estimates either a single value or a probability distribution for each of the relevant factors. 

These estimates can then be statistically combined into a probability distribution that reflects 

the full range of opinions of the group (Gautier, 2004). In a variant of this approach, the 

group as a whole reviews all the individual results and makes revisions where appropriate. 

The group may aim for a consensus estimate, or the final outcome may represent the average 

of the individual opinions (White and Gehman, 1979). 

The advantage of this method is that it is straightforward and probabilistic and can 

accommodate special situations such as exploration constraints that may be poorly handled 

by more „mechanical‟ methods (Charpentier, et al., 1995b). It is also appropriate for all levels 

of geological aggregation and data availability. The disadvantage is that it lacks transparency 

to third parties and relies rather heavily on the knowledge and objectivity of the individual 

assessors: “…. one must know how expert are the experts in order to assess the assessment.” 

(White and Gehman, 1979) Also, the social processes that govern such assessments could 

potentially lead to bias. 

2.6.3 Field-size distributions  

For explored regions, estimates of URR may be derived by combining data on the size of 

discovered fields with assumptions about the size distribution of the underlying population of 

fields. For example, if a Pareto distribution is assumed, undiscovered resources may be 

estimated by plotting a cumulative frequency distribution, fitting a linear regression and 

extrapolating this to smaller field sizes. The URR may then be approximated by the area 

under the curve (see Figure 2.8).
16

 This estimate is sensitive to the point at which the 

observed size distribution is curtailed when fitting the curve, as well as to assumptions about 

the minimum viable field size and the future reserve growth in discovered fields. It is also 

sensitive to the size distribution assumed. For example, the resources contained in small 

fields may be estimated to be larger if a Pareto distribution is assumed than if a parabolic 

fractal or lognormal distribution is assumed. Such assumptions will also influence the 

expected size of resources contained in undiscovered large fields, which could have a major 

influence on the results (Attanasi and Charpentier, 2002).
17

 

                                                 
16 Barton and Scholz (1995) use analyses of this type to estimate that around 9% of conventional recoverable oil remain 

undiscovered in the lower 48 US states and 31% remained undiscovered globally. Both of these estimates neglect reserve 

growth. 
17 Attanasi and Charpentier (2002) compared oil and gas resource assessments made using Parto and lognormal assumptions 

for the field size distribution. The use of the lognormal distribution reduced the oil estimates by 16% and the gas estimates 

by 15%. Nearly all of the difference resulted from the lognormal distribution having fewer larger fields relative to the Pareto 

distribution. 
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Figure 2.9 Estimating URR from a cumulative field size distribution that is assumed to follow 

a Pareto law 

 

Source: Barton and Scholz (1995) 

An alternative approach plots cumulative discoveries (i.e. the sum of the estimated URR of 

discovered fields) as a function of the rank of the field (where the largest field is rank 1). The 

resulting curve should flatten out as rank increases (Figure 2.9) as a result of the declining 

size of fields. If exploration is sufficiently advanced, the curve should trend towards an 

asymptope which can be taken as an estimate of the regional URR. The asymptope may be 

identified visually or estimated through non-linear regression. This approach has much in 

common with the discovery projection technique (described in Section 3) which plots 

cumulative discoveries as a function of time and estimates URR in a similar manner. Indeed, 

if the discovery rate was constant and if fields were discovered precisely in declining order of 

size, then the field-rank and discovery projection curves would be identical.  However, unlike 

the field-rank technique, discovery projection does not require information on the size of each 

individual field. 
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Figure 2.10 Estimating URR by plotting cumulative discoveries as a function of field rank 

 

Estimates based upon field size distributions are only suitable in areas that: first, have 

information available on the estimated size of each field; and second, are „sufficiently 

explored‟ to have a statistically significant sample of field size estimates. The meaning of 

„sufficiently explored‟ is ambiguous however, as Power (1992) has shown that incorrect size 

distributions can be estimated even after hundreds of fields have been discovered. While 

larger sample sizes may be obtained from larger regions, this would be inappropriate if the 

region lacks geological homogeneity. For example, when inhomogeneous regions are 

combined, the right-hand tail of a cumulative frequency distribution also tends to curve 

(Barton and Scholz, 1995). Charpentier, et al. (1995a) state that this method can give good 

results in mature regions with a large number of discoveries, since the field size distribution 

is fairly well-behaved. However, constraints on exploration (e.g. areas that are off-limits for 

some reason) can have a significant impact on the results and need to be accounted for 

separately. The difficulty in estimating reserve growth may also introduce uncertainties. 

Generally, the results may be improved through the use of discovery process models – 

introduced below.  

2.6.4 Historical extrapolation 

These methods are based upon the analysis of historical data on production or discoveries and 

the extrapolation of the identified trends into the future (Harbaugh, et al., 1995). The 

techniques vary in their level of sophistication, but generally make little reference to 

geological concepts, information or techniques. The assumptions underlying all the 

techniques are that: a) the field size distribution is highly skewed, with the majority of oil 

being located in a small number of large fields; and b) these large fields tend to be discovered 

early in the exploration process, with subsequent discoveries being progressively smaller and 

the product of increasingly greater effort. The techniques fall into two broad groups: 

 Curve-fitting: These use non-linear regression to fit curves to the historic trends in 

discovery or production and extrapolate these to estimate URR. The explained variable 

may be cumulative production, the rate of production, cumulative discoveries (measured 

using either 1P or 2P reserve estimates) or the rate of discoveries („yield‟). The 

explanatory variable may either be time or some measure of exploratory effort, such as 

the total area explored, the cumulative number of exploratory wells drilled or the 
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cumulative depth of exploratory wells (in metres). These techniques were pioneered by 

Hubbert (1956; 1959; 1962; 1982) and have subsequently been adopted and developed by 

numerous analysts (e.g. Cleveland (1992b), Mohr and Evans (2008) Imam, et al (2004)) 

including in particular those concerned about „peak oil‟ (Campbell, 2002; Laherrère, 

2003). 

 Discovery process modeling: These have many similarities with the „curve-fitting‟ 

approaches, but are typically more sophisticated. They are based upon statistical analyses 

of the number and size of discovered fields as a function of either time, the discovery 

sequence or exploratory effort. This is sometimes combined with assumptions about the 

field size distribution and/or information about field location. Several of these models 

simulate a probabilistic law governing the process of new field discovery and can be used 

to provide forecasts of the number, size and sequence of future discoveries together with 

the anticipated success rate of exploratory drilling. They may also be combined with 

economic models to estimate the anticipated returns to exploratory drilling and improved 

through the incorporation of economic variables that influence the success of exploratory 

drilling. Major references include Arps and Roberts (1958), Kaufman (1975b) 

Schuenemeyer and Drew (1994) and Meisner and Demirmen (1981). 

A crucial difference between curve-fitting and discovery process modelling is that the former 

use aggregate data for a region, while the latter require data on individual fields. While in 

many ways a superior technique, the extensive data requirements of discovery process 

models entirely preclude their use in areas where accurate data on individual fields is not 

available - which is the case for most regions of the world.  In addition, their methodological 

sophistication makes them less practical for many researchers and they are only suitable for 

relatively low levels of aggregation. In contrast, since the data requirements of curve-fitting 

techniques are relatively modest, they can be readily applied in a variety of circumstances. 

Both groups of techniques are only applicable to regions where exploration is relatively 

advanced, thereby providing a sufficiently large data set for statistical analysis. In principle, 

discoveries should provide a better explained variable than production, because the discovery 

cycle will be more advanced than the production cycle (see Section 3) and discoveries may 

be affected by fewer intervening variables than production. Similarly, exploratory effort 

should provide a better explanatory variable than time, since it reduces the effect of economic 

and political factors such as difficulties in accessing a region and changes in tax regimes that 

are unlikely to be stable over time. However, the use of exploratory effort as an explanatory 

variable does not remove the effect of factors such as advances in exploration technology that 

may increase the success rate of exploration at the same time as physical depletion is 

reducing it. Also, exploratory effort is far from immune to economic and political influences 

and the required data is less readily available (Cleveland, 1991). 

Historical extrapolation techniques are best applied to data from geologically homogeneous 

areas that have had a relatively unrestricted exploration history (e.g. without areas being 

closed to exploration for legal or political reasons). If this is not done, the opening up of a 

new area for exploration (e.g. new plays within a basin) can lead to inconsistencies in the 

time-series and undermine the basis for historical extrapolation (Wendebourg and Lamiraux, 

2002).
18

 But even if the region is geologically homogeneous, the development of new 

                                                 
18 The same applies to exploratory depth. Shallow fields are usually more extensively explored and exploited before deep 

fields, so shallow fields are generally overrepresented and deeper fields underrepresented in the distributions of discovered 

fields (Harris, 1977). 



 

 

30 

30 

exploration and production technologies can lead to structural breaks in the time-series – for 

example, the advent of horizontal drilling of fractured reservoirs in Texas (Charpentier, 2003; 

Harris, 1977). The required time-series for discovery process models can also be complicated 

by factors such as the merger of separate fields over time (Drew, 1997). However, if curves 

are being fit to aggregate data, this is not a problem.  

2.6.5 Comparison of methods 

Traditionally, the methods based upon geological assessment have been considered to 

produce relatively optimistic resource assessments, while those based upon historical 

extrapolation have been considered to produce more conservative estimates. However, there 

appear to be relatively few published studies that systematically compare the results obtained 

from these different methods for particular regions. Comparison may be difficult, owing to 

lack of documentation, variations in the boundaries and depths included, varying assumptions 

about factors such as minimum viable field size, deterministic versus probabilistic 

presentation of results, reporting in terms of URR or undiscovered resources and so on. One 

of the best documented studies is a comparison of seven methods applied to seven regions by 

Ahlbrandt and Klett (2005). The comparison includes the synthetic method used by the 

USGS in their World Energy Assessment 2000, which combines geological assessment with 

discovery process modelling and can therefore be applied to both well-explored and 

unexplored regions. 

The different methods were found to produce widely different results for the same regions. 

For example, in the case of the Sirte Basin region in Libya, the mean estimates for 

undiscovered resources from the different methods ranged from 10 Gboe to 48 Gboe. The 

latter estimate derived from a Pareto field size distribution method and exceeded the 

discovered resources in this (well explored) region. The corresponding variation in estimates 

of URR will depend in part upon the level of exploration in the region and hence the 

estimated proportion of total resources that remain to be discovered. 

Ahlbrandt and Klett (2005) conclude that: a) resource assessments should be conducted for 

regions that are homogeneous in terms of both geology and exploration history; b) 

assumption about reserve growth and field size distribution can have a major influence on the 

results (with an assumed Pareto distribution yielding relatively large estimates relative to the 

other methods); and c) some methods can yield very conservative estimates, especially for 

mature regions. In the case of the latter, they cite the results for the Nequen Basin in 

Argentina where the discoveries in the preceding five years had exceeded the total estimate of 

undiscovered resources provided by the parabolic fractal method.  

2.7 Summary 

This section has introduced some key concepts and definitions relevant to ultimately 

recoverable resources (URR) and summarised the main methodological approaches that are 

available to estimate the size of those resources. The key conclusions are as follows: 

 Estimates of URR are inherently uncertain and should be expressed in a probabilistic 

form. They are also dynamic since they depend upon the economic and technical 

conditions prevailing at the time, together with assumptions about how these may change 

in the future. While the level of uncertainty should fall as exploration proceeds, estimates 

of URR may vary widely even for maturely explored regions. 
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 Estimates of URR may be produced by a variety of methods for levels of aggregation 

ranging from a single field to the entire world. Most methods work best when they are 

applied to regions that are homogeneous in terms of both geology and exploration history. 

If this condition does not hold, there is a risk of underestimating URR by neglecting 

exploration constraints and other relevant factors. 

 Estimates of the size of fields (i.e. cumulative production plus reserves) tend to „grow‟ 

substantially over time as a result of factors such as the discovery of new reservoirs and 

conservative initial reporting. This phenomenon is well studied in the United States, 

where it is commonly attributed to the use of 1P estimates in reserve reporting. However, 

since comparable growth has been observed in field size estimates based upon 2P 

reserves, it appears to be a generic and universal phenomenon (although poorly studied 

for many regions of the world). Assumptions about reserve growth can have a major 

influence on both URR estimates and projections of future oil supply. 

 Within any given region, most of the oil tends to be found in a small number of large 

fields which tend to be discovered relatively early in the exploration process. Subsequent 

discoveries tend to be smaller and require increasingly greater effort to locate. These 

observations underlie many of the methods of resource assessment, but the precise form 

of the field size distribution remains a focus of dispute. For discovered fields, the size 

distribution results in part from economic factors and may not be representative of the 

size distribution of the underlying population of fields. 

 Around 100 oil fields account for up to half of the global production of crude oil, while 

up to 500 fields account for two thirds of cumulative discoveries. Most of these fields are 

relatively old, many are well past their peak of production and most of the rest will begin 

to decline within the next decade or so. The remaining reserves at these fields, their future 

production profile and the potential for reserve growth is therefore of critical importance 

for future global supply. 

 The proportion of total resources contained within small, undiscovered fields is disputed. 

While the observed lognormal size distribution of discovered fields is likely to be the 

result of sampling bias, there is insufficient evidence to conclude whether a „linear‟ or 

„parabolic fractal‟ better describes the population size distribution. While technical 

improvements and higher prices should make more small fields viable, many will remain 

uneconomic to develop and the exploitation of the rest will be subject to rapidly 

diminishing returns. As a result, the competing estimates of the resources contained in 

small fields should be of less significance to future supply than the potential for increased 

recovery from the giant fields. 

 There are a wide range of methods for estimating ultimately recoverable resources 

together with many variations on the basic techniques. Although the appropriate choice 

depends upon the nature and level of aggregation of the region, there is rarely a single 

„best‟ method. One group of methods relies more upon geological information and is 

more appropriate for less explored regions, while a second group relies more upon the 

extrapolation of historical trends and is more appropriate to well-explored regions. The 

methods associated with Hubbert fall within the second group and typically apply 

relatively simple techniques to aggregate data to produce single value estimates for URR. 

However, these have strong parallels with more sophisticated and probabilistic techniques 

applied to disaggregate data (e.g. discovery process models) that are routinely used by 

organisations such as the USGS. 
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 The different methods are rarely compared systematically, but evidence suggests that they 

can produce widely different results. Assumptions about reserve growth and the field size 

distribution can be critical, while the application of extrapolation techniques to a non-

homogeneous region can be misleading. Hence, estimates of URR at all levels of 

aggregation should be treated with caution and the uncertainties fully acknowledged. 
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3 Extrapolation methods – classification, 
description and evaluation 

3.1 Introduction 

This section describes and evaluates the extrapolation methods of estimating ultimately 

recoverable resources. All these methods involve analysing historical data on production or 

discoveries in a region and extrapolating this to derive an estimate of URR. The techniques 

vary greatly in their data requirements and level of sophistication, but share the common 

assumptions that: a) the field size distribution is highly skewed, with the majority of oil being 

located in a small number of large fields; and b) these large fields tend to be discovered early 

in the exploration process, with subsequent discoveries being progressively smaller and the 

product of increasingly greater effort. The physical constraints these provide on both the 

discovery and production cycle for a region can form a basis for estimating the URR for that 

region.  However, the neglect of political and economic factors that may influence discovery 

and production trends could potentially be a significant source of error. 

The extrapolation techniques fall into two broad groups, namely curve-fitting and discovery 

process models. While the former use aggregate data for a region, the latter require data on 

individual fields. While in many ways a superior technique, the extensive data requirements 

of discovery process models can make them impractical in many circumstances. In contrast, 

the data requirements of curve-fitting techniques are relatively modest, allowing them to be 

more readily applied. Both groups of techniques are only applicable to regions where 

exploration is relatively advanced, thereby providing a sufficiently large data set for 

statistical analysis. Furthermore, such techniques are best applied to geologically 

homogeneous regions with a relatively consistent history of exploration and/or production. 

Many of the difficulties with these techniques arise from the fact that these conditions do not 

hold for many oil producing regions. 

Curve-fitting techniques are widely used by the individuals and groups associated with the 

peak oil debate and are therefore given the greatest attention here. Section 3.2 classifies these 

techniques in terms of their choice of explained and explanatory variables and clarifies the 

mathematical relationships between these variables. This provides a foundation for the rest of 

the report and helps to interpret the somewhat confusing empirical literature. Particular 

attention is paid to the appropriate interpretation of discovery data and the complications 

introduced by reserve growth.  

Section 3.2 classifies the curve-fitting techniques into three groups, namely production over 

time, discovery over time and discovery over effort. Each group encompasses three separate 

techniques, although the terms used to label these techniques are not standardised. Sections 

3.3 to 3.5 describe each group of techniques in turn. In each case, the aim is to describe the 

techniques, identify their historical origins, clarify the relationships between them and 

highlight some important strengths and weaknesses. While many issues are common to all the 

techniques, there are others which are specific to individual techniques.  

Following this, Section 3.6 introduces discovery process modelling and summarises two of 

the most commonly used approaches – namely the Arps-Roberts and Barouch-Kaufmann 

models. Contrary to the claims of some authors, it is argued that the differences between 
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discovery process models and simple curve-fitting is one of degree rather than kind, with the 

result that these models have many of the same limitations as simple curve-fitting. Section 

3.7 concludes by summarising the main lessons and implications. 

3.2 Explained and explanatory variables for curve-

fitting techniques 

All the curve-fitting techniques relate an explained variable to a primary explanatory 

variable. They all proceed by analysing historical trends in these variables and extrapolating 

these trends to produce an estimate of URR. But the methods vary in both the choice and the 

particular definition of the relevant explained and explanatory variables. Hence, before 

describing each method, it is helpful to clarify these definitions and to identify the choices 

that are available. 

For the explained variable, there is a choice between measures of production or measures of 

discovery. These may either be measured in cumulative terms or in terms of rates of change. 

While cumulative production is always defined in relation to time, cumulative discovery may 

either be defined in relation to time or alternatively in relation to some measure of effort, such 

as the number of exploratory wells drilled.  

The primary explanatory variable for cumulative measures of production is time, while the 

primary explanatory variable for cumulative measures of discovery may be either time or 

effort. The same applies to the rate of change of cumulative production (rate of production or 

more simply production) and the rate of change of cumulative discovery (rate of discovery or 

more simply discovery). However, the rate of production may also be expressed as a function 

of cumulative production and the rate of discovery may be expressed as a function of 

cumulative discovery.  

Table 3.1 classifies the curve-fitting methods into three groups, namely: production over 

time; discovery over time; and discovery over effort. The relevant methods in each group are 

identified by their choice of explained and explanatory variables. Note that the terms used to 

label these methods are not standardised. 

Table 3.2 summarises the mathematical notation used in the following sections. It important 

to note that cumulative discovery may either be measured in current terms or backdated to 

the date of discovery of the field. This choice, which is explained further below, can have a 

significant influence on the results. 

The remainder of this section summarises the mathematical relationships between these 

variables. The discussion is adapted from a number of sources, but draws in particular from 

Hubbert (1982). Particular attention is paid to the implications of reserve growth and the 

extent to which this may be accommodated by using backdated measures of cumulative 

discovery. 
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Table 3.1 Classification of curve-fitting methods by explained and explanatory variables 

Group Technique Explained variable Explanatory 

variable 

Production 

over time 

Cumulative production 

projection 

Cumulative 

production  

Time 

Production projection Rate of production  Time 

Production decline 

curve  

Rate of production  Cumulative 

production  

Discovery 

over time 

Cumulative discovery 

projection 

Cumulative 

discovery  

Time 

Discovery projection Rate of discovery  Time 

Discovery decline 

curve (time) 

Rate of discovery  Cumulative 

discovery  

Discovery 

over 

exploratory 

effort 

Creaming curve Cumulative 

discovery  

Exploratory effort 

Yield per effort curve Rate of discovery 

wrt exploratory 

effort 

Exploratory effort 

Discovery decline 

curve (effort) 

Rate of discovery 

wrt exploratory 

effort 

Cumulative 

discovery wrt 

exploratory effort 
Notes:  

 The terms used to label these techniques are not standardised. 

 Rate of production is the first derivative of cumulative production with respect to time. Alternative terms 

are the rate of change of cumulative production, or more simply production.  Similar comments apply to the 

rate of discovery, although here the derivative may be with respect to either time or exploratory effort. 

Table 3.2 Mathematical notation for curve-fitting techniques 

Notation Definition 

t Time 
  Effort 

td Cumulative time for discovery 

d  Cumulative effort for discovery 

Q(t) Cumulative production  

Q’(t) Rate of change of cumulative production (rate of production, or 

production) 

R(t) Reported reserves 

D(t) or )(D  Cumulative discovery  

D’(t) or )(' D  Rate of change of cumulative discovery (rate of discovery, or 

discovery) 

B(td,t) or ),( tB d  Backdated cumulative discovery 

B’(td,t) or ),(' tB d  Rate of change of backdated cumulative discovery 

Q  or D  or ,B  Ultimately recoverable resource 

3.2.1 The production cycle 

First, let Q(t) represent the cumulative production from a region as a function of time. The 

rate of change of cumulative production over time (Q’(t)) is given by: 
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           (3.1) 

This is frequently termed the rate of production or more simply production and may 

alternatively be represented as P(t). In empirical work, Q’(t) is frequently measured by 

annual production. A plot of the rate of production from when production begins to when it 

finally ends represents a full production cycle. As Hubbert (1982) notes: 

“…..The rate of oil production....begins at near zero rate and thereafter commonly increases 

exponentially for a few decades. Eventually, as the rate of discovery slows down, the rate of 

production follows. It reaches one or more principal maxima, and finally goes into a slow 

negative-exponential decline. Then at some definite time, production ceases altogether.” 

(Hubbert, 1982) 

Let 
0pt  represent the start date of production in a region. The cumulative production up to 

time t (Qt) is given by the area under the Q’(t) curve between 
0pt and t: 

          (3.2) 

Similarly, let 
fpt  represent the end date of production in a region. The total cumulative 

production over the full production cycle (
fptQ ) is then given by: 

 

            (3.3) 

Or, since Q’(t)=0 for 
0ptt   and 

fptt  :  

 

            (3.4) 

Q  represents all the oil that will ultimately be produced from the region. This is equal to the 

ultimately recoverable resource (URR) for the region. 

Cumulative oil production may be measured in terms of mass, energy content or volume, 

although the latter is most commonly employed (Speirs and Sorrell, 2009). Similarly, the rate 

of oil production is most commonly measured in volume (barrels) per day or per year. But 

since the quality and composition of crude oil varies between different regions, within the 

same region and over time, the quantity of production will depend upon the particular 

measure that is used. Also, the net energy production from a region will be less than the gross 

production since energy is required to find and produce oil and to manufacture and distribute 

oil products (Cleveland, 1992a; 1992b). However, only gross oil production will be 

considered here. 

3.2.2 The discovery cycle 

Let D(t) represent the cumulative discovery (i.e. the total amount that has been discovered) in 

a region as a function of time. Cumulative discovery (D(t)) may be measured in the same 

units as cumulative production (Q(t)). The rate of change of cumulative discovery over time 

is then given by: 

dt
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            (3.5) 

This is frequently termed the rate of discovery, or more simply discovery, although this term 

can be misleading as described below. A plot of the rate of discovery against time (D’(t)) 

from when discovery begins to when it finally ends represents a full discovery cycle. This 

need not take the same shape as the production cycle, but may also be expected to begin near 

zero, increase to one or more maxima and decline again to zero when the resources in the 

region are exhausted. Since oil has to be discovered before it can be produced, the discovery 

cycle will precede the production cycle in time. However, the interval between discovery and 

production may vary from one region to another and also from one period to another. 

Let 
0dt  represent the date at which resources are first discovered in a region. The cumulative 

discovery up to time t (Dt) is given by the area under the D‟(t) curve between 
0dt and t: 

           (3.6) 

Similarly, let 
fdt  represent the date at which the rate of discovery (D’(t)) falls to zero in the 

region. It is important to note that this generally will not coincide with the date at which the 

last new field is discovered in the region. Indeed, cumulative discoveries typically continue to 

grow for many years after the last field is discovered. The reason is the phenomenon of 

reserve growth, which was introduced in Section 2.4 and is discussed further below. The total 

cumulative discovery over the full discovery cycle (
fdt

D ) is then given by: 

           (3.7) 

Or, since D’(t)=0 for 
0dtt   and 

fdtt  : 

            (3.8) 

D  represents all the oil that will ultimately be discovered in the region. This is equivalent to 

the ultimately recoverable resource (URR) for the region. 

While cumulative discovery (Dt) for a region may not be reported explicitly, it can be 

estimated from published data on cumulative production (Qt) and reported reserves at time t 

(Rt). To form a consistent time series, the data on production and reserves should be reported 

in the same units using consistent definitions. Unfortunately, this is not always the case, even 

for industry-standard data sources such as the BP Statistical Review (Laherrère, 2004).
19

 The 

sum of cumulative production at a particular point in time (Qt) and the reported reserves at 

that time (Rt) represents all the oil that is estimated to a given level of confidence to have 

been discovered by that time. Hence cumulative discoveries at time t may be written as: 

                                                 
19 For example, the BP Statistical Review includes the Canadian oil sands in their production figures but not in their reserve 

figures. 
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            (3.9) 

At any point in time the reported reserves will be equal to the difference between cumulative 

discoveries and cumulative production ( ttt QDR  ). For most of the discovery cycle, 

cumulative discoveries will exceed cumulative production ( tt QD  ). But as t , reserves 

will be exhausted ( 0R ) and the cumulative production will equal the cumulative 

discoveries (   DQ ). Note further that reserves are only equal to cumulative discoveries 

prior to the beginning of production (i.e. for 
0ptt   when 0tQ ). However, the term 

reserves is sometimes used interchangeably with cumulative discoveries (e.g. Laherrère 

(1997)) which can be a source of confusion. 

The rate of change of discovery over time may be written as: 

            (3.10) 

Or: 

            (3.11) 

Where 0)(' tQ  and 0)(' tD  Note that )(')(')(' tQtDtR  . Hence, if the rate of 

production is less than the rate of discovery ( )(')(' tDtQ  ), reserves will increase 

( 0)(' tR ). Conversely, if the rate of production exceeds the rate of discovery, reserves will 

fall. The rate of change of reserves with respect to time is often called reserve additions 

although during the latter part of the production cycle (and perhaps during earlier periods) 

reserve additions are more likely to be negative („reserve subtractions‟). In the absence of 

either new discoveries or reserve growth at existing fields ( 0)(' tD ), reserves will be 

depleted at the rate of production ( )(')(' tQtR  ).  

As described in Thompson (2009a), reserves are typically estimated to three different levels 

of confidence, namely: proven (1P); proven and probable (2P); and proven, probable and 

possible (3P) (Bentley, et al., 2007).
20

. Hence, the appropriate interpretation of cumulative 

discovery estimates depends upon the particular definition of reserves that is being used. 

Depending upon the data available, it may be possible to estimate either cumulative proved 

discoveries ( P

tD1 ) or cumulative proved and probable discoveries ( P

tD2 ). In practice, 3P 

reserve estimates are very rarely available. 

As with production, both cumulative discoveries and the rate of discovery may be measured 

in terms of mass, energy equivalent or volume.
21

 
22

 

                                                 

20 If the estimates derive from same source we would expect that PPP RRR 321  , but this may not necessarily be the case if 

the estimates derive from different sources (Speirs and Sorrell, 2009). 
21 Complications can arise in classifying new discoveries as oil fields, since many oil fields also produced gas - and vice 

versa. While energy-equivalent units could be used to measure total hydrocarbon discoveries and production, this would not 

help in estimating the URR of liquid fuels in a region. 
22 Cumulative discoveries have also been measured in a variety of other ways, including: a) the total number of fields or 

reservoirs discovered; b) the number of giant fields discovered (Woods, 1985); c) the surface area of giant fields discovered 

(Menard and Sharman, 1975) and; d) the number of fields discovered by size category (with size being defined on either a 

volumetric or surface areas basis) (Arps and Roberts, 1958). These measures may be more or less useful depending upon the 

data available and the purpose at hand. However, the relationships identified above would no longer apply. 
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3.2.3 Backdated discovery estimates  

It is tempting to interpret the rate of discovery (D’(t)) as the rate of discovery of new fields, 

but this would be incorrect. As discussed in Section 2.4, the increase in cumulative 

discoveries over time derives from two sources:  

 the discovery of new fields through exploration; 

 reserve growth at existing fields through processes such as improved recovery, physical 

expansion and the discovery of new reservoirs. 

The relative contribution of reserve growth to the increase in cumulative discoveries in a 

region will depend upon a number of factors, including: reporting conventions; the particular 

definition of reserves being used; the physical characteristics of the region (e.g. onshore 

versus offshore); the degree of exploration maturity; technological change; and various 

political, economic and institutional influences (Cleveland, 1992b). Generally, the 

contribution of reserve growth to reserve additions may be expected to increase over time and 

play a more important role in the later stages of a region's development.  

The existence of reserve growth greatly complicates the analysis of the discovery cycle. 

However, it needs to be taken into account since additions to cumulative discoveries from 

reserve growth now exceed those from new discoveries in most of the world‟s oil producing 

regions. Also reserve growth is not confined to cumulative discovery estimates based upon 

1P reserves (Klett and Schmoker, 2003). 

To facilitate the analysis, it is helpful to introduce a measure of backdated cumulative 

discoveries (B). This is a function of both the time of discovery (td) and the time at which the 

estimate was made (t): B(td,t) with dtt  . Hence ttd
B ,  represents the cumulative discoveries 

contained in fields that were discovered before time td as estimated at a later time t. These 

estimates are made with the benefit of hindsight and are typically larger than the estimates 

made at the time of field discovery.  

Backdating the subsequent increase in the estimated field size to the time of discovery of that 

field (td) allows a more accurate estimate of what was „actually‟ found at a particular time. In 

contrast, cumulative discovery estimates (Dt) are not backdated and provide a poor guide to 

the quantity of resources found at a particular point in time. The relationship between 

cumulative discoveries and backdated cumulative discoveries is as follows: 

            (3.12) 

            (3.13) 

Backdated cumulative discoveries for any (td,t) can also be written as: 

            (3.14) 

Where ttd
Q ,  represents the cumulative production up to time t from the fields discovered 

before time td and ttd
R ,  represents the reported reserves for those fields as estimated at time t. 

As with cumulative discoveries, the appropriate interpretation of backdated cumulative 

discovery estimates will depend upon the particular definition of reserves that is being used 

(e.g. 1P, 2P or 3P). While backdated cumulative discovery estimates have some advantages 
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over cumulative discovery estimates, they require information on the date of discovery of 

fields, together with subsequent estimates of reserves and production for those fields. This 

information is not readily available in the public domain, although it is contained in industry 

databases such as that provided by IHS Energy. The use of backdated cumulative discovery 

estimates was pioneered by Hubbert (1967) and plays an important role in the estimation of 

URR through historical extrapolation techniques. 

3.2.4 Growth functions 

As indicated, the estimates of backdated cumulative discoveries ( ttd
B , ) will typically increase 

over time (t) as a result of reserve growth (i.e. tttt dd
BB ,,  ). The rate of change of 

backdated cumulative discovery estimates with respect to the time of the estimate is given by: 

            (3.15) 

A plot of ),(' ttB dt  versus t for a particular value of td represents a growth function. This may 

be interpreted as the change in the estimated size of fields discovered at time td that occurs in 

each subsequent time interval dt up until time t. While we would generally expect cumulative 

discovery estimates to increase over time ( 0),(' ttB dt ), in some cases and/or time intervals 

cumulative discovery estimates may decrease ( 0),(' ttB dt ). The growth function may be 

normalised and represented in terms of the interval of time )(  between discovery and the 

estimate ( dtt  ) as follows: 

            (3.16) 

For fields discovered at time td, a plot of ),( dtG  versus   represents the subsequent change 

in the estimated size of those fields relative to the initial estimate. An illustration was 

provided earlier in Figure 2.2. The rate of change of this function with respect to   is given 

by: 

            (3.17) 

Since there is a limit to how much fields can grow, we would expect 0),('  dtG  as 

 . However, reserve growth may persist for very long periods of time. For example, 

cumulative proved discovery estimates for US fields appear to be still growing after an 

interval ( ) of 70 years (Nehring, 2006a; b; d). 

Frequently, reserve growth is assumed to be independent of the time of discovery of a field 

(i.e. )(),(  GtG d   and )('),('  GtG d   for all td). But this implies that future reserve 

growth in recently discovered fields will be comparable to that observed in fields discovered 

many decades ago. Given the improvements in exploration and production technology that 

have occurred throughout the last century, this appears a rather questionable assumption. For 

example, it seems likely that modern seismic techniques will allow the size of newly 

discovered fields to be estimated more accurately than they were in the past. Similarly, since 

recovery factors have improved over time, the estimated reserves for a given estimate of the 
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oil in place should also have increased. If this is the case, the potential for future reserve 

growth in recently discovered fields may be comparatively smaller. 

3.2.5 The backdated discovery cycle  

As the time of discovery (td) increases, the estimates of backdated cumulative discoveries 

( ttd
B , ) will also increase as a result of new discoveries (i.e. tttt dd

BB ,,  ). The rate of change 

of backdated cumulative discovery estimates with respect to the time of discovery is given by: 

            (3.18) 

This is frequently termed the backdated rate of discovery, or more simply backdated 

discovery. A plot of ),(' ttB dtd
 versus td for a particular value of t represents a backdated 

discovery cycle. The estimated size of these discoveries will depend upon the time that the 

estimate was made (t) and hence upon the time interval between the discovery and the 

resource estimate ( dtt  ). Compared to a non-backdated discovery cycle (D’(t)), this 

permits a more accurate estimate of the size of resources that were discovered at a particular 

time, with the degree of accuracy being proportional to  . 

As before, let 
0dt  represent the date at which resources are first discovered in a region and let 

fdt  represent the date at which the rate of change of backdated cumulative discovery 

estimates with respect to the time of the estimate falls to zero (i.e. 0),(')('  ttBtD dt  for all 

fdtt  ). A plot of ),('
fddt ttB  against td represents the full backdated discovery cycle or the 

ultimate discovery cycle. This may be interpreted as a plot of the ultimately recoverable 

resources (URR) that were discovered in each time interval (dtd) up until time t. (i.e. the 

ultimate amount of oil that fields discovered at time td will eventually produce). 

The ultimately recoverable resource from fields that were discovered before time td (
fdd ttB , ) is 

then given by: 

            (3.19) 

Or, since 0),(' 
fdd ttB  for 

0dd tt   and 
fdtt  , the ultimately recoverable resource from 

fields that were discovered before time td ( ,dt
B ) may be written as: 

            (3.20) 

The total cumulative discovery over the full discovery cycle ( ,B ) is then given by: 

            (3.21) 

Where   DB ,  represents all the oil that will ultimately be discovered in the region. This 

is equal to the ultimately recoverable resource (URR) for the region. 
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In the empirical literature, unadjusted estimates of ttd
B ,  are sometimes referred to as the 

„ultimate‟ resources contained in fields that were discovered before time td. Similarly, 

unadjusted estimates of ttd
B ,'  are sometimes referred to as the „ultimate‟ resources that were 

found at time td. Both of these statements are incorrect since they neglect the potential for 

future reserve growth in these fields. In practice,  ,, dd ttt BB  and  ,, ''
dd ttt BB . In other 

words, at any point in time (t), backdated cumulative discovery estimates will typically 

underestimate the ultimately recoverable resources found at or before td. For similar reasons, 

cumulative discovery estimates (Dt) will typically underestimate the cumulative resources 

discovered through to time t. 

In both cases, the amount of underestimation will depend upon the length of time since the 

relevant fields were discovered ( dtt  ). If this interval is relatively long, ttd
B ,  and ttd

B ,'  

may provide relatively accurate estimates of ,dt
B  and ,'

dt
B  since most of the reserve growth 

will have occurred. Conversely, if this interval is relatively short, they may provide relatively 

poor estimates since most of the reserve growth is still to occur. For any (td,t), estimates of 

ttd
B ,  represent the sum of reserve estimates from fields that were discovered at different 

times (i.e. at any time between 
0dt  and dt ) and hence have experienced different amounts of 

reserve growth (i.e. different values of dtt  ) As a result, plots of )( dtB  and )(' dtB  for a 

given t can potentially be misleading since the sizes of fields discovered at different times (td) 

have not been estimated on a consistent basis. Despite its importance, this point does not 

appear to be widely recognised. 

To provide a more accurate estimate of ultimately recoverable resources, the ),(' ttB d  

estimates may be adjusted to allow for future reserve growth using an estimated growth 

function (Equation 3.16). Assuming first, that the growth function is independent of the time 

of discovery ( )(G ), and second that that a sufficiently long time series is available to allow 

)(G  to be estimated, the relevant formula is: 

            (3.22) 

Where dtt   and dtt  . Hubbert (1967) was one of the first authors to make such an 

adjustment. It is important to note that, in absence of backdated discovery estimates, 

estimates of D’(t) cannot be adjusted in this way since dates of discovery of the individual 

fields are not recorded. This suggests that such estimates may provide a less reliable means of 

estimating URR, unless the discovery process is well advanced ( 0)(' tD ) so that future 

reserve growth is expected to a small. Moreover, estimates of D’(t) will not provide a reliable 

guide to the „actual‟ quantity of resources that was discovered at a particular time (t). 

Whether this is a drawback or not is a matter of debate. 

3.2.6 Discovery as a function of effort 

The previous sections have considered discovery as a function of time. This has 

disadvantages, however, as the rate of discovery will be influenced by a variety of economic 

and political factors which could invalidate the extrapolation of historical trends. For 

example, the rate of discovery may fall as a result of economic recession rather than through 

depletion of the underlying resource. An alternative approach is to consider cumulative 

discovery and the rate of discovery as a function of some measure of effort ( ) - for example, 
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the number of exploratory wells drilled. In principle, these measures should be less sensitive 

to economic and political influences: for example, a recession could reduce exploratory 

activity as well as the number of new discoveries, with the result that the rate of discovery per 

unit of effort could remain relatively unchanged. However, there seems no reason to assume 

that such measures are “highly insensitive” to economic and political influences as Hubbert 

(1982) claimed. 

Let )(D  represent the total amount of oil discovered for a cumulative level of effort (  ). 

The rate of change of cumulative discovery with respect to effort is then given by: 

            (3.23) 

As effort increases, the rate of addition to cumulative discoveries should fall as a result of 

physical depletion of the resource. However, a variety of other factors will influence the 

trend, including technologies that increase the success rate of exploratory drilling. As 

exploration and development exhausts the resources in a region, the rate of addition to 

cumulative discovery will fall to zero ( 0)(' D ) and cumulative discoveries will approach 

the URR for the region (  DD ). 

In a similar manner, backdated cumulative discoveries (B) may be expressed as a function of 

the cumulative level of effort through to the point of discovery ( d ) and the time at which the 

estimate was made (t): ),( tB d . Hence td
B ,  represents the cumulative discoveries contained 

in fields that were discovered through to cumulative effort d  as estimated at time t.  

The rate of change of backdated cumulative discovery estimates with respect to cumulative 

effort is then given by: 

            (3.24) 

This may also be termed the backdated rate of discovery with respect to effort. A plot of 

),(' tB dd
  versus 

d  for a particular value of t represents a backdated discovery cycle with 

respect to effort. The estimated size of ),(' tB dd
  will depend upon the time at which the 

estimate is made (t) and hence upon the interval between the discovery and the resource 

estimate ( dtt  ).  

As before, let 
fdt  represent the date at which the rate of change of backdated cumulative 

discovery estimates with respect to the time of the estimate ( ),(' tB dt  falls to zero. Then, a 

plot of ),('
fd dd tB   against d  represents the full backdated discovery cycle with respect to 

effort or the ultimate discovery cycle with respect to effort. This may be interpreted as a plot 

of the ultimately recoverable resources (URR) that were discovered in each effort interval 

( dd ) up until time 
fdt . (i.e. the ultimate amount of oil that will eventually be produced from 

the fields discovered at effort d ). A commonly used term for this is the yield. The full 

backdated discovery cycle with respect to effort ),('
fd dd tB   is then referred to as the yield 

per effort (YPE) curve (Cleveland, 1992b).  
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Note that the term yield is strictly only applicable if 
fdtt   and 0),(' tB dt  . If instead 

fdtt   and 0),(' tB dt   the yield will be underestimated. To provide an accurate estimate of 

yield, the estimates of ),(' tB dd
  should be adjusted to allow for future reserve growth:  

            (3.25) 

Where dtt   and td represents the time coinciding with cumulative effort d . The 

ultimately recoverable resource over the full backdated discovery cycle with respect to effort 

is then given by: 

            (3.26) 

Hubbert (1967) pioneered the analysis of yield per effort, using data on backdated cumulative 

discoveries in the US, which he adjusted for future reserve growth. His measure of effort was 

the cumulative length (in feet) of exploratory drilling. This was aggregated in units of 10
8
 

feet, a quantity subsequently termed a „Hubbert Unit‟ (Cleveland and Kaufmann, 1991; 

Haun, 1981). Since this measure of effort is a product of the number and depth of exploratory 

wells, it captures both the vertical and horizontal dimension of oil exploration – including the 

technical advances that permitted drilling at greater depths. However, this information is not 

recorded for all regions of the world and is rarely available in the public domain. Other 

authors have used alternative measures of effort, including: 

 the total number of exploratory wells drilled („new field wildcats‟ or NFW) (Laherrère, 

2002a; Ryan, 1973); 

 the number of successful exploratory wells drilled (i.e. excluding „dry holes‟) (Moore, 

1962); 

 the cumulative length of successful exploratory wells (Stitt, 1982);  

 the cumulative length of all wells drilled (exploratory and development) (Cleveland, 

1992b); and 

 the cumulative number of discovered fields. 

The first of these measures is most widely cited, since it has been popularised by Campbell 

and Laherrère (1995) and the relevant data is available in the IHS database. Campbell and 

Laherrère also followed Hubbert and other authors in using exploratory drilling activity as 

their main explanatory variable. However, this is potentially misleading since much of the 

increase in cumulative discoveries derives from development drilling activity at existing 

fields - which contributes to reserve growth.
23

 Moreover, even when data is available, there 

may be ambiguities and inconsistencies in classifying different types of drilling activity - for 

example, when previously separate fields are merged into a single larger field (Drew, 1997). 

In these circumstances, it may be better to employ a measure of total drilling activity as the 

explanatory variable - as used, for example by Cleveland (1992b). There are also difficulties 

                                                 
23 The IHS database contains information on the number of development wells drilled and hence allows a measure of total 

trading activity to be used as the explanatory variable. 
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with accounting for the delays between successful drilling activities and the subsequent 

additions to resource estimates (Rt) (Byrd, et al., 1985).
24

  

One issue that appears to be neglected in the literature is the allocation of exploratory activity 

between oil and gas resources. The data sources used by Campbell and others simply record 

total exploratory activity for relatively aggregate regions and do not distinguish between the 

search for oil and the search for gas. This may follow from the fact that individual fields 

frequently produce both. However, the opening up of a new, predominantly gas-producing 

region in a region may lead to a major increase in the exploratory activity for a country, with 

little or no increase in discovered oil resources (or vice versa). If so, this could seriously 

distort the time series for discovery over effort ( ),(' tB d ) for oil. Note that the same problem 

does not occur with a time-series for discovery over time ( ),(' ttB d ). Moreover, even if a 

time-series does allow the exploration of oil and gas to be distinguished, there may still be 

difficulties in allocating „dry holes‟ between oil and gas fields and the results may be 

sensitive to the particular method that is used.  Hence, there are some technical issues 

associated with the definition and measurement of exploratory effort, the importance of 

which is not always acknowledged. 

3.2.7 Summary of explained and explanatory variables 

Curve-fitting models utilise a number of different definitions for explained and explanatory 

variables. In particular, this involves choices between: 

 production versus discovery measures; 

 cumulative versus rate of change measures; 

 time versus effort measures; and 

 current versus backdated measures of discovery. 

There are also additional complications, such as the appropriate definition and measurement 

of exploratory effort. In practice, the available choices will be greatly constrained by data 

availability. 

This section has classified the different extrapolation methods in terms of their choice of 

explained and explanatory variables and clarified the mathematical relationship between 

these variables. The different options are summarised in Table 3.3. 

While the analysis of production trends is relatively straightforward, the analysis of discovery 

trends (whether measured with respect to time or effort) is greatly complicated by reserve 

growth. As a result, measures of the rate of discovery do not necessarily correspond to the 

amount of new discoveries. While the use of backdated discovery estimates can help in this 

regard, this is only possible if the relevant information is available (i.e. the date of discovery 

of fields, together with the cumulative production and declared reserves of those fields). Even 

then, the estimates should ideally be adjusted to allow for future reserve growth. If, as is 

                                                 
24 For example, the discovery well for Prudhoe Bay in Alaska was drilled in 1967, but the reserves were not added to official 

estimates until 1970 (Cleveland, 1992b). 
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frequently the case, such an adjustment is not made the associated extrapolation techniques 

may underestimate the URR. 

The following sections described the curve fitting techniques in more detail. Section 3.3 

describes the production over time techniques, while Sections 3.4 and 3.5 do the same for the 

discovery over time and discovery over effort techniques respectively. In each case, the aim is 

to describe the techniques, identify their historical origins and contemporary application, 

clarify some relevant methodological issues and highlight their strengths and weaknesses. 

While many issues are common to all the techniques, there are others which are specific to 

each. Discovery process models are discussed separately in Section 3.6. 

Table 3.3 Classification of curve-fitting methods by explained and explanatory variables – 

notational summary 

Group Method  Explained 

variable 

Primary 

explanatory 

variable 

Production 

over time 

Cumulative 

production 

projection 

 )(tQ  t  

 Rate of production 

projection 

 )(tQ  t  

 Rate of production 

decline curve 

 )(' tQ  )(tQ  

Discovery 

over time 

Cumulative 

discovery 

projection 

Current 

Backdated 
)(tD  

),( ttB d  

t  

dt  

 Rate of discovery 

projection 

Current 

Backdated 
)(' tD  

),(' ttB dtd
 

t  

dt  

 Rate of discovery 

decline curve 

(time) 

Current 

Backdated 
)(' tD  

),(' ttB dtd
 

)(tD  

),( ttB dtd
 

Discovery 

over effort 

Creaming curve Current 

Backdated 
)(D  

),( tB dd
  

  

d  

 Yield per effort 

curve 

Current 

Backdated 
)(' eD  

),(' tB dd
  

  

d  

 Rate of discovery 

decline curve 

(effort) 

Current 

Backdated 
)(' tD  

),(' ttB dtd
 

)(D  

),( dtd
B  

3.3 Production over time techniques 

The simplest, although not necessarily the most reliable method of estimating URR relies 

upon time-series data on either cumulative production (Q(t)) or the rate of production (or 

more simply production - Q’(t)). Typically, a curve is fit to this data using non-linear 
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regression techniques.
25

 This curve may take a variety of functional forms with its shape 

being defined by three or more parameters, one of which corresponds to the URR. 

A very similar approach is frequently used to forecast future production and to identify the 

date of peak production. With this approach, assumed values for the URR are used to 

constrain the shape of the curve and hence the estimated parameter values. In contrast, when 

using such an approach to estimate the URR, the curve-fitting is constrained only by the 

assumed functional form and the historical data. The following section summarises the origin 

of the production projection technique, the use of the standard „logistic‟ model for cumulative 

production and the use of both alternative functional forms and multi-cycle models. Section 

3.3.2 describes the closely related technique of production decline curves - which is 

frequently referred to as „Hubbert Linearisation‟. 

3.3.1 Production projection 

3.3.1.1 Origins of the technique 

Production projection has its origins in a seminal paper by Hubbert (1956) in which he used 

assumed URR values in conjunction with time-series data on US oil production to forecast 

the future US production cycle (Q’(t)), including in particular the date of peak production. 

Hubbert‟s URR assumptions were based upon industry estimates and ranged from 150 to 200 

billion barrels – which compared to cumulative production of 52.4 billion barrels through to 

1956 and proved reserves of 30 billion barrels. Using simple graphical techniques, Hubbert 

fitted a curve to historical data on annual US oil production and projected this forward under 

the assumption that production must eventually decline exponentially and the area under the 

curve must equal the assumed URR. The result is illustrated Figure 3.1. Hubbert subsequently 

observed that, given these constraints, “…. it became impossible to draw this curve very 

differently from the way it is shown.” (Hubbert, 1982).
26

  

                                                 
25 These are discussed further in Section 5. A very accessible guide to such techniques is provided by Motulsky and 

Christopoulos (2004b). With modern computer technology and software packages, non-linear regression is relatively 

straightforward. However, this was not the case for much of Hubbert‟s lifetime. The earlier literature therefore uses simpler 

methods, including in particular the linear transformation of the relevant functional form followed by a linear regression 

(Deffeyes, 2003).  

26 Hubbert‟s approach was strongly influenced by the concept of a life cycle for mineral industries, first advanced by Hewett 

(1929). Hewett argued that the time path of production will follow a life cycle, involving initiation, rapid increase, levelling 

off, decline and eventual exhaustion. Hubbert called this "a truly great paper, one of the more important papers ever written 

by a member of the US Geological Survey." 
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Figure 3.1 Hubbert’s 1956 projection of the forthcoming peak in US oil production 

 

On the basis of this curve, Hubbert famously forecast that US (lower 48) oil production 

would reach a peak sometime between 1965 and 1971. Since this forecast ran counter to the 

prevailing optimism about the future of the US oil industry, it proved highly controversial 

(Bowden, 1985).
27

 In 1956, it was estimated that less than half of the recoverable oil in the 

US had been discovered and less than one third had been produced. Also, annual discovery 

rates significantly exceeded the rate of production and both exploration and production 

technologies were improving rapidly. Hence, while Hubbert's URR assumptions were widely 

accepted, their implications for the future production cycle were poorly appreciated (Hubbert, 

1959). Hubbert‟s paper provoked a debate about US oil resources that continued until the 

1970s. When US production peaked in 1971 and began its long decline, many commentators 

considered Hubbert‟s approach to have been validated (Strahan, 2007b). 

Shortly after the publication of Hubbert‟s paper, the industry consensus on URR estimates 

evaporated. Numerous commentators disputed Hubbert‟s approach and a series of more 

optimistic estimates of URR began to appear. Most famously, the USGS estimated a value of 

580 billion barrels for the lower 48 states, based upon forecasts of future drilling activity 

(Zapp, 1961).
28

 Such discrepancies motivated Hubbert to develop more formal methods to 

estimate URR, using historical data on oil production and discovery. Hubbert developed and 

applied several such techniques between 1962 and 1982, of which production projection was 

the first. All of these produced estimates for the US in the range 150-200 billion barrels.  

3.3.1.2 The logistic model 

Hubbert‟s first empirical estimate of URR was made by fitting a logistic curve to time-series 

data on cumulative production (Q(t)) and cumulative discoveries (D(t)) in the US (Hubbert, 

1962).
29

 The logistic curve was introduced by Verhulst in 1838 and was later popularised in 

mathematical biology by Lokta (1925). In the case of oil production, the use of logistic curve 

                                                 
27 As an illustration, Hubbert‟s employer (Shell) required changes to be made to the paper, with specific predictions about 

the future of the oil industry being replaced with much vaguer statements (Bowden, 1985). 
28 The study concluded that: “….the size of the resource base would not limit domestic production capacity in the next 10-20 

years at least and probably [not] for a much longer time” 
29 Hubbert (1962) was one of a number of reviews of natural resources policy commissioned by President Kennedy. 

Hubbert's primary interest was the determination of the future date of maximum oil production.  
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implies that cumulative production will initially grow exponentially, but as the URR is 

approached, production (Q’(t)) will fall and eventually decline to zero. 

Exponential growth may be represented as follows: 

            (3.27) 

Which may be solved to yield: 

            (3.28) 

The logistic curve modifies exponential growth with a „feedback‟ term that slows the rate of 

production (Q’(t)) as the URR is approached: 

            (3.29) 

With this formulation, when 0)( tQ , 1)(' tQ  and as QtQ )( , 0)(' tQ . This leads to 

a sigmoidal, or elongated S-shaped growth trajectory, tending to an asymptope as t  

which represents the URR (Meyer, et al., 1999). Equation 3.29 can be solved analytically to 

yield:  

           (3.30) 

In this formulation
30

 the logistic curve is defined by three parameters, Q , a and mt . The first 

( Q ) represents the ultimately recoverable resource, while the second (a) represents the 

„steepness‟ of the cumulative production curve. Parameter a is sometimes replaced by 

C/)81ln( , where C specifies the time required for cumulative production to grow from 10% 

to 90% of the URR (the „characteristic duration‟). The parameter tm specifies the time when 

cumulative production reaches one half of the URR ( )*5.0
mt

QQ  ), or the midpoint of the 

growth trajectory. At this point production is at a maximum - given by 4/)*)('( aQtQ m  . 

A key assumption of the logistic model is that the production cycle is symmetric about this 

midpoint. Figure 3.2 illustrates a logistic cumulative production cycle, with a characteristic 

duration of 17 years and an URR of 600 Gb.  

                                                 
30 There are a variety of alternative formulations of the logistic function in the depletion literature (and in the growth 

literature more generally) although they all take the same general form. For example, Hubbert (1982) uses 
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Figure 3.2 Logistic model of cumulative production cycle  
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An expression for production over time (Q’(t)) can be obtained by differentiating Equation 

3.30: 

 

            (3.31) 

The resulting „bell shaped‟ production cycle is illustrated in Figure 3.3. The shape of this 

curve is determined by the same three parameters ( Q , a and tm) as the cumulative 

production cycle, with tm defining the time at which production reaches a peak. It is 

interesting to note that the (hand drawn) curve that appeared in Hubbert‟s 1956 paper has a 

„wider‟ top than suggested by the above formula (Laherrère, 2000b). Also, while a bell 

shaped production cycle is commonly referred to as a ‘Hubbert curve’, Hubbert repeatedly 

stated that a production cycle need not take this form: 

“…The complete cycle curve has only the following essential properties: the production rate 

begins at zero, increases exponentially during the early period of development and then slows 

down, passes one or more principal maxima, and finally declines negative-exponentially to 

zero. There is no necessity that the curve, P as a function of t, have a single maximum or that it 

be symmetrical. In fact, the smaller the region the more irregular in shape is the curve likely to 

be....” (Hubberrt, 1982, emphasis added) 
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Figure 3.3 Logistic model of production cycle 
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Using nonlinear regression techniques, the ultimately recoverable resource ( Q ) may be 

estimated by either fitting Equation 3.30 to historical data on cumulative production or by 

fitting Equation 3.31 to historical data on production.
31

 In principle these approaches should 

give broadly equivalent results, but in practice the results can be significantly different 

(Carlson, 2007a). The usefulness of such techniques may be expected to depend in part upon 

the length of time-series available. Estimates of URR from production projections will be 

more reliable if production has passed its peak (i.e. ( mtt  ) and can only be obtained if the 

rate of increase of production (i.e. ))('' tQ  has past its peak. This corresponds to the point of 

inflection on the rising production trend ( )0)(''',0)('',0)('  tQtQtQ .  

As illustrated in Figures 3.4 and 3.5, the US production cycle fits the logistic model relatively 

well, despite covering a period that includes two world wars, several recessions, two oil 

shocks and revolutionary changes in exploration and production technologies. This helps 

explain why the US experience is so widely quoted. The logistic model now suggests a URR 

for crude oil and natural gas liquids (NGLs) combined of 257 Gb, which compares to 

cumulative production through to 2007 of 227 Gb, of which approximately 197 Gb was crude 

oil. Hence, 25 years after Hubbert's last paper, cumulative production of crude oil in the US 

was 21% higher than his last estimate of URR. Hubbert‟s logistic model provided no means 

of anticipating the subsequent development of the deep-water resources of the Gulf of 

Mexico, which now account for a large fraction of US production and URR.  

In contrast to the US, the logistic model provides a relatively poorly approximation to the 

cumulative production cycle for other producing regions - perhaps in part because production 

derives from a smaller population of fields (Brandt, 2007).
32

 This has led researchers to 

investigate the use of alternative functional forms to model cumulative production as well as 

multi-cycle models. These are discussed below.  

                                                 
31 An alternative (rarely used) employs the second order differential – the rate of change of production (Q’’(t)). 

32 Hubbert (1962; 1982) emphasised that the technique works best for a large region such as the United States.   
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Figure 3.4 A fit of the logistic model to US cumulative production data (crude oil +NGLs) 
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Figure 3.5 A fit of the logistic model to US production data (crude oil +NGLs) 
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3.3.1.3 Alternative functional forms  

It seems likely that Hubbert chose a logistic equation to model cumulative production 

because it was analytically straightforward. In fact, the logistic model is one of a family of 

„sigmoidal‟ (S-shaped) curves that are widely employed in biology and other disciplines to to 

simulate growth processes (Meade, 1984; Tsoularis and Wallace, 2002). Alternative growth 

models include the generalised logistic (Nelder, 1971), the Bass (Bass, 1969) and the bi-

logistic (Meyer, 1994) as well as a variety of functions derived from probability theory, 

including the cumulative Cauchy, Weibull and lognormal distributions (Meade, 1984).
33

 

However, only a subset of these has been applied to the study of oil depletion. 

                                                 
33 All cumulative density functions are monotonically increasing between zero and unity and many approach unity 

asymtopically. 
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One commonly cited alternative, which also assumes a symmetric production cycle, is the 

cumulative normal (or cumulative Gaussian) distribution (Brandt, 2007; Deffeyes, 2003). For 

example, Bartlett (2000) fits an normal distribution to US production (Q’(t)) data to estimate 

a URR of 222 billion barrels. The corresponding equation for cumulative production (Q(t)) is:  

            (3.32) 

Where tm represents the time of peak production and   is a „width‟ parameter equivalent to 

the standard deviation. The resulting cumulative production curve is illustrated in Figure 3.6 

for a region with tm=25, 10  and a URR of 600 Gb. For the same peak year (tm) and URR, 

the corresponding production curve (Q‟(t)) is slightly wider than the logistic around the 

midpoint and narrower on the flanks. 

Figure 3.6 Cumulative normal model of cumulative production cycle 
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Both the cumulative normal and the logistic distribution are symmetric about tm. But there are 

a variety of reasons for expecting the production cycle to be asymmetric. For example, a 

highly skewed field size distribution (Section 2.5) could lead to a rapid decline in production 

after the peak as the large fields that dominate production are depleted. Conversely, 

techniques such as enhanced oil recovery may act to slow the decline. A symmetrical 

production cycle also appears poorly supported by real-world experience. In the most 

systematic study to date, Brandt (2007) analysed 74 oil producing regions that were past their 

peak of production and found that the rate of production increase exceeded the rate of decline 

in over 90% of cases – in other words, most production cycles were asymmetric to the left.
34

  

These observations have led a number of authors to employ asymmetric functional forms to 

model cumulative production cycles. One of the most widely cited is the Gompertz function, 

defined as follows: 

                                                 
34 Brandt (2007) found that the median rate of decline (2.6%) was approximately 5% less than the median rate of increase 

(7.8%) for 67 out of 74 post-peak regions fit with an exponential model. This analysis suggests that production profiles tend 

to be slightly asymmetric, with slower rates of decline than rates of increase. Since the mean rate of decline (4.1%) was 

significantly less than the production-weighted mean (1.9%), Brandt‟s results also suggest that decline is slower in larger 

regions. 
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            (3.33) 

This leads to a cumulative production cycle with a point of inflection around 35- 40% of the 

URR (Figure 3.7), implying a production cycle with a rate of decline that is slower than the 

rate of increase (as Brandt‟s work suggests). As with the logistic, the Gompertz function is 

defined by only three parameters and the degree of asymmetry is fixed. Moore (1962) fitted a 

Gompertz function to the same US production data as used by Hubbert and arrived at an URR 

estimate that was almost twice as large for a comparable goodness of fit. To Ryan (1966), this 

demonstrated the limitations of the technique: 

“The fact that the Gompertz curve, like the logistic, fits historical data quite well is scarcely 

surprising. Both the Gompertz and the logistic curves are monotonically increasing for relevant 

values of the parameters. Since each has three disposable constants, either one should give a 

reasonable fit to most monotonically non-decreasing functions such as cumulative oil 

production. The fact that such flexible curves appear to fit historical data well does not, 

therefore, provide a sound basis for long-term extrapolation. There are many different 

functional forms which would approximate the historical series reasonably well but which give 

widely varying estimates of ultimate recoveries.” (Ryan, 1966) 

Figure 3.7 Gompertz model of a cumulative production cycle 
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Other asymmetric functional forms employed in the oil depletion literature include: 

 Asymmetric normal: Brandt (2007) used an asymmetric version of the normal curve in 

which the   parameter for t<tm is different to that for t>tm and gradually shifts from one 

to the other in the region of tm.  

 Asymmetric exponential: Wood, et al (2003) assumed exponential growth until the ratio 

of URR to production fell to a specified threshold level, at which point production 

declined exponentially at a rate sufficient to keep this ratio constant.
35

  

 Asymmetric bell shaped: Kaufmann and Shiers (2008) simulate a variety of future global 

production cycles using an iterative set of equations in which values of URR are assumed, 

together with the initial production growth and decline rates 

                                                 
35 This assumption has little theoretical or empirical support and the model leads to implausibly sharp production peaks 

followed by extremely rapid declines in production. 
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The three studies quoted above focus on forecasting the peak year of production (tm) using 

assumed values of URR. Provided that the rate of increase of production (Q’’(t)) has passed 

its peak, the same functional forms may be used to estimate the URR. However, a variable 

degree of asymmetry implies a more complex model with additional parameters which may 

be difficult to justify on statistical grounds. This issue is discussed further in Section 4. 

3.3.1.4 Multi-cycle models 

Cumulative production cycles often have more than one point of inflection, corresponding to 

production cycles with more than one peak in production (Laherrère, 2000b). This behaviour 

may result from economic, technical or political disruptions, such as the reduction in UK oil 

production following the 1988 Piper Alpha disaster, or it may result from the opening up of a 

new oil producing region, such as Alaska in the US. This possibility was first recognised by 

Hubbert (1956), who noted that Illinois had experienced two discovery cycles as a 

consequence of changes in exploration technology (rather than the opening up of a new 

region), leading subsequently to two production cycles. Indeed, Laherrère (2004) has 

observed that most countries appear to have several cycles of exploration activity and then of 

production.  

This suggests that the full production cycle could potentially be more accurately modelled 

using two or more curves. Ideally, each curve would represent the production of resources 

from a geologically homogeneous region with a corresponding URR. The cumulative 

production cycle for the aggregate region would then be formed from the sum of these 

individual curves:  

            (3.34) 

Similarly, the aggregate URR would be derived from the sum of the URR estimates for the 

individual curves. Several authors have followed this approach, including Patzek (2008), 

Mohr and Evans (2007) and Imam, et al (2004). Meyer, et al. (1999) have developed a formal 

approach for decomposing a time-series into the sum of an arbitrary number of logistic curves 

(„loglet analysis‟) which could potentially be applied to oil depletion.
36

 However, the use of 

multi-cycle models raises similar statistical issues to the use of more complex functional 

forms. 

3.3.2 Production decline curves 

As an alternative to modelling the growth in production over time, it is possible to model 

production as a function of cumulative production. This leads to an alternative approach to 

estimating URR that is closely related to the decline curve analysis used by reservoir 

engineers to model the production decline of individual wells or fields. This section first 

describes the „aggregate‟ approach developed by Hubbert and then clarifies its relationship to 

the analysis of production decline in individual fields. 

3.3.2.1 ‘Hubbert Linearisation’ 

Hubbert (1982) notes that:  

                                                 
36 The application of this approach to the estimation of URR has so far been confined to „peak oil‟ websites (e.g. 

http://www.theoildrum.com/story/2006/9/3/113719/7594). However, Kemp and Kasim (2005) have applied the technique to 

model production decline rates from individual fields. 
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“…..A difficulty in analysing either P or Q as a function of the time arises from the asymptopic 

approaches of these quantities to their respective limits as time increases without limit. On the 

other hand, Q has the definite finite limits of 0 and Q . It is convenient, therefore, to consider 

the production rate dQ/dt as a function of Q rather than of time. In this system of the 

coordinates, dQ/dt is zero when Q=0 and when QQ . Between these limits dQ/dt >0 and 

outside the limits, equal to zero.” 

The simplest functional form for the relationship between production (Q’(t)) and cumulative 

production (Q(t)) that will meet these boundary conditions is a second-degree (parabolic) 

equation: 

            (3.35) 

By applying the boundary conditions, Hubbert arrives at the following equation for the 

relationship between Q’(t) and Q(t): 

 

            (3.36) 

As shown in Figure 3.8, this is the equation of a parabola. If this provides a poor 

approximation to the observed data, higher order terms may be required in the polynomial. 

However, if it provides a reasonable approximation, Equation 3.36 may be transformed as 

follows: 

 

            (3.37) 

Equation 3.37 states that the ratio of production to cumulative production is proportional to 

the fraction of resource remaining to be produced (  QtQ /)(1 ). This is the equation of a 

straight line, with a slope of (  Qb / ) intersecting the vertical axis at b and the horizontal 

axis at Q  (Figure 3.9). Hence, given historical production data for a region, the URR ( Q ) 

may be estimated by plotting Q‟(t)/Q(t) as a function of Q(t) and fitting a linear regression to 

estimate the parameters b and Q . This straightforward technique has been popularised by 

Deffeyes (2003) and has become known as Hubbert Linearisation (HL). Figure 3.10 

illustrates the application of this approach to US production data. Early in the production 

cycle the data shows considerable scatter, but after cumulative production exceeds 50Gb 

(corresponding to the mid-1950s) it settles down into an approximate straight line. Fitting a 

linear regression to this data leads to an estimate of 260Gb for the URR, which is comparable 

to that estimated from the production projection (Section 3.3.2).  

)()()(' 2 tcQtbQtQ 











Q

tQ
tQbtQ

)(
)()('

2











Q

tQ
b

tQ

tQ )(
1

)(

)('



 

 

57 

57 

Figure 3.8 Production versus cumulative production as an idealised parabola 
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Figure 3.9 ‘Hubbert Linearisation’ of parabolic relationship between production and 

cumulative production 
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Figure 3.10 Hubbert Linearisation of US oil production  
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Hubbert first applied production projection in the early 1960s and only described the 

linearisation method much later. But in his comprehensive synthesis of extrapolation 

techniques, Hubbert begins with an assumed parabolic relationship between production 
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(Q’(t)) and cumulative production (Q(t)) (Equation 3.36) and uses this as a basis for deriving 

an equation for cumulative production over time (Q(t)) (Hubbert, 1982). By a process of 

substituting variables and integrating with respect to time, Hubbert eventually arrives at a 

version of the logistic equation: 

 

            (3.38) 

Where 000 /)( QQQN    and 0Q  is the value of cumulative production for the first data 

point that is available. While Hubbert referred to the logistic equation as early as 1959, it was 

not until 1982 that he provided this formal derivation.
37

 Hence, the logic by which the 

technique is presented in his 1982 paper may not necessarily reflect the sequence through 

which it was developed. 

From Hubbert‟s work, it is clear that the assumption that Q(t) takes a logistic form (Equation 

3.38) is equivalent to the assumption of a parabolic relationship between Q‟(t) and Q(t) 

(Equation 3.36) which in turn is equivalent to the assumption of a linear relationship between 

Q‟(t)/Q(t) and Q(t) (Equation 3.37). Hence, if Q(t) departs significantly from a logistic form, 

then a linear regression of Q‟(t)/Q(t) against Q(t) is likely to provide a relatively poor 

approximation to the data. Deffeyes (2003) demonstrates that, if Q(t) takes a cumulative 

normal form (which is very close to a logistic) the relationship between Q‟(t)/Q(t) and Q(t) 

should be approximately linear through the latter part of the production cycle (i.e. once 

production is close to or past peak). But if Q(t) is better approximated by other functional 

forms (e.g. the Cauchy or Gompertz), the „Hubbert Linearisation‟ technique is unlikely to be 

reliable.  

Hubbert Linearisation (HL) has proved very popular over the last few years, in part because 

production data is readily available and linear regression is relatively straightforward.
38

 But 

in principle the technique is equivalent to non-linear regression of cumulative production 

against time assuming a logistic functional form. While analogous techniques are employed 

in population biology,
39

 this does not remove concerns about the consistency of technique or 

its statistical robustness (Section 5).  

3.3.2.2 Decline curve analysis 

Although Hubbert did not make the connection, the linearisation technique is closely related 

to decline curve analysis, which has long been used by reservoir engineers to project the 

future production of individual oil wells and fields (Ahmed, 2006; Arps, 1945; 1956; Miller, 

et al., 2009). As with production projection, decline curve analysis is based upon the 

assumption that past production trends and their controlling factors will continue into the 

future and can therefore be extrapolated using simple mathematical expressions. Decline 

curves project the future rate of production (Q’(t)) from a field or well once it has past its 

peak of production – which is normally relatively early in the field‟s life (Bentley, et al., 

2000).  

                                                 
37 While Hubbert integrates Equation 3.35 to derive Equation 3.38, Deffeyes (2003) reverses the process and differentiates 

Equation 3.38 to derive Equation 3.35. The latter approach is rather easier to follow.  

38 Numerous examples are to be found on „peak oil‟ web sites such as the Oil Drum. 

39 Deffeyes (2003) cites Smith (1963) as an early source. 
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Decline curves are normally characterised by three parameters: the initial production rate, the 

curvature of decline and the rate of decline. In a classic paper on the topic, Arps (1945) 

proposed three functional forms to model curvature, namely the exponential, harmonic and 

hyperbolic - with the first two being special cases of the third (Towler and Bansal, 1993). 

Subsequent authors have introduced additional functional forms, as well as developing more 

statistically robust approaches to estimation and prediction (Chang and Lin, 1999) and 

improving the theoretical basis of the technique (Li and Horne, 2007). However, it remains a 

largely „curve-fitting‟ exercise in which the appropriate choice of functional form is likely to 

vary from one circumstance to another. 

Exponential (i.e. constant percentage) decline is the simplest functional form and the one 

most widely used. It may be represented as: 

            (3.39) 

Where '0Q  represents the level of production when it begins to decline (at t=0) and b is the 

decline rate. Integrating with respect to time and rearranging leads to:
40

 

            (3.40) 

Equation 3.40 states that the production is proportional to the amount of resource remaining 

to be produced ( )(tQQ  ). This is the equation of a straight line, with a slope of b  

intersecting the vertical axis at b and the horizontal axis at Q . Hence, if production from a 

field exhibits approximately exponential decline, the URR for that field may be estimated by 

plotting the rate of production against cumulative production, fitting a linear regression and 

extrapolating this regression until it crosses the Q(t) axis.  

Figure 3.11 illustrates the application of this technique to the Forties field in the North Sea, 

leading to an estimated URR of approximately 420 million m
3
. Figure 3.12 illustrates the 

corresponding production cycle (Q’(t)). A notable point is that the introduction of enhanced 

oil recovery techniques for this field in 1986 appears to have only temporarily increased 

production without having a significant impact on the URR. Similar patterns are observed in 

the Yates field in Texas and at Prudhoe Bay in Alaska, where EOR appears to have increased 

production at the expense of steeper decline rates in later years (Gowdy and Roxana, 2007). 

Whether this conclusion applies more generally is a topic of dispute. 

                                                 

40 Integrating with respect to time gives: ce
b

Q
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Figure 3.11 Linearisation of exponential production declined for the UK Forties field 

 

Source: Gowdy and Roxana (2007) 

Figure 3.12 Production cycle of theUK Forties field 

 

Source: Gowdy and Roxana (2007) 

Laherrère (2001a; 2004) has applied this technique to large fields around the world to derive 

„bottom-up‟ estimates of the URR of those fields. This forms part of the URR of the 

corresponding region, but an estimate of regional URR must also take into account the URR 

for smaller fields as well as those fields that have yet to begin production decline, those that 

have yet to be developed and those that have yet to be found. Exponential decline curves also 

form the foundation of bottom-up models of global oil supply, as developed by groups such 

as Energyfiles. But it is difficult for third parties to verify the corresponding URR estimates, 

since field-by-field production data is rarely available in the public domain. Also, a more 

robust approach to estimating URR would investigate alternative functional forms to model 

decline rates. While the harmonic model can be linearised by taking logs, the hyperbolic 

model requires the use of non-linear techniques. Since it is well established that the 

exponential model tends to underestimate the URR (while the harmonic model tends to 

overestimate it), the neglect of alternative models could lead to excessively conservative 

estimates of individual field (and hence regional) URR (Li and Horne, 2007).  

Despite its close relationship to production projection, decline curve analysis appears to have 

neglected the logistic functional form. But in a comprehensive study of UK offshore oil 

fields, Kemp and Kasim (2005) found that the logistic model was preferred in the majority of 
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the cases and that a better fit was obtained through a multi-logistic model, involving the sum 

of several cycles (Section 3.3.4). In this instance, estimates of URR based upon an 

exponential model would have been quite inaccurate. Kemp and Kasim also found that newer 

fields tended to have higher decline rates than older fields. 

In summary, both Hubbert Linearisation and exponential decline curves take a non-linear 

relationship between cumulative production and time and convert this into a linear 

relationship between the rate of production and cumulative production. The former provides a 

straightforward means of estimating the URR for a region, while the latter provides a 

straightforward means of estimating the URR for individual well or field (Table 3.4). 

However, since both approaches assume a particular functional form for cumulative 

production they will only give consistent results if that form provides a reasonable fit to the 

historical data. Moreover, any forecasts using this approach will only be valid if this 

functional form continues to apply in the future. 

Table 3.4 Comparison between Hubbert Linearisation and exponential decline curve 

 Hubbert Linearisation Exponential decline curve 

Used for Estimating the URR of 

aggregate regions 

Estimating the URR of 

individual wells or fields 

Variables Q‟(t)/Q(t) versus Q(t) Q‟(t) versus Q(t) 

Assumptions Q(t) is logistic Q‟(t) is negative exponential 

post peak 

Only feasible if Rate of increase in production 

(Q’’(t)) is past peak 

Production is past peak 

More likely to be reliable if  Production is past peak Decline is advanced and no 

enhanced recovery techniques 

are to be used 

3.3.3 Summary 

The production projection and production decline techniques are straightforward to apply and 

rely upon data that is readily available, relatively accurate and free from the complications of 

reserve growth. As a result, these techniques are very popular and may provide reliable 

estimates of URR in some circumstances. However, they are only useful for regions that are 

relatively advanced in their production cycle (and preferably past their production peak).  

An important drawback of production projections is the lack of a robust basis for the 

appropriate choice of functional form. Different functional forms may often fit the production 

data equally well but yield very different estimates of URR. Multi-cycle models may often be 

more appropriate, but create the risk of „over-fitting‟ and highlight the possibility of new 

production cycles occurring in the future.  

While the production decline technique is computationally straightforward, it is equivalent to 

fitting a logistic curve to cumulative production and hence is no more reliable. Comparable 

techniques are often applied to the level of individual fields, but the neglect of alternative 

functional forms could lead the individual field URR to be underestimated. Finally, the 

techniques have several generic limitations, including: the limited theoretical basis; the 

neglect of economic, political and other variables that may modify the production cycle; the 

assumption that historically identified trends will continue to apply in the future; the tendency 

to apply to regions that are not geologically homogenous; and so on. These limitations apply 

to varying degrees to all extrapolation techniques and are discussed further below.  
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3.4 Discovery over time techniques 

One drawback of using production projection as a basis for estimating URR is that the 

estimates are likely to be unreliable during the early stage of the production cycle. Indeed, 

estimates based upon the logistic function cannot be made if the rate of increase of 

production (i.e. ))('' tQ  has yet to reach its peak. But since oil must be discovered before it is 

produced, the discovery cycle should be more advanced than the production cycle. 

Recognising this, Hubbert (1962; 1966; 1982) developed comparable curve-fitting techniques 

to estimate URR from time-series data on cumulative discovery and the rate of discovery. In 

much of this work, Hubbert‟s primary interest was the estimation of the future date of 

maximum oil production, which he assumed was preceded by the date of maximum oil 

discovery. Hence, the estimation of URR was often a secondary concern. 

Hubbert‟s discovery projection and discovery decline techniques have since been adopted and 

developed by other authors, including in particular Laherrère (2003; 2004; 1999b; 2005). 

They have much in common with the production projection and production decline 

techniques described above and therefore raise a comparable set of issues and concerns. 

However, the use of discovery data introduces a number of additional complications, 

including the uncertainty in reserve estimates (especially for OPEC countries which hold the 

majority of the world's reserves), the relative suitability of 1P and 2P estimates, the choice 

between current and backdated measures of discovery, and the implications of „smoothing‟ 

erratic discovery trends. The following discussion focuses primarily on these additional 

issues. 

3.4.1 Discovery projection using current data 

Hubbert‟s discovery projection technique is based upon the life-cycle model illustrated in 

Figures 3.13 and 3.14 (Hubbert, 1959). Hubbert assumed that both cumulative discovery - 

D(t) - and cumulative production - Q(t) - followed the same, broadly logistic functional form, 

with the former preceding the latter by some time interval t . Since the peak rate of 

discovery precedes the peak in production by t , identification of the former can form the 

basis for a prediction of the latter. Cumulative discoveries are calculated from the sum of 

cumulative production and declared reserves ( )()()( tRtQtD  ). When reserves reach their 

maximum value ( 0)(' tR ), the rate of production (which is still increasing) is equal to the 

rate of discovery (which is decreasing) - )(')(' tDtQ  .  
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Figure 3.13 Hubbert’s idealised relationship between cumulative discoveries, cumulative 

production and proved reserves as a function of time  
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Figure 3.14 Hubbert’s idealised relationship between rate of discovery, rate of production 

and reserve additions as a function of time  
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Using time-series data on cumulative production and proved reserves for the US, Hubbert 

(1962) estimated a time-series of cumulative proved discoveries. As shown in Figure 3.15, 

the plot of cumulative discoveries closely resembled the plot of cumulative production, but 

with the former preceding the latter by around 10.5 years. Hubbert took this data as broadly 

supporting his lifecycle model. By fitting a logistic curve
41

 to the cumulative discovery data, 

                                                 
41 Hubbert (1982) notes that: “….various forms of empirical equation were tested, but none gave satisfactory agreement with 

the data until finally the logistic equation was tried and found to fit the data with remarkable fidelity.” But, Hubbert did not 

use nonlinear regression techniques to fit the equation and only introduced „Hubbert Linearisation‟ some time later. Instead, 

he rearranged the logistic equation ( )1/()(
)(

0
0tta

eNQtQ


   to give atNN  0lnln  where QQQN /)(  
 and 

000 /)( QQQN  
 and obtained Q  through an interactive graphical procedure. 
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he estimated a URR for the lower 48 of 170 billion barrels and a peak year for discoveries of 

1957. The estimates were subsequently confirmed by a linear regression of D‟(t)/D(t) against 

D(t) (a discovery decline curve) (Hubbert, 1982). The results underpinned Hubbert‟s forecast 

of a peak in US proved reserves in 1962 and a peak in production around 1967. Hubbert 

updated his estimates in 1972 (after US production had peaked), when he again arrived at an 

estimate of 170 billion barrels for the lower 48 URR (Hubbert, 1974) and finally in 1982 

when he lowered the estimate to 162 billion barrels (Hubbert, 1982). For comparison, the 

cumulative production of crude oil in the US through to 2007 was approximately 197Gb, but 

this includes Alaska and the deepwater Gulf of Mexico.  

Figure 3.15 US cumulative proved discoveries, cumulative production and proved reserves 

from 1900 to 1962 

 

Source: Hubbert (1966) 
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Figure 3.16 US rate of discovery, rate of production and rate of change of proved reserves 

from 1900 to 1962 

 

Source: Hubbert (1966) 

The use of discovery projection raises issues about the plausibility of the underlying 

assumptions, the appropriate choice of functional form and the appropriate treatment of 

multiple discovery cycles. These were discussed above and will be returned to in Section 4. 

In addition, users of the discovery projection technique frequently follow Hubbert in 

assuming that the discovery cycle is best modelled using the same functional form as the 

production cycle (e.g. a logistic) (Laherrère, 2000b). However, this is not a necessary 

assumption for estimating URR from a discovery projection and neither does it seem a 

plausible one (although it works fairly well for the US). The geological, economic, 

technological and political factors influencing discovery trends at different points in time are 

likely to be substantially different from those influencing production at a later point in time. 

In particular, the highly skewed field size distribution (Section 2.5) would be expected to lead 

to large peaks in discovery very early in the exploration history of a region. This would create 

an asymmetric (to the left) discovery cycle (possibly with large discontinuities representing 

the discovery of giant fields) which may not necessarily be reflected in the subsequent 

production cycle (Nehring, 2006b). For similar reasons, the time-lag between the peak in 

discovery and the subsequent peak in production ( t ) is unlikely to be predictable. Laherrère 

(2002a; 2002b; 2005) shows that the degree of correspondence between the discovery and 

production cycles can vary widely from one oil producing region to another. While the US 

discovery history is widely cited, it seems unlikely to be representative: 

“…..Because petroleum exploration in the US began very early, because the initial exploration 

and discoveries occurred in what has proved to be relatively minor basins, because early 

drilling technology was very limited in its drilling depth capabilities, and because discoveries in 

the major basins only hit their stride between 1910 in 1950, the US comes closest to a 

symmetric discovery curve of any major oil producing country or region.” (Nehring, 2006b) 

There are also concerns about the consistency and statistical robustness of discovery 

projections. For example, Ryan (1965; 1966) fitted logistic curves to US production and 

discovery data and found that they led to widely different estimates for URR. He also showed 

that much larger estimates of URR could be cited with equal justification and that the 

estimates increased rapidly with the addition of only a few more years of discovery data. In 

reply, Hubbert (1966) argued that the URR estimates based on discovery data should be 
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considered more reliable since the discovery cycle was more advanced than the production 

cycle. Hubbert also claimed that much higher URR estimates could not be justified from the 

data and that the estimate could be verified by identifying the year of peak discovery (at 

which point cumulative discoveries should be one half of the URR). 

Hubbert's replies are not wholly convincing and the points made by Ryan have been repeated 

by more recent critics. For example, Cavallo (2004) recreated Hubbert‟s original 1956 dataset 

and found that the R
2
 for the best-fitting models changed only from 0.9946 to 0.9991 as the 

value of URR varied from 150 to 600 Gb. Similarly, Cleveland and Kaufmann (1991) fitted a 

logistic curve to US production data through to 1988 and found that the adjusted R
2
 changed 

only from 0.9880 to 0.9909 as the value of URR varied from 160 to 250 billion barrels. 

Worse, they found the URR estimate from the cumulative discovery data to be highly 

unstable - thereby calling into question Hubbert‟s preference for discovery projection over 

production projection.  

The estimation of URR from discovery data is also complicated by the highly erratic nature 

of the relevant time-series - illustrated most clearly in Figure 3.16. On several occasions, 

Hubbert addresses this by smoothing the discovery data by using an N-year running average. 

This procedure has also been followed by more recent authors, including Laherrère (2000b). 

But smoothing introduces difficulties, since the resulting data violates some core assumptions 

of statistical regression. In particular, the error terms from one time interval to another will no 

longer be independent and the variation of the error terms around the „true‟ value will no 

longer be Gaussian (even assuming they were in the first place). As a result, the precision of 

the parameter estimates will be overstated and comparisons between different models will 

become invalid (Motulsky and Christopoulos, 2004b). These issues of consistency and 

statistical robustness will be explored further in Sections 4 and 5.  

A point not picked up by earlier critics is Hubbert‟s reliance upon estimates of proved (1P) 

reserves to derive his time-series of cumulative discoveries. Proved reserves are 

acknowledged to be highly conservative estimates of remaining resources and subsequent 

authors such as Campbell (1997), Laherrère (2004) and Bentley et al. (2007) have advocated 

the use of proved and probable (2P) reserve estimates instead. While these are rarely 

available in the public domain (and were not available to Hubbert), they should provide a 

more realistic estimate of remaining resources. But since 2P reserve estimates are generally 

larger than 1P estimates, a discovery projection based upon the former would be expected to 

lead to a higher estimate of URR than one based upon the latter. The two sets of estimates 

would only be expected to converge when the discovery cycle was relatively advanced (at 

which point 021  P

t

P

t RR ), but this was not the case for any of the time periods in which 

Hubbert was making his estimates. Hence, contemporary advocates of discovery projection 

techniques appear to making an argument that would call into question Hubbert's original 

results. 

3.4.2 Discovery projection using backdated data 

Discovery projection has been employed by Campbell and Laherrère (1995) to estimate URR 

for all oil producing regions around the world. But despite their debt to Hubbert, their method 

differs in two fundamental respects: first, they use 2P rather than 1P reserve estimates 

(derived from an industry database); and second, they use backdated measures of cumulative 

discoveries rather than current estimates (i.e. their measure of cumulative discoveries is 

),(2 ttB d

P
 while Hubbert‟s was )(1 tD P

). Both have important implications for the results. 
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In an apparent dismissal of Hubbert‟s work, both Campbell and Laherrère argue that “…. 

proved reserves are useless for forecasting” (Laherrère, 2002b). In contrast, they claim that 

the 2P estimates contained in the Petroconsultants (now IHS) database provide an accurate 

estimate of the remaining recoverable resources.
42

 Laherrère (2002b) argues that “…mean 

reserve growth will be close to zero, because some 2P values will grow while others will 

decrease, or disappear as in the case of fields that cannot be developed” (Laherrère, 2002b). 

In other words, the 2P estimates made at the time of field discovery should be relatively 

accurate. This implies that, at any point in time (t), the backdated cumulative discovery time-

series (i.e. ),(2 ttB d

P
)) should provide a fairly accurate estimate of the ultimately recoverable 

resources that have been discovered (i.e. ),(2 d

P tB )). Although the estimated size of 

individual fields may change, the aggregate estimates should not be substantially different 

from those made at earlier times (i.e. ),()',( 22 ttBttB d

P

d

P   where tt ' ). Indeed, it is 

puzzling that Campbell and Laherrère advocate the use of backdated cumulative discovery 

estimates based on 2P data, but also claim that 2P estimates should not change much 

following field discovery. This seems contradictory: if 2P estimates are relatively stable, what 

is the advantage of using backdated discoveries? 

The implication of Campbell and Laherrère‟s argument is that substantial revisions will not 

be made to cumulative 2P discovery estimates as a result of reserve growth. However, 

analyses of the IHS data set by Klett, et al (2005b) and Thompson et al. (2009b) demonstrate 

substantial growth in 2P estimates over time. Campbell and Laherrère have access to 

comparable data, but consider that much of this growth is due to unwarranted revisions. But 

if the apparent reserve growth is taken at face value, it implies that both the ‘height’ and 

shape of the backdated cumulative discovery curves will change over time (t). This is quite 

different from Hubbert‟s discovery projection analysis, where the cumulative discovery 

estimates for a particular point in time (D(t)) remain fixed. In the case of backdated estimates 

( ),( ttB d ), reserve growth leads to a change in the estimates for earlier years ( ttd  ), while in 

the case of current estimates ( )(tD ), reserve growth simply contributes to the increase in 

cumulative discoveries in the current year (t).  

Hubbert used current estimates of cumulative discoveries for his discovery projections, but 

was also one of the first to develop backdated estimates of cumulative discoveries (Hubbert, 

1967). Hubbert‟s primary objective here was to estimate a reserve growth function ( )(G ) 

for the US and thereby estimate the „ultimate‟ amount of oil discovered in each year. 

However, he only used these backdated estimates when analysing discovery as a function of 

exploratory effort ( ),( tB d ) and not when analysing discovery as a function of time 

( ),( ttB d ) - a choice that is not adequately explained (Hubbert, 1982). Hubbert found that the 

backdated discoveries per unit of exploratory effort ( ),(' tB dd
 ) declined approximately 

exponentially, which implies that backdated cumulative discoveries as a function of effort 

),( tB d  can be approximated by the following functional form: 

                                                 
42 However, Laherrère (2005) claims that the quality of the IHS estimates are deteriorating and highlights the large 

difference between recent estimates and those produced by a competitor, Wood Mackenzie. 
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            (3.41) 

Where ,B  represents the URR to which the curve asymtopically trends. This functional 

form is consistent with the observation that most of the oil is contained within a small number 

of large fields that tend to be found relatively early in the discovery cycle (Section 2). 

Although exploration does not proceed at a constant rate, the plot of cumulative discoveries 

as a function of time ),( ttB d  may be expected to have a broadly similar shape (i.e. 

exponential rather than logistic). In other words, the shape of the discovery cycle based on 

backdated estimates may be expected to be different from that based upon current estimates. 

The date of peak discovery may also be expected to be different, together with the time lag 

between peak discovery and peak production.   

Nehring (2006a) employs discovery projection to estimate the URR from the Permian Basin 

and the San Joaquin Valley in the US. These regions have produced oil for more than 80 

years and together account for around one quarter of the US URR. Unlike Hubbert, Nehring 

employs backdated discovery estimates and corrects these with a growth function to estimate 

the ultimate resources discovered in each time interval. The function is based on Hubbert 

(1967) and is only applied to the most recent 30 years of the discovery data.
43

 Figure 3.17 

shows cumulative discoveries in the Permian Basin through to 1964 and illustrates how the 

growth function leads to a higher estimate of the URR than would be obtained from the 

uncorrected data. This in turn leads to a later date for the forecast peak in production 

(assuming a symmetric production cycle) 

Figure 3.17 Discovery projection for the Permian Basin using backdated discovery estimates 

through to 1964 

 

Source: Nehring (2006a) 

                                                 
43 The growth function used by Hubbert declines to less than a 10% adjustment from known to ultimate for older discoveries. 
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Nehring then repeats this analysis using data through to 1982 and 2000 respectively (Figure 

3.18). The results show clearly how the use of discovery projections can lead to misleading 

estimates of the URR. Since the estimated size of the discovered fields has increased over 

time (t) the cumulative discovery curves have increased in „height‟ (i.e. ),()',( ttBttB dd   for 

tt ' ). This leads to a 36% increase in the estimated URR (from 27.5Gb as of 1964 to 37.5Gb 

as of 2000).  

Figure 3.18 Discovery projection for the Permian Basin using backdated discovery estimates 

through to 1964 

 

Source: Nehring (2006a) 

While the purpose of „correcting‟ the data is to avoid such underestimation, the results 

demonstrate that Hubbert's growth function seriously underestimates the reserve growth that 

actually occurred. A closer analysis reveals that the ultimate size of recent discoveries is 

estimated reasonably well, but the growth of older fields is greatly underestimated. As a 

result, the estimated peak date of discovery moves back in time while the corresponding 

estimate of the peak date of production moves forward in time - thereby undermining the 

notion of predictable time lag between the two. The peak in production in the Permian Basin 

actually occurred in 1974, but since the URR estimates have continuously increased, there 

has been a corresponding decrease in the estimated percentage of URR that had been 

produced by the time of peak. As Nehring comments: 

“…..The [discovery projection] method consistently underestimates future production because 

it consistently underestimates the ultimate recovery. It underestimates ultimate recovery 

because it is incapable of estimating the appreciation (growth) in the ultimate recovery that 

occurs in older fields...... the continuous upward movement in the cumulative discovery curve 

makes this curve useless as a tool for predicting the ultimate recovery. Estimates of ultimate 

recovery derive from cumulative discovery curves are only valid if one can guarantee that there 
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will be no further increases in the ultimate recovery of discovered fields……….no such 

guarantee can be made.” (Nehring, 2006b) 

Nehring further argues that this problem is also relevant to other methods of estimating URR, 

including discovery process modelling: 

“….Growth if the monkey wrench in the works of all such methods, particularly when it is 

unevenly distributed among fields and reservoirs (as it almost always is).” (Nehring, 2006b) 

However, one should be careful about generalising these criticisms. First, Nehring‟s analysis 

is based upon US 1P estimates which may reasonably be expected to experience more reserve 

growth than the 2P estimates used by Campbell and Laherrère. Hence, if the latter had been 

used, the degree of underestimation of URR may have been less. Second, the observed 

reserve growth derives primarily from a small number of old, large fields which were subject 

to enhanced oil recovery techniques. The same opportunities may not be either available or 

appropriate for all fields and regions. Third, the analysis relies upon a reserve growth 

function that is nearly 40 years old and is only applied to the most recent 30 years data 

(Hubbert, 1967). Again, had a more representative function being used, derived using 

contemporary data and applied to the full time series, the degree of underestimation may well 

have been reduced.
44

 Nevertheless, Nehring‟s analysis does raise some important questions 

regarding the reliability of extrapolation methods in general and the suitability of backdated 

discovery estimates in particular.  

3.4.3 Summary 

Discovery projection and decline curves have many similarities to production projection and 

decline curves. But since the discovery cycle is always more advanced than the production 

cycle, these methods should be applicable to a larger number of regions and could potentially 

provide more reliable estimates of regional URR.  

These techniques raise similar concerns to those identified in Section 3.3, including the 

plausibility of the underlying assumptions, the appropriate choice of functional form (which 

could be different from that used for production projection), the appropriate level of 

aggregation and the treatment of multiple discovery cycles. In addition, the use of discovery 

data introduces a number of additional complications, including the uncertainty in reserve 

estimates, the relative suitability of 1P and 2P estimates, the implications of „smoothing‟ 

erratic discovery trends and the treatment of reserve growth.  

Reserve growth is of particular importance and suggests the need for backdated (B) rather 

than current (D) measures of discovery. However, the shape of the discovery cycle based on 

backdated estimates may be expected to be different from that based upon current estimates 

and both the „height‟ and shape of the backdated discovery cycle will change over time. 

Hence, if reliable and consistent estimates of URR are to be obtained, the backdated 

discovery data needs to be adjusted to allow for future reserve growth. Given the paucity of 

data on reserve growth for different types, ages and sizes of field, the estimates of URR will 

be sensitive to the particular function employed.  

                                                 
44 As shown in Section 2.4, there are plenty of more recent studies to choose from, which estimate reserve growth for periods 

up to 80 years.  
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3.5 Discovery over effort techniques 

Regardless of whether current or backdated estimates are employed, the rate of discovery will 

be influenced by a variety of economic and political factors which could invalidate the 

extrapolation of historical trends. For example, the rate of discovery may fall as a result of 

economic recession rather than through the depletion of the underlying resource. Recognising 

this, Hubbert (1967) developed an alternative approach that examined cumulative discovery 

and/or the rate of discovery as a function of exploratory effort ( ).
45

 In principle, this 

measure should be less sensitive to economic and political influences: for example, lower oil 

prices or political conflict may reduce exploratory activity as well as the number of new 

discoveries, with the result that the rate of discovery per unit of effort could remain relatively 

unchanged. 

Variants of this approach have subsequently been employed by Campbell (1996) and 

Laherrère (2002b), who argue that it leads to more reliable estimates of URR than either 

production or discovery projection. In addition, this approach has much in common with 

statistical techniques for estimating URR that date back at least to the 1950s and go under the 

heading of discovery process modelling (Section 3.6). All these methods rely upon backdated 

measures of discovery, and (at least in principle) require some method for estimating future 

reserve growth. However, Hubbert‟s and Laherrère‟s curve-fitting techniques differ from 

discovery process modelling in at least three ways: 

 The former are typically applied to relatively aggregate regions defined on political 

grounds (e.g. the UK) while the latter are applied to smaller regions defined on the 

grounds of geology and/or exploration history. 

 The former can be used with an aggregate data from a region, while the latter requires 

data on individual fields. 

 The former are straightforward and have relatively little theoretical support, while the 

latter are typically more complex with rather more basis in statistical theory. 

 The former are most commonly used to provide single value estimates of URR while the 

latter typically provide probabilistic estimates. 

But these are not absolute distinctions and the boundaries between the two approaches are 

somewhat blurred. The following section describes the analysis of cumulative discoveries as 

a function of function of exploratory effort (creaming curves), while Section 3.5.2 describes 

the analysis of discovery as a function of exploratory effort (yield per effort curves). 

Discovery process modelling is described in Section 3.6.  

                                                 
45 Zapp (1962) was the first to use exploratory effort as an explanatory variable. However, Zapp assumed that the rate of 

discovery per unit of exploratory effort (yield) would remain unchanged, leading to an unrealistically large estimate for the 

US URR (590Gb). Zapp‟s approach was subsequently adopted by Hendricks (1965), who simply assumed that the yield 

would decline linearly. In contrast, Hubbert (1967) based his forecast of future yield upon a detailed analysis of past trends, 

which showed a negative exponential decline. 
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3.5.1 Creaming curves  

3.5.1.1 The approach 

A „creaming curve‟ is a plot of backdated cumulative discoveries ( ),( tB d ) against some 

measure of exploratory effort )( d . Creaming curves have been extensively employed by 

Laherrère (2002b), who measures exploratory effort through the cumulative number of 

exploratory wells drilled (termed „new field wildcats‟, or NFWs).
46

 Figure 3.19 shows a 

relatively „well-behaved‟ creaming curve in which the „yield‟ (i.e. ddB/ ) falls as the 

number of exploratory wells drilled increases, with the curve apparently tending towards an 

asymptope. The assumption underlying creaming curves is that the fall in the yield is due 

primarily to physical depletion of the resource.  

Figure 3.19 Example of a creaming curve 
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The creaming curve hinges upon the notion of diminishing returns to exploratory effort. In 

principle, the amount of resources discovered for a given increment of exploratory effort 

should reflect the combined effect of two independent factors, namely: the success rate (the 

fraction of exploratory wells drilled that yield commercially viable quantities of oil) and the 

average size of the discovered fields (as measured by the estimated URR of each field) 

(Meisner and Demirmen, 1981).  

Since there are a finite number of fields in each region, the probability of making another 

discovery should be inversely proportional to the number of fields already discovered. But at 

the same time, improvements in technology should allow more accurate identification of 

viable prospects, thereby increasing the success rate of exploratory drilling. Evidence 

suggests that the success rate of exploratory drilling in most regions declines only relatively 

gently, if at all, indicating that technical improvements partially or wholly offset the declining 

number of undiscovered fields (Forbes and Zampelli, 2000; Meisner and Demirmen, 1981).
47

 

                                                 
46 In contrast, Hubbert (1967) used the cumulative length of exploratory drilling. Neither considered development drilling 

activity although this may make a major contribution to cumulative discoveries through the process of reserve growth. 

Similarly, neither considered the difficulties of classifying drilling activity as applying to either oil or gas resources. 

47 The IEA (2008) reports that, over the last 50 years, the global average success rate has increased from one in six 

exploratory wells to one in three. Similarly, Lynch (2002) reports that the average success rate in the US increased by 50% 

between 1992 and 2002 and Forbes and Zampelli (2000) report that the US offshore success rate doubled between 1978 and 
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But even if drilling were wholly random, large fields would tend to have a greater chance of 

being discovered than small ones since they generally occupy a larger surface area (Arps and 

Roberts, 1958; Meynerd and Shaman, 1975). Given the highly skewed field size distribution 

of most oil producing regions (Section 2.5), the largest fields should be found relatively early 

in the exploration history, with subsequent finds becoming progressively smaller. The 

creaming curve reflects the net effect of these two factors, with the declining field size 

tending to be more important.48  

Laherrère (2002a; 2004; 2002b) has published creaming curves for a variety of regions 

around the world. Using backdated discovery estimates, he argues that the curves tend to rise 

steeply in the early stages of exploration, reflecting the discovery of small number of large 

fields. As exploration proceeds, the curves flatten as the discovered fields become 

progressively smaller. As an illustration, the (estimated) mean size of fields discovered in the 

Middle East before 1972 was 600 Gb, but this fell to 120 Gb over the subsequent 20 years 

(Laherrère, 2004). Although the exploration success rate actually increased after 1972 (from 

24% to 33%), this was insufficient to compensate for the declining field size, with the result 

that the creaming curve flattened considerably. 

As with discovery and production projection, the regional URR may be estimated by using 

non-linear regression to fit a curve to this data and identifying the value of the relevant 

parameter(s).
49

 Alternatively, the URR may be estimated visually by identifying the 

asymptope towards which the curve is tending. In principle, the rate of discovery with respect 

to effort ( ),(' tB dd
 ) could be plotted as a function of cumulative discovery with respect to 

effort ( ),( tB d ) to give a discovery decline curve to with respect to effort. However, as with 

the discovery decline curves with respect to time, this approach does not seem to be widely 

used. 

If backdated discovery estimates are employed, the creaming curve may rise very steeply in 

the early stages, reflecting the discovery of large fields. As a result, the logistic curve used for 

production and discovery projection may not provide a very good fit to the data. An 

alternative suggested by Hubbert is an exponential:  

            (3.42) 

In various publications, Laherrère talks of fitting „hyperbolas‟ to this data, but he never 

provides either the functional form for this hyperbola or statistical information on the 

goodness of fit. One possible functional form is the rectangular hyperbola, which may be 

defined as follows: 

                                                                                                                                                        

1995. In an econometric analysis, Forbes and Zampelli (2000) estimate that, over the period 1986-1995, technological 

progress increased the US offshore success rate by 8.3%/year. 

48 While a negative exponential decline implies that field are discovered in descending order of size, this need not imply that 

the industry has perfect information on field size and location. Instead, an approximately negative exponential decline may 

be generated from: a) a search strategy that is equal to or better than a random search; b) a skewed field size distribution; and 

c) a reasonably strong correlation between the aereal extent of the field and the volume of oil contained (Arps and Roberts, 

1958; Cleveland and Kaufmann, 1991; Kaufman, 1975b). 

49 If the relationship is approximately exponential, an alternative is to take logs and estimate a linear regression. 
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            (3.43) 

Section 4 describes our attempts to fit these functional forms to backdated cumulative 

discovery data from a variety of regions. 

Although Laherrère (2004) states that the creaming curve was invented by Shell in the 1980s, 

variants of this approach have been used in the oil industry for much longer (Arps, et al., 

1971; Arps and Roberts, 1958; Harbaugh, et al., 1995; Odell and Rosing, 1980b). Two 

employees of Shell published a paper on „the creaming method‟ in 1981, but this describes a 

highly sophisticated (and not widely used) discovery process model that relies upon Monte 

Carlo simulation of trends in both success rates and average field sizes and assumes a 

lognormal field size distribution (Meisner and Demirmen, 1981). While Meisner and 

Demirmen model the same phenomenon as creaming curves, they do so in a completely 

different way using the data on the size of individual fields.  

3.5.1.2 Limitations 

Although the creaming curve method may have some advantages over production and 

discovery projection, it embodies a number of questionable assumptions, including: 

 the data is sufficiently smooth to provide a good fit to the chosen functional form; 

 the region is sufficiently homogeneous in geological terms for the field size distribution 

to contribute to the creaming phenomenon; 

 exploration in the region has proceeded in a relatively orderly fashion; and 

 the backdated discovery estimates (ideally adjusted for future reserve growth) provide a 

sufficiently reliable indication of the URR for the relevant fields. 

Both theoretical reasoning and empirical evidence suggest that the data will frequently not 

provide a good fit to either exponential or hyperbolic functional forms. Given both the highly 

skewed field size distribution in most oil producing regions (including in some cases a King 

effect‟ where the largest field is very much larger than the rest), the data may exhibit very 

large „jumps‟ in the early stages of exploratory effort (indicating the discovery of giant 

fields), followed by a long „plateau‟ where the average size of discovered fields is very much 

smaller (Section 2.5). As a result, a smooth functional form may provide only a poor fit to the 

data. However, if the „curve‟ is tending towards an asymptope, the URR may still be 

estimated visually. 

Sneddon et al. (2003) show how exploration „plays‟ (Box 2.2) with a long drilling history 

typically exhibit two or three plateaus, which could make it difficult to fit a single curve to 

the whole dataset. Sneddon et al. also provide some technical reasons for why this may be the 

case (related to the nature and accessibility of different oil-bearing structures) and illustrate 

this with examples from the Gulf of Mexico, Indonesia, Texas, and Norway. 

The creaming curve may potentially be „smoothed‟ by using data from a larger geographical 

region, but this may not necessarily lead to a smooth curve since the highly skewed field size 

distribution applies at all levels of aggregation, including the world as a whole (Section 2.5). 

Moreover, the use of data from larger geographical regions introduces difficulties of its own. 

While diminishing returns to exploratory effort are widely observed at the level of the 

exploration play, the same may not necessarily be observed at larger geographical scales: 
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“…..The finding of larger fields early in exploration is not necessarily true at scales other than 

the play level because larger plays are not necessarily developed earlier. The factors that tend to 

make larger fields within a play be found earlier do not make the larger plays be developed 

first. On the contrary, plays tend to be developed in order of ease of exploration and 

development - often those with shallow oil reservoirs or easily detectable structural traps are 

developed first. Some large plays may not be developed until technological improvements can 

make them viable.” (Charpentier, 2003) 

Charpentier (2003) gives the example of the Michigan basin (Figure 3.20), where a 

combination of geological accessibility and improvements in exploration and production 

technology led to a multi-cycle exploration history in which the largest (Silurian) play was 

developed relatively late. If aggregate data were used, such a discovery history would most 

probably lead to a „stepped‟ creaming curve, formed from four individual creaming curves 

reflecting the exploration history of the four individual plays. If the asymptope of the 

aggregate creaming curve was identified before all the plays had been opened up to 

exploration, the total basin URR would be underestimated.  

Similar phenomena are reported by Wendebourg and Lamiraux (2002) in their study of 

petroleum resources in the Paris basin. This area experienced two major exploration cycles, 

corresponding to the opening up of two regions of sedimentary rocks. A creaming curve 

estimated using data through to 1986 leads to an estimate of 15MT for the URR of the Paris 

basin, but a similar curve estimated using data through to 1996 (after exploration had begun 

in the second region) leads to a much larger estimate of 46Mt.  

Figure 3.20 Exploration history of the Michigan basin 

 

Source: Charpentier (2003) 

The larger the geographical region for which the creaming curve is estimated, the more 

significant the problem of multiple exploration cycles is likely to become. This difficulty is 

recognised by Laherrère (2003; 2004), who typically models the discovery history of 

individual countries (or larger regions) as the sum of two or more creaming curves. Figure 
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3.21 gives the example of the US, which Laherrère models with three creaming curves, 

corresponding respectively to the continental region, Alaska and the Gulf of Mexico.
50

  

Figure 3.21 Laherrère’s creaming curve analysis of the United States 

 

Source: Laherrère (2004) 

The use of multiple curves to simulate the exploration history of multiple geological regions 

leads to three difficulties however. First, there is the risk of „over-fitting‟, which means the 

use of an overcomplicated model with an excessive number of parameters to describe a small 

data set. The risk of over-fitting will increase with the number of curves that are used. While 

there is no general rule to determine precisely when a model is overfit, it could potentially 

destroy the ability of the model to generalize beyond the available data (see Section 4).
51

  

Second, Laherrère never provides any statistical support for his choice of curves and in many 

cases the appropriate number of curves is not clearly apparent from the data. Indeed, the 

chosen number of curves appears to differ from one publication to another. For example, 

Laherrère (2003) models the oil and gas resources of the Middle East with two creaming 

curves but in a subsequent paper this has increased to four (Laherrère, 2004). While the 

choice could be based upon knowledge of the exploration history of a region (e.g. the level of 

exploratory effort at which different regions or depths were opened up to exploration), this 

information is rarely provided. Instead, the number and location of curves appears to be 

determined largely from the „shape‟ of the data, without any statistical justification being 

provided and with any interpretation in terms of exploration history being made ex post. 

Third, if multiple exploration cycles have occurred in the past, it seems reasonable to assume 

that new exploration cycles may occur in the future. The potential for these cannot be 

established from the statistical analysis of historical data, but only from a detailed evaluation 

                                                 
50 Laherrère provides no information on statistical fit, but the data appears to give little very confidence on the shape of the 

third (Gulf of Mexico) creaming curve. 

51 The use of multiple curves, implying individual URRs, could also be problematic if (as is usually the case) the discovery 

history reflects the outcome of exploration proceeding in multiple regions simultaneously.  



 

 

77 

77 

of the geological potential of the region, including an assessment of how various political, 

economic and technical constraints may have influenced exploration trends in the past. 

Failure to anticipate the possibility of new exploration cycles (and to estimate their size) will 

lead the creaming curve technique to underestimate the regional URR.  

The probability of new exploration cycles may be expected to be proportional to the 

geographical size of the region and inversely proportional to its exploration maturity. Hence, 

for small, geologically-defined regions where exploration is well advanced, the probability of 

new cycles may be relatively low, while for large, politically-defined regions, which are 

largely unexplored (e.g. owing to the depth of drilling required, or geographical remoteness, 

or political restrictions) the probability of new cycles may be relatively high. Since both 

Laherrère and Campbell estimate creaming curves for large, politically defined regions, the 

reliability of their estimates of regional and global URR depend heavily on the assumption 

that any new exploration cycles will have only a small impact on aggregate resources (either 

because there will be few such cycles or because the discovered resources will be relatively 

small). While this judgement appears reasonable for many regions around the world, it 

remains problematic for key regions such as Iraq. Unfortunately, these are precisely the 

regions that have a disproportionate influence on global URR estimates and the associated 

forecasts of global oil production. This inability to anticipate new exploration cycles applies 

to all the extrapolation techniques discussed in this section and is of considerable importance. 

It is the key reason why advocates of discovery process modelling warn against applying 

such methods to large regions:  

“….In making forecasts we should be aware of the particular geographic area or geological 

domain for which we are making forecasts, by excluding from consideration those parts of the 

geographic area or geological domain that were not, and could not be, explored before. Hence, 

for example, deep sea prospects should never be lumped with land prospects in making a 

forecast, and similarly prospects located in a previous concession area should be kept separate 

from prospects in an area that was never opened to exploration.” (Meisner and Demirmen, 

1981) 

Since the aggregate data used by Laherrère and others fails to make these distinctions, their 

methods may underestimate the regional URR. At the same time, more disaggregate analysis 

is likely to be resource intensive and require access to proprietary, field-level data. What 

matters, therefore, is the size of the error that may result from using the simpler techniques. 

Views differ on this issue, but the percentage error for global URR estimates should fall over 

time as more of the world‟s oil bearing regions become comprehensively explored. 

Creaming curves have two other weaknesses that are also shared with the discovery 

projection techniques described earlier. First, the backdated discovery estimates should be 

adjusted to allow for future reserve growth. This adjustment was made by Hubbert (1967) 

who was using 1P reserve data for the US,
52

 but is not made by Laherrère or Campbell who 

are using 2P reserve data for the world. To the extent that URR estimates based upon 2P data 

do grow over time (as Klett et al. (2005a) suggest), Laherrère‟s and Campbell‟s creaming 

curves are likely to underestimate the regional and global URR. While their creaming curves 

may trend towards asymptopes, the same curves estimated at a later point in time may trend 

towards different asymptopes since reserve growth increases the „height‟ of the curves. 

                                                 
52 The reserve growth function estimated by Hubbert (1967) suggests that the URR of discovered fields will be 5.8 times 

larger than the initial 1P reserve estimate for those fields and that half of this growth will occur in the first nine years 

following field discovery. 
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Illustrating this with data from the North Sea, Lynch (2002) argues that the neglect of reserve 

growth amounts to “....comparing old orchards with newly planted saplings and extrapolating 

to demonstrate declining tree size”.  

Hence, the use of the creaming curve technique without allowing for future reserve growth is 

highly questionable. But while accuracy should be improved by allowing for future reserve 

growth, the results will still be sensitive to the particular growth function that is employed. 

As Nehring (2006a; b; d) has shown, it is quite possible for such functions to underestimate 

URR by underestimating the amount of reserve growth in particular categories of fields (of 

course, the converse is also a possibility). 

A final weakness of creaming curves is the uncertainty and inaccuracy of much of the 

relevant discovery data and the lack of a consistent exploration history in many regions. 

Davies (1981) highlights how datasets may be significantly biased by political restrictions in 

accessing regions, the economic incentives to under or overestimate discovery sizes, the 

dependence of recorded discoveries on contemporary oil prices and a variety of other factors. 

As a result, Davies (1981) argues that creaming curves are only useful for individual 

companies with access to all the relevant data relating to a relatively small and geologically 

homogenous region. These conditions rarely apply and the data will be particularly suspect 

for those regions, such as the Middle East which hold the largest resources.  

3.5.2 Yield per effort curves 

Many of the same difficulties are faced by a second, closely related technique for estimating 

URR, namely the yield per effort (YPE) curve. While a creaming curve is a plot of backdated 

cumulative discoveries ( ),( tB d ) against exploratory effort )( d , a yield per effort curve is a 

plot of the backdated discovery rate ( ),(' tB d ) against exploratory effort. Since both 

techniques utilise the same information, they are effectively equivalent. While an estimate of 

URR may be derived from the asymptope of the creaming curve, a corresponding estimate 

may be derived by integrating the yield per effort curve: 

            (3.44) 

The yield per effort curve was introduced by Hubbert (1967) who, after painstakingly 

constructing the relevant time series, analysed the yield in the lower 48 US states over the 

period 1860 to 1967. Hubbert‟s measure of discovery was based upon 1P reserve estimates 

while his measure of exploratory effort was the cumulative footage of exploratory drilling. 

The latter was combined into units of 10
8
 feet - subsequently turned „Hubbert Units‟ or HUs 

(Cleveland and Kaufmann, 1991). At the time of Hubbert‟s analysis, cumulative exploratory 

drilling in the US amounted to 15 HUs - with the first HU occurring over a period of 61 years 

and the last nine HUs requiring only two years each. Hubbert observed that the yield 

exhibited an approximately exponential decline, which he approximated with the following 

functional form:
53

 

                                                 
53 Hubbert justified his use of a negative exponential function as follows: “…. the assumption of approximately negative 

exponential decline is justified by the fact that as more fields are discovered, the volumetric density of the remaining fields 

becomes progressively less, and the probability of discovery by any given amount of drilling must, in the long-run, decline 

continuously ” (Hubbert, 1967) 
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            (3.45) 

Integrating between zero and d  yields an expression for backdated cumulative discoveries 

( ),( tB d ): 

            (3.46) 

Letting d  gives an expression for URR: 

            (3.47) 

However, Hubbert did not use standard statistical techniques to estimate the „best fit‟ 

exponential curve. Instead, he imposed two restrictions: a) the curve had to pass through the 

last observation for the rate of discovery; and b) the area under the curve had to equal the 

backdated cumulative (proved) discoveries through to the last observation. This led to an 

estimate of ~170Gb for the US URR which was consistent with his earlier estimates from 

production and discovery projection (Hubbert, 1962). 

In a subsequent evaluation of this approach, Harris (1977) criticised Hubbert‟s method of 

curve-fitting. As well as violating standard statistical procedures, the method places excessive 

weight on the estimated size of newly discovered fields that have only been partially explored 

and tested (i.e. the last data point). Harris fit a curve to this data using standard OLS 

techniques and obtained an URR estimate of only 134 Gb, which was less than the 

cumulative discoveries through to 1966. Harris also used Hubbert‟s method to fit curves to 

truncated time-series (from 5 through to 14 HUs respectively) and found a strong trend 

towards higher estimates of URR as the amount of exploratory effort increased – suggesting 

that the method led to systematically biased estimates. Moreover, the only reason that 

Hubbert‟s estimate was consistent with his earlier work was that the discovery rate had 

recently increased - something which Hubbert considered to be both anomalous and 

temporary. This combination of poor fit to the data and inadequate theoretical support for the 

model was considered by Harris to be a serious weakness: 

“…. Use of a fitted exponential which is not in fact a good fit the data must invoke some 

scepticism about the reliability of the predictions by the model. If the selected model is strongly 

indicated by theory, it may be accepted by critics even when the fit to available data is not a 

good one. But when theory is not the basis for the model, the entire responsibility for 

generating confidence in the selected model rests upon the suitability of the model as a 

representation of the data.” (Harris, 1977) 

Echoing a point made above for creaming curves, Harris also argues that the exponential 

model is inappropriate since the relevant region (the continental US) is not geologically 

homogeneous. He uses a numerical example to show that an aggregate discovery trend will 

not necessarily be exponential, even if the trends for individual regions can be approximated 

by this form. As a result, the URR estimated from a curve fit to the aggregate data may be 

quite different from the sum of the estimates from two or more curves fitted to the regional 

data: 

“…. even if each mode of occurrence in each province were to possess the negative exponential 

functional relationship..., since the provinces were explored at different times and usually 

possessed oil reservoirs at more than one depth, only a unique set of circumstances would cause 
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the data aggregated across all depths and provinces for the entire conterminous US to exhibit a 

negative exponential pattern. It must follow that it is also dangerous to suppose that future data 

must conform to the assumed negative exponential, or for even that matter to a decreasing 

trend.”(Harris, 1977) 

This implies that: a) a yield per effort or creaming curves should only really be fitted to 

relatively small and homogeneous regions; b) the URR for a larger region should be 

estimated from the sum of curves for smaller regions; c) oil and gas should be studied 

separately; and c) for large regions, the possibility of future exploration cycles should always 

be considered. 

Harris also criticised Hubbert's method for neglecting variables other than physical depletion 

that influence the discovery history and which lead to departures from the negative 

exponential decline. These include the tendency to drill the more accessible formations first 

(which are not necessarily the largest), changes in exploration and drilling technology, and 

the varying influence of costs, prices and other incentives on drilling activity - including in 

particular licensing rules and government subsidy schemes. As the result of these factors, the 

exponential curve provides a particularly poor fit to the early years of US exploration 

activity, since the efficiency of the industry in finding large fields was lower than that 

predicted by random search (Menard and Sharman, 1975).
54

  

By neglecting all these variables, Hubbert effectively assumed that the effects of physical 

depletion would outweigh them – at least over the time-scales that are relevant to the 

estimation of URR. However, this need not necessarily be the case, and even if it was the 

inclusion of additional explanatory variables could potentially improve the resulting 

estimates. This argument is explored further in Section 5 which provides a closer look at the 

statistical basis of curve fitting techniques. 

3.5.3 Summary 

Creaming curves and yield per effort curves are equivalent techniques that may offer 

significant advantages over production and discovery projection. However, they must still be 

used with care. Difficulties can arise with the accuracy of the relevant data, the required 

corrections for future reserve growth, the poor fit of particular functional forms, the existence 

of multiple exploration cycles and the failure to anticipate new exploration cycles in the 

future. These difficulties will be more significant when the technique is applied to large 

geographical regions that have neither a homogeneous geology nor a consistent exploration 

history. Overall, these difficulties appear more likely to lead to underestimates of the regional 

URR.  

The accuracy of these methods may be improved through the explicit allowance for reserve 

growth and a focus on smaller geographical regions. But the information required to estimate 

and apply reserve growth functions do not be available and a more disaggregated analysis is 

likely to be resource intensive, as well as requiring access to confidential data. While a more 

aggregate analysis may potentially lead to biased estimates, the size of the error may vary 

widely from one region to another and may be expected to decline in the future as exploration 

                                                 
54 Menard and Sherman (1975) use Monte Carlo simulation to show that if exploratory wells had been drilled at random in 

the US, the super giant East Texas oilfield would have been discovered at the very least by 1902. But in practice, East Texas 

was not discovered until 1930. 
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matures. For regions such as the continental United States, the error may already be relatively 

small. 

3.6 Discovery process models  

Discovery process models have many similarities with the „curve-fitting‟ approaches 

described in the previous sections, but are typically more sophisticated.
55

 Both approaches 

implicitly assume that the field size distribution is highly skewed, with most resources 

tending to be found in a small number of large fields. They also assume that large fields tend 

to be found first, leading to diminishing returns to exploratory effort and declining field sizes 

as exploration proceeds. Discovery process models also overlap with the field size 

distribution techniques discussed in Section 2, but do not necessarily assume a particular size 

distribution.  

Perhaps the most important difference between discovery process models and curve-fitting is 

that the former require data on individual fields, while the latter use aggregate data for a 

region. Also, the former are typically used to study the discovery process in geologically 

homogeneous areas with a relatively consistent exploration history, while the latter are 

applied to more aggregate regions, frequently defined on political grounds (such as a 

country). While in many ways a superior technique, the extensive data requirements of 

discovery process models can make them both impractical for many researchers and 

problematic for estimating the URR of larger geographical regions.  

Most discovery process models are based upon statistical analyses of the number and size of 

discovered fields as a function of either discovery sequence, time or exploratory effort. This 

may be combined with assumptions about the field size distribution and/or information about 

the location of fields. Most of these models simulate a probabilistic law governing the 

process of new field discovery and can be used to provide forecasts of the number, size and 

sequence of future discoveries together with the success rate of exploratory drilling. They 

may also be combined with economic models to estimate the anticipated returns to 

exploratory drilling and improved through the incorporation of economic variables 

influencing the success of exploratory drilling. Hence, the estimation of URR for a region is 

frequently a secondary concern.  

At least ten different discovery process models exist, either as original formulations or 

significant modifications of such formulations. The following discussion is confined to the 

two approaches that appear to be most widely used and which originate from Arps and 

Roberts (1958) and Barouch and Kaufman (1975) respectively. Table 3.5 identifies the 

explained and explanatory variables for these models, while Table 3.6 summarises the 

mathematical notation used in the subsequent sections. As before, the  „size‟ of the field 

refers to an estimate of the URR from that field.  

                                                 
55 According to Kaufman (1975b): “…. „Discovery process‟ is a descriptive label for the sequence of information gathering 

activities (e.g. seismic surveys) and acts (drilling of exploratory wells) that culminates in the discovery of petroleum 

deposits. In building models of the discovery process, we will regard it as being effectively described by a small number of 

quantitative attributes (such as the number of exploratory wells drilled into a geological formation in a given area and the oil 

in place in the newly discovered pools and postulated relationships among them.” Major references on discovery process 

modelling include Arps and Roberts (1958), Barouch and Kaufmann (1975), Kaufman (1975b; 1993) Schuenemeyer and 

Drew (1994) and Meisner and Demirmen (1981). 
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Table 3.5 Classification of discovery process models by explained and explanatory variables 

Group Method Explained variable Explanatory variable 

Discovery process 

modelling 

Arps-Roberts model  Number of fields in 

each size class 

Effort  

 Barouch-Kaufmann 

model 

Probability of 

discovering a particular 

size class of field 

Number and size of 

previously discovered 

fields 

Table 3.6 Mathematical notation for discovery process models 

Notation Definition 

t Time 
  Effort 

i Discovery number (i=1 represents the first field to be discovered)  

k Size class of field (k=1 represents the smallest size class) 

Vk,t Mean size of fields in size class k as estimated at time t 

Vi,t Size of ith field, as estimated at time t 

,iV  URR of ith field 

Ai Surface area of ith field 

Ak Mean surface area of fields in size class k 

tkN ,  Number of fields in size class k discovered up to time t 

,kN  Number of fields in size class k discovered up to exploratory effort   

,kN  Ultimate number of fields in size class k 

ikM ,  Number of discovered fields in size class k which precede the ith 

discovery. 

3.6.1 Arps-Roberts model  

In a classic paper, Arps and Roberts (1958) introduced discovery process modelling, provided 

one of the first pieces of evidence for a lognormal distribution of field sizes and highlighted 

the importance of economic truncation in determining the observed distribution of field sizes. 

Versions of their approach have subsequently enjoyed widespread use in resource appraisal, 

most notably by the USGS (Drew, et al., 1995). 

Arps and Roberts investigated the history of oil discovery in the east flank of the Denver-

Julesburg basin in Colorado. This was an area of 5.7 million acres in which oil at first been 

found in 1930. Between 1949 and 1958 a total of 9504 wells had been drilled in this „play‟, of 

which 5035 were exploratory wells („wildcats‟). This led to the discovery of 338 oil fields of 

widely varying sizes. The combination of a geologically homogeneous region, unrestricted 

exploration throughout the region and a relatively large sample size of wells and fields made 

the area an excellent candidate for statistical examination. 

Arps and Roberts first investigated the relationship between the surface area of each field (Ai) 

and current estimate of the URR of these fields (Vi,t), as derived from decline curves and/or 

volumetric analysis (the potential for secondary recovery was ignored). They found that the 

estimated URR was approximately proportional to the 1.275 power of the surface area 

(
275.1

, 530 iti AV  ), suggesting that average recovery per unit area ( iti AV /, ) improved as the 

fields grew larger. They then arranged the 338 fields into 15 size classes (k), based upon the 

estimated URR of each field - with each class representing an mean URR approximately 
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twice that of the preceding class ( kk VV 21  ). A plot of the number of discovered fields 

within each size class against the natural log of the average URR within that size class was 

approximately normal - suggesting that the underlying field-size distribution was lognormal. 

Arps and Roberts used the number of exploratory wells drilled as their measure of 

exploratory effort ( ) and postulated that the probability of finding another field of a 

particular size class for each additional exploratory well must be proportional to the product 

of the number of undiscovered fields of that size remaining and the average surface area of 

such fields. They proposed that the success rate (the number of discovered fields divided by 

the number of exploratory wells) for each size class (k) should decline over time in 

accordance with the following functional form: 

            (3.48) 

Where C is a constant representing discovery efficiency (with larger C implying more rapid 

discovery). Discovery efficiency depends upon the exploration method used, but Arps and 

Roberts assumed that it was independent of the field size class and did not change over time 

time. Integrating this equation leads to: 

            (3.49) 

This may be interpreted as a „creaming curve‟ (although Arps-Roberts did not use that term), 

for the number of discoveries in a particular size class (k) as a function of the cumulative 

number of exploratory wells ( ). As   increases, ),( kN  increases towards an asymtope 

which provides an estimate of the ultimate number of fields in this size class ( ,kN ). 

Multiplying this number by the estimated average URR of fields in this size class ( ,kV ) and 

summing over all size classes leads to an estimate of the URR for the region 

(  
k

kk VNURR ,, ). 

Arps and Roberts reasoned that if drilling was entirely random and the total area covered by 

the discovered fields was small compared to the total area of the basin (B), then the constant 

C must be equal to 1/B. in other words, the probability of hitting a field in size class i would 

be equal to the ratio of the total surface area of remaining fields of that size to the area of the 

unexplored part of the basin. If drilling was instead informed by geological assessments, C 

was likely to be greater than 1/B. On the basis of the historical record of drilling success in 

the United States, they estimated a value of 2.75 for C which was assumed to be constant for 

all size classes and over time. 

Given historical data on exploratory drilling activity and the estimated size of discovered 

fields within the region, the Arps-Roberts model provides a useful basis for estimating the 

size distribution of undiscovered fields, the future discovery rates for different sizes of field 

and the ultimately recoverable resource for the region. Although relatively simple in 

structure, it has produced apparently accurate forecasts for a number of exploration plays, 

basins and provinces. For example, subsequent analysis by Attanasi et al. (1981) found that 

the Arps-Roberts discovery predictions for the 1956-74 period were fairly accurate.  
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3.6.1.1 Use of the AR model by the USGS 

Beginning in 1975, the US Geological Survey (USGS) has employed versions of the Arps-

Roberts model in their assessment of the oil and gas resources of the United States (Drew and 

Schuenemeyer, 1993). Early applications of this technique to the Permian Basin and the Gulf 

of Mexico led to two important modifications (Drew, 1997). First, since discovery efficiency 

typically increases with field size, the USGS specified discovery efficiency as a function of 

the size class (Ck, with 0.1kC ) and used non-linear regression to simultaneously estimate 

the relevant parameters.
56

 

Second, the method tended to underestimate the number of undiscovered small fields since 

the observed field size distribution was subject to „economic truncation‟ (Drew and 

Schuenemeyer, 1993). If future trends in technology and prices led to smaller fields 

becoming economically viable, this could lead to a significant underestimate of total 

undiscovered resources. The USGS corrected for this with a two-stage procedure. First, the 

Arps-Roberts model was used to estimate the number of fields in each size class larger than 

the mode. Second, the number of fields in each size class smaller than the mode was 

estimated by assuming a log-geometric field size distribution, in which the ultimate number 

of fields in each size class was a multiple of the next larger size class (   ,,1 kk rVV ). 

Estimates of the log-geometric multiplier (r) were derived in part from geological 

assessments and usually varied between 1.5 and 2.0 (Root and Attanasi, 1993).
57

 While this 

procedure improved upon the unadjusted model, the results were sensitive to the assumed 

field size distribution and the estimated values for r. 

The USGS use the modified Arps-Roberts model to forecast future discovery rates in the Gulf 

of Mexico (Drew, et al., 1982a). A subsequent evaluation showed that discovery rates were 

consistently underestimated across all size classes (Drew and Schuenemeyer, 1992). But 

while the volume of oil discovered was underestimated by as much as 50%, the number of 

fields discovered was only underestimated by 9%. Closer examination revealed that the 

primary source of the underestimation was the neglect of future reserve growth in the 

discovered fields. On average, the estimated URR of discovered fields (based upon 1P 

estimates) nearly doubled between 1977 and 1988, with the result that many fields moved 

from one size class to another. Hence, as with the simpler yield per effort models, it is 

necessary to estimate future reserve growth if discovery process models are to provide 

accurate forecasts of future discovery rates. These corrections are now routinely incorporated 

into the USGS models, but the appropriate algorithm for different sizes and classes of field 

remains a topic of controversy (Drew, 1997). 

3.6.2 Barouch-Kaufman model 

Barouch and Kaufmann (1975) introduced a sophisticated model which simulated the 

discovery process as sampling without replacement from a population of oil fields. The 

                                                 
56 Ck=1 implies that fields in this size class are discovered at more or less equal intervals throughout the discovery history. 

Ck>1 implies that the number of fields discovered declines as exploratory effort increases. Typically, Ck increases with k, 

where larger k corresponds to larger fields. 

57If the ratio were less than 1.0, then the smaller size classes would have fewer fields than the larger size classes. 

Alternatively, if the ratio were greater than 2.0 by smaller classes would contain more oil than the larger size class. If the 

ratio is only a 1.0, the most of the oil is contained in the few large fields. If the ratio is near 2.0, then the oil is more 

uniformly distributed among all size classes. 
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original model assumed a lognormal field size distribution and used maximum likelihood 

techniques to estimate this continuous distribution given information about the number, size 

and sequence of discovered fields. Smith and colleagues (Smith, 1980; Smith and Paddock, 

1984; Smith and Ward, 1981) developed a simpler alternative that group fields into discrete 

size categories and makes no assumptions about the field size distribution. 

Following Barouch and Kaufman, Smith (1980) assumed that: a) the discovery of fields (or 

reservoirs) in a petroleum play can be modelled as sampling without replacement from an 

underlying population of fields; and b) the discovery of a particular field is random, with the 

probability of discovery being proportional to the size of that field divided by the sum of the 

sizes of all remaining undiscovered fields. The probability that the first discovery (D1) will 

fall into size class k is then given by:  

 

            (3.50) 

Let the cumulative number of discovered fields in size class k which precede the ith 

discovered field be represented by Mk,i. Hence, the probability that the ith discovery will fall 

into size class k, conditional on the sizes of preceding discoveries, is given by:  

            (3.51) 

If the number of fields in each size class ( ,kN ) was known it would be possible to estimate 

the likelihood of any particular sequence of discoveries by taking the product of their 

conditional probabilities. Alternatively, given an observed sequence of discoveries, maximum 

likelihood techniques can be used to estimate the number of fields in each size class that 

maximises the likelihood of having observed the particular discovery sequence. Having 

obtained these estimates, it is possible to generate a sequence of predictive probability 

distributions for the sequence of future discoveries. 

Smith (1980) used this model to estimate the URR and future discovery sequence of 

petroleum (i.e. oil and gas) resources in the North Sea. The data included 99 discoveries 

made between 1967 and 1976, which were grouped into seven size classes. The model was 

found to accurately reproduce the past discovery history and estimated a mean URR of 43Gb. 

Similarly, Barouch and Kaufman (1978) tested their model on the Leduc play of the western 

sedimentary basin of Canada. They used the first 15 discoveries to predict the sizes of the 

16th through to the 55th discoveries. Since the 43rd discovery had been made, they were able 

to compare the predicted and actual values up to the 43rd. In total, the model predicted values 

that were within 7% of the actual values, although the errors were large for some individual 

discoveries. In another study, Power and Fuller (1992) compared the predictive accuracy of 

the Barouch and Kaufmann model to those of competing models using offshore data from 

Canada. The Barouch and Kaufmann model was generally found to perform better than 

competing models (including Hubbert‟s YPE curve) in forecasting future discovery rates.  

Hence, there is some evidence that this approach performs well under certain conditions, 

although the limited number of studies we have been able to access prevents any general 

conclusions from being drawn. Table 3.7 provides a comparison of the Arps-Roberts and 

Barouch-Kaufman models. 








 

Kk

kk

kk

VN

VN
kVP

,1

,,

,,

,1
*

*
)(














Kk

kikk

kikk

i
VMN

VMN
kVP

,1

,,,

,,,

,
*)(

*)(
)(



 

 

86 

86 

Table 3.7 Comparison of the Arps-Roberts and Barouch-Kaufman models 

Arps-Roberts Barouch-Kaufman 

Requires information about the area of the 

exploratory region 

Does not require information about the area 

of the exploratory region 

Computes results for changes in the 

exploratory effort 

Does not require data on exploratory effort 

Computes changes in the number of fields in 

discrete size categories 

Computes the expected size of new 

discoveries in a particular order  

Requires a time series of the number of fields 

in each size category – but does not require 

the order of discovery 

Requires a time series on the order and the 

size of discoveries 

Not necessary to estimate the population 

number of fields to be discovered 

Necessary to estimate the population number 

of fields to be discovered ( ,kN ) 

Computationally straightforward Computationally difficult involving 

maximum likelihood methods 

Not based on probabilistic propositions Derived from probabilistic propositions 

Source: Herbert (1982) 

3.6.3 Summary 

Discovery process models have a stronger theoretical basis than simple curve-fitting and may 

potentially provide more reliable estimates of URR for the regions in which they can be 

applied. However, there has yet to be a comprehensive synthesis of research in this area and 

the existing literature appears both patchy and difficult to interpret. While numerous authors 

have developed variations on the basic themes – many of which are highly sophisticated
58

 – 

the techniques appear to be little used and there is a lack of comparative studies on their 

relative performance. Also, the extensive data requirements and methodological 

sophistication would appear to present a barrier to their more widespread use. 

Contrary to the claims of Kaufman (1975a)
59

 and others, the difference between discovery 

process models and simple curve-fitting appears to be one of degree rather than kind. As a 

result, these models have many of the same limitations as a simple curve-fitting. For 

example, discovery process models works best when applied to maturely explored and 

geologically homogeneous regions with relatively open access to exploration. If applied to 

larger or poorly explored regions or to regions with restricted access to exploration, the 

results can be misleading (e.g. in failing to anticipate new discovery cycles).
60

 Similarly, the 

models frequently assume that success rates decline continuously as a result of physical 

depletion, which implies that changes in prices, costs and technology do not have a 

significant influence. But this assumption is inconsistent with econometric evidence from a 

variety of regions (Forbes and Zampelli, 2000; Iledare and Pulsipher, 1999) and raises the 

                                                 

58
 For example, Meisner and Demirmen (1981); Rabinowitz (1991), Arps et al. (1971), Forman and Hinde (1985), Lee and 

Wang (1983; 1985; 1986) and Lee (2008). 
59 Kaufman (1975) claims that “….. there is an important difference between a model whose output is a logical consequence 

of relations among a set of primitive assumptions describing the process by which data are generated and one in which the 

„law‟ governing the mathematical form of its output is the primitive assumption. An example of the former is the model of 

Barouch and the present author; the models of Hubbert and Moore are instances of the latter. The user will generally have 

more confidence in forecasts generated by a model that passes tests of the validity of primitive assumptions from which it is 

structured, independently of tests of the predictive quality of its output.” 
60 In some cases, it may not be possible to use such models at all. For example, if the prime areas are leased and explored 

relatively late, the discovery rate for even the larger field size classes may not decline over time (Schuenemeyer and Drew, 

2004). 
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possibility of historic or future shifts in discovery rates as a result of factors such as changes 

in tax policy (see Section 5). Similarly, the models will only generate reliable forecasts if the 

field size data is adjusted to allow for future reserve growth. But this adjustment is not always 

made and is difficult owing to the lack of relevant data and the considerable variability in the 

growth process between different regions, types of field and reserve reporting standards 

(Schuenemeyer and Drew, 2004). 

Most importantly, both discovery process models and curve-fitting rely upon historical data 

that was generated under one set of economic, political and technical conditions and use this 

to forecast future discoveries that may take place under very different conditions. Hence, the 

forecasts will only be reliable if the geological determinants of future discoveries 

significantly outweigh the other influences. The accuracy may potentially be improved by the 

development of hybrid models that introduce additional economic and other variables (Walls, 

1994), but relatively few examples of such models appear to be available. Section 5 examines 

these approaches in more detail.  

3.7 Summary 

This section has described the various historical extrapolation techniques that are used to 

estimate ultimately recoverable resources. In each case, it has identified the historical origins 

of the technique, highlighted some relevant strengths and weaknesses and identified the 

conditions under which the technique appears more likely to be reliable. The key conclusions 

are as follows: 

 Curve-fitting versus discovery process: Extrapolation techniques fall into two groups -  

curve-fitting and discovery process models. While the former use aggregate data for a 

region, the latter require data on individual fields and hence may not always be feasible. 

Both groups assume that the field size distribution is highly skewed and that fields tend to 

be discovered and produced in declining order of size. These assumptions appear more 

likely to be accurate for geologically homogeneous regions where exploration has been 

relatively uninterrupted. Many of the difficulties with curve-fitting techniques arise from 

the fact that these conditions may not hold for the regions for which they are applied. 

 Classification: Curve-fitting techniques may be classified according to their choice of 

explained and explanatory variables (Table 3.3). While the analysis of production is 

relatively straightforward, the analysis of discovery is greatly complicated by reserve 

growth at known fields. While the use of backdated discovery estimates can help in this 

regard, this is only possible if the relevant information is available. Even then, it is 

desirable to adjust the estimates to allow for future reserve growth. If such an adjustment 

is not made, curve-fitting to discovery data may lead the URR to be underestimated. But 

given the paucity of information on reserve growth, the estimates will be sensitive to the 

particular growth function employed.  

 Production over time: Production projection is straightforward to apply and relies upon 

data that is readily available, relatively accurate and free from the complications of 

reserve growth. But the technique is only useful for regions that are relatively advanced in 

their production cycle. There is no robust basis for choosing a particular functional form 

and different forms are often found to fit the data equally well but yield very different 

estimates of URR. Multi-cycle models may often be more appropriate for aggregate 

regions, but they create the risk of over-fitting and highlight the possibility of new 

discovery and production cycles occurring in the future. The results will only be reliable 
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if any future cycles have only a small impact on aggregate resources - either because 

there are few such cycles or because the resources are relatively small. The popular 

„Hubbert Linearisation‟ technique is equivalent to fitting a logistic curve to cumulative 

production and hence is both less flexible than production projection (since only one 

functional form is employed) and no more reliable.  

 Discovery over time: Discovery projection and decline techniques have many similarities 

to those for production, but since discovery is more advanced these techniques should be 

applicable to a larger number of regions. The techniques raise similar concerns to those 

identified above but also introduce additional complications such as the uncertainty in 

reserve estimates, the relative suitability of 1P and 2P estimates and the implications of 

„smoothing‟ erratic discovery trends. The existence of reserve growth suggests the need 

for backdated rather than current measures of discovery, but the shape of the discovery 

cycle based on backdated estimates will be different from that based upon current 

estimates and both the „height‟ and shape of the backdated discovery cycle will change 

over time.  Hence, if reliable and consistent estimates of URR are to be obtained, 

backdated discovery data should be adjusted to allow for future reserve growth.  

 Discovery over effort: Creaming curves and yield per effort curves offer advantages over 

production and discovery projection, but must still be used with care. Difficulties can 

again arise with the accuracy of the relevant data, the required corrections for future 

reserve growth, the poor fit of particular functional forms, the existence of multiple 

exploration cycles and the failure to anticipate new exploration cycles in the future. 

Overall, these difficulties appear more likely to lead to underestimates of the regional 

URR.  

 Discovery process: Discovery process models have a stronger theoretical basis than 

simple curve-fitting and may potentially provide more reliable estimates of URR for the 

regions in which they can be applied. However, these techniques appear to be largely 

confined to North America, perhaps as a result of their extensive data requirements. Also 

there is a lack of comparative studies on the relative performance of different models and 

they have many of the same limitations as a simple curve-fitting. As with curve-fitting, 

the neglect of economic and other variables suggests that the forecasts will only be 

reliable if the geological determinants of future discoveries significantly outweigh the 

other influences - at least over the time-scales that are relevant to the estimation of URR. 

This need not necessarily be the case, and even if it was the inclusion of additional 

explanatory variables could potentially improve the results. 

 Implications: All methods of estimating URR have their limitations, so the above 

criticisms need not imply that other approaches are any more reliable. The uncertainties 

associated with these techniques must always to be acknowledged and the results 

expressed in probabilistic form where possible. Accuracy may potentially be improved 

through the incorporation of additional explanatory variables, explicit allowance for 

reserve growth and a focus on smaller geographical regions. But a more disaggregated 

analysis is likely to be resource intensive, as well as requiring access to confidential data. 

While a more aggregate analysis may potentially lead to biased estimates, the size of the 

error may vary widely from one region to another and may be expected to decline in the 

future as exploration matures. For regions such as the continental United States, the error 

may already be relatively small. Estimates of the global URR may be derived from the 

sum of estimates derived from applying curve-fitting techniques to individual regions. 

These estimates should become more accurate over time as more of the world‟s oil 

bearing regions become comprehensively explored.  
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4 Consistency of curve fitting techniques 

4.1 Introduction 

This section uses illustrative examples to investigate the consistency of URR estimates from 

different curve fitting techniques (i.e. the extent to which one estimate differs from another). 

Using discovery and production data from a number of regions, it assesses: 

 Consistency over time: whether estimates for a region that are made with one technique 

using data through to year X are consistent with estimates made by the same technique 

using data through to a later year Y. 

 Consistency between functional forms: whether estimates for a region that are made 

assuming one functional form are consistent with the estimates made by assuming a 

different functional form that has a comparable goodness of fit; 

 Consistency over the number of curves: whether estimates for a region that are made by 

fitting a single curve to the whole data set are consistent with the estimates made by 

fitting two curves sequentially to individual components of the dataset; and 

 Consistency between techniques: whether estimates for a region that are made using one 

technique are consistent with those made by another technique.  

Tests for consistency were conducted with the following three curve-fitting techniques, 

representing each of the groups identified in Section 3: 

 Hubbert Linearisation - a production over time technique; 

 Discovery Projection - a discovery over time technique; and 

 Creaming Curves - a discovery over effort technique 

These techniques are widely used for deriving estimates of regional URR, so the consistency 

of results derived from them is of considerable interest. Table 4.1 indicates the tests that were 

conducted for each of the three techniques. Whether two URR estimates are judged to be 

„consistent‟ with one another will depend upon the level of accuracy that is expected from the 

technique. In general, we would expect more accurate estimates to be obtained for those 

regions that are at a later stage of their production and/or discovery cycle. For illustrative 

purposes, in what follows we judge two estimates to be consistent if they differ by less than 

20% of the cumulative discoveries in the region through to 2007.  
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Table 4.1 Consistency tests on curve fitting techniques 

Test Hubbert 

Linearisation 

Discovery projection Creaming Curves 

Consistency over time Yes Yes - 

Consistency between 

functional forms 

- Yes Yes 

Consistency over the 

number of curves 

- - Yes 

Consistency between 

techniques 

Yes Yes Yes 

The relevant data was obtained from the 2007 edition of the Petroleum Economics and Policy 

Solutions (PEPS) database provided by IHS Energy. This contains time-series data on 

petroleum production, remaining resources, discoveries and exploratory drilling for all oil 

producing countries going back to the 19th century. This is based upon a much more detailed 

field-level database and is the continuation of statistics maintained by Petroconsultants Inc 

before their purchase by IHS Energy in 1998. A very similar database forms the basis for the 

work of Colin Campbell and Jean Laherrère. The information in the IHS database derives 

from a variety of sources including published information and expert assessments. It is 

widely recognised as an authoritative and valuable source of information on the global oil and 

gas industry.  

The IHS database classifies petroleum into gas and liquids. The latter includes crude oil, 

natural gas liquids (NGLs), condensate, heavy oils (less than 10 degrees API) and oil sands, 

but the relative proportion of each is not identified.
61

 The estimates of remaining resources 

are based upon 2P (proven plus probable) reserves and hence differ from those published in 

public domain sources such as the BP Statistical Review. The measure of exploratory activity 

is the total number of new field wildcat (NFW) wells. Importantly, no distinction is made 

between the search for oil and the search for gas resources. 

In order to examine the reliability of URR estimates generated through the curve-fitting 

techniques, we analysed data from ten oil producing regions – labelled A to J. Most of these 

were individual countries, while some represented groups of countries. The regions were 

chosen to represent a broad range, both geographically and with regard to the relative 

maturity of their production and/or discovery cycle – with the majority being at a relatively 

mature stage. From inspection, we estimate that all but Region B have passed their peak of 

discovery, while  five regions (A, D, F, H and J) have passed their peak of production. In 

principle, we would expect the curve fitting techniques to provide more accurate and 

consistent results for those regions where the production/discovery cycle is more advanced.  

For reasons of confidentiality, the individual regions are not identified below and the 

associated discovery and production figures are annoyomised. Where comparison of URR 

estimates is made, the values are given as a percentage of either the cumulative discovery in 

the region through to 2007 (D2007) or the cumulative production through to 2007 (Q2007). The 

focus throughout is on the consistency of the methodological techniques, rather than the 

absolute size of the relevant estimates. In principle, estimates of URR should be greater than 

Q2007 and D2007 but closer to the latter than the former. Also, smaller estimates of URR 

                                                 
61 Biofuels, GTLs and CTLs are excluded. 
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relative to Q2007 (D2007) may suggest that the region is more advanced in its production 

(discovery) cycle. However, these estimates may be inaccurate and the examples below 

include instances where the „best‟ estimate of URR is less than the cumulative discoveries 

through to 2007.  

The models are fit using both linear and nonlinear regression techniques and their relative 

„goodness of fit‟ is compared using the coefficient of determination, or R
2
. This measure has 

a number of limitations, as discussed in Box 4.1. However, it is useful as a first order 

indication of how well a particular model fits the data. The relative statistical issues 

associated with curve fitting are explored further in Section 5.  

The following sections use the mathematical notation introduced earlier in Section 3.2. This 

is summarised again in Table 4.2.  

Table 4.2 Notation for explained and explanatory variables. 

Notation Definition 

t Time 

  Effort 

td Cumulative time for discovery 

d  Cumulative effort for discovery 

Q(t) Cumulative production  

Q’(t) Rate of change of cumulative production (rate of production) 

R(t) Reported reserves 

D(t) or )(D  Cumulative discovery  

D’(t) or )(' D  Rate of change of cumulative discovery (rate of discovery) 

B(td,t) or ),( tB d  Backdated cumulative discovery 

B’(td,t) or ),(' tB d  Rate of change of backdated cumulative discovery 

)(Q  or )(D  or 

),( B  

Ultimately recoverable resource 
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Box 4.1 Measures of goodness of fit 

The goodness of fit of a statistical model describes how well it fits a set of observations. In regression 

analysis, a common measure of goodness of fit is the R
2
 value, which defines the proportion of 

variability in the data that is accounted for by the model. The R
2
 is calculated from: 

tot

err

SS

SS
R 12  

where SSerr is the sum of squared errors (the distances of the points from the best-fit curve) and and 

SStot is the total sum of squares (the distances of the points from the mean of all Y values). R
2
 is a 

fraction between zero and one, with higher values indicating a better fit. The name R
2
 is a missnomer 

as it is not the square of anything and could be negative if the curve fits the data worse than the mean.  

One drawback with R
2 
is that it always increases when additional explanatory variables are added to a 

model. Hence, an alternative adjusted R
2
 is frequently used, which penalizes the statistic as extra 

variables are included (nested models). The adjusted R
2 

is defined as 
)1/(

)(
12






TSS

kTSS
R

tot

err , where T 

is the sample size and k is the number of variables in the model. Note that the adjusted R
2
 can never be 

higher than the R
2
 and could principle be less than zero. 

Neither R
2
 or 2R  should be used as the main criterion for whether a model fit is reasonable, since 

they can be quite high and yet lead to wide confidence intervals for the forecast („out of model‟) 

values of the explained variable. It is also possible to have best-fit values for most of the data, but not 

over the most recent years which could be more important when analysing trends in a variable over 

time. For instance, two models may have the same R
2
, but one may fit the data very well at the 

beginning of the time period but not so well towards the end. Conversely a second model may fail to 

provide a good fit at the start, but fit the data much better towards the end. This important fact is not 

captured by either R
2
 or 2R .  

The R
2
 and 2R  statistics can be useful when comparing nested models: that is, where one model is a 

particular case of a second model (e.g. containing only a subset of the variables). However, these 

statistics are not appropriate for comparing non-nested models, where such a relationship does not 

apply. An example would be a comparison of a logistic with a Gompertz functional form. There are a 

variety of ways of comparing such models, but they all include the error sum of squares (SSerr) 

multiplied by a penalty factor that depends upon the complexity of the model (Ramanathan, 2002). A 

more complex model will reduce the SSerr but raise the penalty. A popular approach for time-series 

analysis is Akaike's Information Criterion (AIC), defined as: Tkerr e
T

SS
AIC /2









 . Alternative options 

include the Schwartz Criterion (SC) and Ameniya‟s Prediction Criterion (PC) (Kennedy, 2003). None 

of these methods are definitive, since it is possible to find a model that is superior under one criterion 

and inferior under another. Note further that these statistics should not be used to compare models 

with different explained variables (e.g. a discovery projection versus a production projection).   
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4.2 Hubbert linearisation  

4.2.1 Background and approach 

„Hubbert Linearisation‟ (HL) is a popular curve-fitting technique owing to its methodological 

simplicity and the relative availability of the required data. It involves:  

 plotting the ratio of annual to cumulative production ( )(/)(' tQtQ ) as a function of 

cumulative production (Q(t));  

 taking a linear regression; and  

 estimating the URR from the intercept of the regression line with the Q(t) axis.  

As shown in Section 3.3.2, the relationship between Q‟(t)/Q(t) and Q(t) will only take a 

strictly linear form if cumulative production (Q(t)) takes a logistic form. To illustrate this, 

Figure 4.1 illustrates a Hubbert Linearisation for a hypothetical region in which the 

cumulative production grows logistically. This suggests that regions where the growth in 

cumulative production is approximatly logistic should linearise reasonably consistently, but 

departures from logistic growth will lead to departures from a linear trend in the HL 

transform. In addition, Hubbert stated that this approach was only likely to provide a reliable 

estimate of URR if over one third of the resources had already been produced. However, 

since the URR is not known, it is impossible to assess whether this criterion is met (Pesaran 

and Samiei, 1995).  

Figure 4.1 Hubbert Linearisation of logistic growth in cumulative production 

Q
'(t
)/
Q
(t
)

Q(t)
 

The data for the ten regions were first plotted in the prescribed fashion. Groups of data points 

that appeared to show an approximate linear relationship were then isolated and a linear 

regression performed using Microsoft
®
 Excel. No attempt was made to fit a linear regression 

to the entire dataset, since the data invariably showed considerable scatter for the early years 

of production This is perhaps understandable, given that the numerator of the „explained‟ 

variable (Q’(t)/Q(t)) will be relatively large during the early period compared to the 

denominator. Hence, small departures from a logistic model of cumulative production may 

lead to proportionately large departures from the implied ratio of Q’(t) and Q(t) in the early 

stages of the production cycle. In contrast, as cumulative production increases, the numerator 

of the explained variable will become a progressively smaller fraction of the denominator, 

with the result that departures from the logistic model should have a smaller effect on the 
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magnitude of this ratio.
 
This highlights an important weakness of the HL approach: since the 

„explained‟ and explanatory variables are not independent, the errors cannot be normally 

distributed throughout the dataset. This issue is discussed further in Section 5.  

4.2.2 Results - consistency over time 

Figure 4.2 shows the results of our analysis for Region A. This example behaves in a similar 

manner to those presented by Hubbert (1982) and Deffeyes (2003).
62

 Data points for earlier 

years show considerable scatter, but then the data „settles‟ to an approximate linear 

relationship which can be modelled and extrapolated using linear regression. This leads to an 

estimate of URR which is 32% larger than the cumulative production through to 2007 – 

suggesting that the region is well advanced in its production cycle.  

Figure 4.2 Hubbert Linearisation of production data for Region A 

. 

Q
'(t
)/
Q
(t
)

Q(t)

URR estimate = 132% of 
the cumulative 
production in 2007

 

From this example and the references cited above, it could be assumed that the linear 

relationship will be maintained until production ceases, implying that the estimate of URR is 

consistent and accurate. However, the data only behaved in an approximately consistent 

fashion for four out of the ten regions examined here. In the remainder, the data failed to 

„settle‟ into a single linear relationship even for regions where the production cycle appeared 

to be relatively advanced. An example is provided in Figure 4.3, where the data for Region B 

is modelled with three separate linear regressions. If similar analyses had been conducted at 

an earlier stage in the production cycle for this region, these would have led to 

underestimates of the URR.
63

 The linear trends identified during the earlier stages of the 

production cycle were not subsequently maintained, but the HL method provides no way of 

anticipating this.  

                                                 
62 Numerous examples can also be found on peak oil web sites such as the Oil Drum. 

63 For a similar example, see the following post on the Oil Drum by Robert Rapier: Predicting the Past: the Hubbert 

Linearisation. 

http://www.theoildrum.com/
http://www.theoildrum.com/node/2357
http://www.theoildrum.com/node/2357
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Figure 4.3: Hubbert Linearisation of production data for Region B 

Q
'(
t)
/Q

(t
)

Q(t)

URR= 559% 
URR= 67%

URR= 14%

 

One possible explanation for the behaviour illustrated in Figure 4.3 is that Region B has 

experienced several cycles of exploration and production. These may occur, for example, 

because different geographical areas were opened up to exploration at different times, or 

because technological developments allowed access to deeper or less accessible resources. In 

particular, several countries have both onshore and offshore oil-producing regions and the 

former have typically been developed many years before the latter. Combining both of these 

within a single analysis could be misleading – although it may also be unavoidable if 

production data is only available at the aggregate, country level. Fortunately, the IHS 

database reports onshore and offshore production separately. To explore whether separating 

the two improves the results, Figure 4.4 presents the results of a HL of offshore production in 

Region B, while Figure 4.5 does the same for onshore. 
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Figure 4.4 Hubbert Linearisation of offshore production in Region B. 
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Figure 4.5 Hubbert Linearisation of onshore production in Region B 
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The results demonstrate that separating offshore from onshore production does not resolve 

the problems in using HL to estimate the URR for this region. Both sets of results show the 

same „breaks‟ in the data series that were observed with the aggregate data analysed in Figure 

4.3. If the HL had been estimated at an earlier stage of the production cycle, it would have led 

to a significant underestimate of the URR (e.g. an estimate that was less than 15% of the 

„actual‟ URR). 

In Section 3.3.1, it was observed that the logistic model provided a poor fit to production 

trends in many of the world's oil producing regions. In the most systematic study to date, 

Brandt (2007) analysed 74 regions that were past their peak of production and found that the 

rate of production increase exceeded the rate of decline in over 90% of cases.
64

 This implies 

that an asymmetric to the left model of cumulative production may often be more appropriate. 

One approach, first introduced by Moore (1962), is the Gompertz function, defined as follows 

(Gompertz, 1825):
65

  

                                                 
64 The production weighted mean rate of exponential decline was found to be approximately 2% while the production 

weighted mean rate of increase was approximately 6%. 
65 Both the logistic and Gompertz functions have their origin in the study of population growth (Ausloos and Dirickx, 2005) 
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(4.1) 

This leads to a cumulative production cycle with a point of inflection around 35- 40% of the 

URR, implying a production cycle with a rate of decline that is slower than the rate of 

increase. Figure 4.6 shows the corresponding Hubbert Linearisation. It is clear that if 

cumulative production grew in this manner, then the use of HL would lead to a consistent 

underestimation of the regional URR, with the percentage error falling over time. 

Figure 4.6 Hubbert Linearisation of Gompertz growth in cumulative production 

Q
'(t
)/Q

(t
)

Q(t)
 

The data from several of the regions examined exhibited similar behaviour to that illustrated 

in Figure 4.6 - consistent with Brandt‟s observation that the production cycle is frequently 

asymmetric to the left. For example, Figure 4.7 presents the HL plot for offshore production 

in Region C. In regions such as this, an HL would again give unreliable results.  

Figure 4.7 Hubbert Linearisation of offshore production data for Region C. 

Q
'(t
)/
Q
(t
)
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The overall results from the consistency over time tests for Hubbert Linearisation are 

summarised in Table 4.3 and illustrated in Figure 4.8. This demonstrates that only four of the 

regions (A, D, F and I) exhibited consistency over time with the aggregate data, while none 

of the regions exhibited consistency over time for both onshore and offshore data. These 

judgements are based upon the URR estimates from the linear regressions but for many of the 

regions the data only settled into an approximately linear relationship relatively late into the 

production cycle. While the regions that gave consistent results appeared to be at a relatively 

mature stage in their production cycle, other regions (e.g. Region J) that appeared to be at a 

comparable stage gave inconsistent results. Moreover, given the frequency of „breaks‟ in the 

relationships for the „mature‟ regions, it is quite possible that comparable breaks will 

subsequently be seen in the data for less mature regions. In other words, analyses that appear 

)(

)(
mttb

aeeQtQ





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to provide consistent results using data through to 2007 may not continue to provide 

consistent results in the future. 

It is also useful to compare the URR estimates from the aggregate data with the sum of the 

estimates from the onshore and offshore data (Table 4.3). This shows that five regions (C, D, 

F, G and H) gave consistent estimates (i.e. differing by less than 20% of Q2007).  

The primary explanations for the lack of consistency appear to be that: a) the regional data is 

highly aggregate and in many cases includes several discrete oil producing regions that were 

developed at different times; and b) the cumulative production profile of individual regions is 

only poorly approximated by the logistic model. Further research is required to identify 

whether our sample is representative of oil producing regions as a whole, or of regions at 

different levels of aggregation. However, the results raise concerns about the usefulness of 

the HL technique. In particular, it appears more likely to underestimate the regional URR 

than to overestimate it, thereby contributing to overly pessimistic forecasts of future oil 

production. The following section examines the discovery projection technique to see 

whether the same difficulties apply. 

Table 4.3 Summary of consistency tests of Hubbert Linearisation technique 

Region Stage of 

production 

cycle (pre 

or post 

peak) 

HL 

consistent 

over time 

for 

aggregate 

data? 

HL 

consistent 

over time 

for 

onshore 

data? 

HL 

consistent 

over time 

for 

offshore 

data? 

URR 

estimate 

from 

aggregate 

data 

(% of 

Q2007) 

Sum of 

URR 

estimates 

from on 

and 

offshore 

data (% 

of Q2007) 

Difference 

(% of 

Q2007) 

A Post Yes - - 132 132 - 
B Pre No No No 559 262 297 
C Pre No No Yes 210 192 18 
D Post Yes Yes No 119 132 13 
E Pre No No No 403 495 92 
F Post Yes Yes No 124 119 5 
G Pre No No No 258 252 6 
H Post No No Yes 124 108 15 
I Pre Yes Yes No 175 201 26 
J Post No Yes No 124 170 46 
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Figure 4.8 Summary of consistency over time tests for Hubbert Linearisation technique 
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4.3 Discovery projection 

4.3.1 Background and approach 

Discovery projection involves:  

 Plotting cumulative discovery estimates as a function of the date of discovery (td);  

 using non-linear regression techniques to fit a particular functional form to this data; and 

 estimating the URR from the value of the relevant parameter(s) – which corresponds to 

the asymptote of the curve.  

We use backdated cumulative discovery estimates ( ),( ttB d ) in what follows, since this is 

what is available from the IHS database. We do not correct for future reserve growth since 

such adjustments are not made by authors such as Campbell and Laherrère. In other words, 

we are testing the consistency of this method as used by the most prominent authors in this 

field. Nevertheless, it is possible to adjust for future reserve growth with the IHS database 

(see Box 4.2) and it is likely that this would make the methods more consistent as well as 

more accurate. However, the results would necessarily be sensitive to the particular growth 

function that is employed. 

Compared to the Hubbert Linearisation of production data, discovery projection should have 

two advantages. First, since the discovery cycle is more advanced than the production cycle, 

the technique should be applicable to a greater number of oil-producing regions and the 

corresponding estimates of URR should be more reliable. Second, discovery projection does 

not impose the restriction that the discovery cycle be approximately logistic, since a variety 

of functional forms can be employed. The main drawback is that the relevant discovery data 

is generally less accessible and should in principle be corrected to allow for future reserve 

growth. Also, nonlinear regression is less straightforward than linear regression, although 

modern software packages make the technique much easier to apply than was the case in the 

past. Some background on nonlinear regression is provided in Box 4.3. 

We applied discovery projection techniques to the same ten regions as analysed in Section 

4.2. In each case, we fitted one or more functional forms to the aggregate data using the 

nonlinear regression function in SPSS
©

. For each region, we first compared the consistency 

of the URR estimates obtained using different functional forms (Section 4.3.2) and then 

compared the consistency using different lengths of data series (Section 1.1.1). For reasons of 

time, the analysis was confined to data for the aggregate region, without distinguishing 

between onshore and offshore resources. Although this is also the approach used by 

Campbell and Heapes (2008) among others, combining onshore and offshore regions within a 

single analysis could adversely affect the consistency of the results. 
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Box 4.2 Adjusting IHS aggregate discovery estimates to allow for future reserve growth 

The IHS database contains estimates of ),(' ttB
dtd

 - i.e. the amount of oil discovered at time td as 

estimated in the current year t (where 
d

tt  ). These are backdated estimates and hence tend to be 

larger than the corresponding estimates made in the year of discovery ( ),('
ddt

ttB
d

) as a consequence 

of reserve growth in the intervening period ( dtt  .). The growth in the estimates for a given 

discovery year (td) is given by: ),('/),(')(
ddtddt

ttBttBG
dd

  . Estimation of the „growth function‟ 

( )(G ) requires data on ),('
ddt

ttB
d

 and hence requires access to the IHS databases from all previous 

years (i.e. each td). Estimates of growth functions are also available from the technical literature.  

However, these mostly relate to cumulative discovery estimates based upon 1P reserves for US fields, 

while the IHS database contains cumulative discovery estimates based on 2P reserves for non-US 

fields. However, Klett et al. (2005a) find that growth functions derived from the former appear 

equally applicable to the latter. 

Estimates of the size of discovered resources will continue to grow into the future, with the ultimately 

recoverable resources discovered in each year being given by ),(' 
dt

tB
d

. If data on ),('
ddt

ttB
d

 was 

available, then ),(' 
dt

tB
d

 could be estimated by using a suitable growth function drawn from the 

technical literature: ),('*)(),('
ddtdt

ttBGtB
dd

 . Taking the estimated size of the ultimate resources 

discovered in each year ( ),(' 
dt

tB
d

) and dividing this by the database estimates of the size of those 

resources ( ),(' ttB
dtd

) gives an estimate of the amount of growth that remains to be realized for each 

age of field, assuming a particular growth function ( )(G ): 

)(

)(

),('*)(

),('*)(

),('

),('

 G

G

ttBG

ttBG

ttB

tB

ddt

ddt

dt

dt

d

d

d

d








 

An estimate of the ultimate resources discovered in each year can therefore be obtained from: 

),('
)(

)(
),(' ttB

G

G
tB

dtdt dd 


  

Hence, given a suitable growth function, it is possible to correct the annual discovery estimates in the 

IHS database to allow for future reserve growth (i.e. convert ),(' ttB dtd
 into ),(' dt tB

d
). Corrected 

estimates of the cumulative discoveries through to year t may then be obtained from: 

d

t

dtd dttBtB
d

d 
0

),('),(  
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Box 4.3 Nonlinear regression 

Nonlinear regression is similar to linear regression in that is based upon minimising the sum of 

squared errors (i.e. the distances between the data points and the estimated curve). A number of 

algorithms are available, but the most commonly used method was developed by Levenberg and 

Marquardt. The starting point is an assumed nonlinear functional form which should in principle be 

based upon a theoretical model. Unlike with linear regression, the user must enter initial values for the 

relevant parameters, ensuring that these are a reasonable approximation of the best fit model. The 

computer then systematically adjusts these parameters through a series of iterations in order to 

achieve the minimum sum of squares. Depending upon the data set and the model, the results may be 

sensitive to the chosen initial values. As with linear regression, the technique relies upon a number of 

assumptions including independent and normally distributed error terms with constant variance. If 

these conditions are not met – which may well be the case – the standard errors of the parameter 

estimates become invalid. A more comprehensive explanation of nonlinear regression techniques can 

be found in Bates and Watts (2007). 

Source: Motulsky and Christopoulos (2004b) 

4.3.2 Results – consistency over functional form 

To perform discovery projection, it is necessary to choose an appropriate functional form. 

Rather than being informed by theory, the choice is typically made on the basis of 

convenience and goodness of fit and in some cases a number of different functional forms 

would appear to fit the data equally well. In Section 3.3, it was argued that the appropriate 

functional form for backdated estimates of cumulative discoveries ( ),( ttB d ) was likely to be 

different to that for current estimates of cumulative discoveries (D(t)) and that an exponential 

curve was more likely to be suitable for the former than a logistic curve. This is because an 

exponential curve can better reflect the discovery of the largest fields early in a region's 

exploration history. However, this assumption was not borne out for the ten regions 

examined here. Indeed, an exponential curve was found to provide a poor fit to the data in all 

cases while a logistic curve frequently provided a better fit. Hence, in what follows we 

confine attention to the fitting of logistic and Gompertz functional forms to the backdated 

discovery data. These were chosen because they are widely used and appeared to fit the data 

equally as well as other sigmoidal functional forms (e.g. the cumulative normal). 

The reason for the poor fit of the exponential functional form is unclear. One possibility is 

that many of the regions were first explored many decades ago when exploration technology 

was relatively immature. As a result, the fields may not have been found in approximate 

declining order of size as theory suggests.
66

 In regions that have been explored more recently, 

the time series of cumulative discoveries may be expected to be approximated more closely 

by an exponential form. To illustrate this, Figure 4.9 compares a „pioneer‟ region in which 

exploration was begun many decades ago, with a „young‟ region in which exploration began 

relatively recently using modern technology. The backdated discovery cycle for the former is 

approximately sigmoidal in shape, while that for the latter is approximately exponential. It is 

also possible that the backdated discovery cycle for more aggregate regions (such as the 

world as a whole) would be more sigmoidal as the slow learning phases of pioneer oil regions 

                                                 
66 This is the case in the US for example, where for the first fifty years of exploration, the efficiency of the industry in 

finding large fields was lower than that predicted by a random search (Menard and Sharman, 1975). 
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would be included in the data. But this again serves to highlight the essentially arbitrary 

nature of the choice of functional form. 

Figure 4.9 Comparison of backdated cumulative discovery trends in ‘Pioneer’ and ‘Young’ 

regions 

Pioneer Oil Region Young Oil Region
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Figure 4.10 presents the results of fitting a logistic model to the cumulative discoveries in 

Region D. As with most of the regions examined here, this appears to have passed its peak of 

discovery. An R
2
 of 0.999 indicates that the logistic curve provides a very good fit to the data 

(Box 4.1), but this does not discount the possibility that another model may describe the data 

more accurately (Motulsky and Christopoulos, 2004b). To illustrate this, Figure 4.11 presents 

the results of fitting a Gompertz model which is also found to give an R
2
 of 0.999. However, 

the corresponding estimate for URR is 33% larger. While different (non-nested) models 

cannot be compared using R
2
 (Box 4.1), the example serves to illustrate that URR estimates 

can be sensitive to the choice of functional form. Given the good fit of both models and the 

lack of any theoretical grounds for choosing between them, this raises concerns about the 

reliability of the discovery projection technique for estimating URR. 
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Figure 4.10: Logistic discovery projection for Region D  
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Figure 4.11: Gompertz discovery projection for Region D 
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The results of this test for all the regions examined are summarised in Table 4.4 and Figure 

4.12. Of the ten regions examined, the R
2
 value was higher using the Gompertz model in six 

cases and equal (to three decimal places) in one case (Region D). All the R
2
 values were 

above 0.97 and the mean difference between them was 0.001. In contrast, the mean difference 

in the URR estimates from the two models, expressed as a percentage of the cumulative 

discoveries through to 2007, was 59%. The largest difference between the two models was 

362% of the cumulative discoveries through to 2007 (Region B), while the smallest was only 

1% (Region I). These differences are only related in part to the relative maturity of the 

discovery cycle. The Gompertz model produced a higher estimate of the URR in all cases, 

suggesting that the choice of functional form can bias the results.  

For four out of the ten regions (B, D, E, F), the difference in URR estimates was more than 

25% of the cumulative discoveries through to 2007, while for five of the ten regions (A, C, H, 

I, J) it was less than 10%. This suggests that the consistency between functional forms with 

discovery projection can vary widely from one dataset to another. However, there does not 

appear to be a strong correlation between the magnitude of the R
2
 statistics and the 

consistency between the URR estimates from the two functional forms (e.g. compare regions 

B and I) and inconsistent results were also obtained for regions that appeared to be at a 

relatively mature stage of their discovery cycle (e.g. Region D). 
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For five of the regions (A, C, H, I and J), the logistic model gave a best estimate of the URR 

that was less than the current value of cumulative discoveries. For three of these regions, the 

Gompertz model did the same. These results are clearly in error, but the confidence intervals 

on these estimates include more plausible values. It is notable that the five regions that 

produced „implausible‟ best estimates with the logistic model are the same regions that 

produced relatively consistent estimates between the two models (i.e. a difference of less than 

10%).  

In principle a large estimate of URR relative to D2007 suggests that a region is at a relatively 

early stage in its discovery cycle (i.e. less of the URR has been discovered). This appears to 

be the case for two regions that gave inconsistent estimates of URR (i.e. B and E) but the 

same may not apply to regions D and F. Similarly, a small estimate of URR relative to D2007 

suggests that a region is at a relatively late stage in its discovery cycle. This appears to be the 

case for the five regions that gave relatively consistent estimates of URR (i.e. A, C, H, I and 

J). These hypotheses are supported by inspecting the discovery projections (Figure 4.12) 

which suggests that cumulative discoveries in Regions A, H, I and J are approaching an 

asymptote.  

The obvious implication is that the discovery projection technique is more reliable in those 

regions where the discovery cycle is mature. In contrast, the discovery projection for Region 

B shows how the corresponding estimates for relatively immature regions can be highly 

uncertain. Given the confidence intervals on the estimates, an „implausible‟ best estimate for 

the URR (i.e. less than D2007) may be interpreted as suggesting that cumulative discoveries in 

a region are approaching their maximum. However, this neither rules out the possibility of 

future discovery cycles in these regions nor takes into account future reserve growth at 

known fields.  

Table 4.4 Summary of consistency over functional form tests for discovery projection  

  Logistic Gompertz Comparison 

Region 

Pre/post 

discovery 

peak 

R
2
 URR 

(% of 

D2007) 

R
2
 URR 

(% of 

D2007) 

Logistic 

minus 

Gompertz 

R
2
  

Logistic 

minus 

Gompertz 

URR (% 

of D2007) 

A Post 0.988 95 0.993 99 -0.005 -4 

B Pre 0.987 157 0.988 519 -0.001 -362 

C Post 0.999 99 0.998 109 0.001 -10 

D Post 0.999 108 0.999 144 0.000 -36 

E Post 0.999 111 0.996 156 0.003 -45 

F Post 0.97 135 0.968 236 0.002 -101 

G Post 0.999 104 0.996 127 0.003 -23 

H Post 0.99 97 0.992 100 -0.002 -3 

I Post 0.971 97 0.981 98 -0.010 -1 

J Post 0.988 93 0.993 96 -0.005 -3 

Mean      -0.001 59 
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Figure 4.12 Summary of consistency over functional form tests for discovery projection  
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4.3.3 Results - consistency over time 

The consistency over time of the discovery projection technique was investigated by 

systematically shortening the time series of cumulative discoveries ( ),( ttB d ) and recording 

the corresponding change in the estimates of URR. The shortening related to the time period 

through to the last recorded discovery (td) rather than the time at which the estimate was 

made (t), which remained at 2007. So, for example, we estimated successive discovery 

projections using the data set )2007,( dtB  where the maximum value of td was successively 

reduced from 2007 to 1985.  

Each data set ( )2007,( dtB ) represents the cumulative discoveries in each year through to time 

td as estimated in 2007. It is important to note that this is not equivalent to the cumulative 

discoveries in each year through to time td as estimated at time td ( ),( dd ttB ). This is because 

there will have been reserve growth in the intervening period ( dt 2007 ). In general, we 

would expect 
ddd ttt BB ,2007,  , with the amount of change being proportional to the time 

interval since the last discovery ( ). To apply discovery projection to the 
dd ttB ,  estimates 

would require either: a) access to the IHS databases from all the earlier years (i.e. each td); or 

b) using )2007,( dtB  and an assumed growth function ( )(G ) to estimate ),( dd ttB  following 

a procedure similar to that described in Box 4.2. 

This means that the regional URR estimates that we attribute to a time series ending at time td 

(i.e. based on )2007,( dtB ) may differ from the corresponding estimate that would have been 

obtained had the projection been made using only the data that was available through to time 

td (i.e. based on ),( dd ttB ). It is likely that the use of the latter datasets would lead to URR 



 

 

112 

112 

estimates that were less consistent over time than those explored here. In principle, the two 

approaches would be more likely to give comparable results if the cumulative discovery 

estimates were corrected to allow for future reserve growth. But since we are testing the 

consistency of the methods used by the key authors in the field (who do not correct for 

reserve growth), such an adjustment is not made. 

We again employed both logistic and Gompertz functional forms. As an illustration, Figure 

4.13 and Figure 4.14 present the results for Region E which is well advanced in its discovery 

cycle and appears to have passed its discovery peak some decades ago. It is clear that the 

estimates generated by both models become more consistent as the length of time series 

increases and also that the confidence intervals converge. However, in contrast to the tests on 

Hubbert Linearisation, the URR estimates from both the models tend to fall as the length of 

the time-series increases – suggesting that a discovery projection using a shorter time series 

for this region could lead to an overestimate of the URR.   

Figure 4.13: Region E – sensitivity of URR estimates from logistic discovery projection to the 

time through to discovery (td) 
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Figure 4.14: Region E – sensitivity of URR estimates from Gompertz discovery projection to 

the time through to discovery (td) 

 

Figure 4.15 and Figure 4.16 present the results of the same process applied to Region B.  This 

seems to be at a relatively early stage in its discovery cycle and does not appear to have 

passed its discovery peak. In both cases, the URR estimates initially decline as the length of 

time series increases and the confidence interval converges. But then the magnitude of the 
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estimates begins to increase again and the confidence interval diverges – particularly in the 

case of the Gompertz model. It is also notable that the estimates from the Gompertz model 

are generally larger than those from the logistic model – and more than three times larger 

when the full time-series is employed. This inconsistency results from the relative immaturity 

of this producing region. 

Figure 4.15: Region B – sensitivity of URR estimates from logistic discovery projection to the 

time through to discovery (td) 

 

Figure 4.16: Region B – sensitivity of URR estimates from Gompertz discovery projection to 

the time through to discovery (td) 

 

It is also useful to investigate the changes in the R
2
 values for the model fits to Regions E and 

B (Figure 4.17 and Figure 4.18). This shows that the R
2
 value does not change significantly in 

either case and, though the value is more erratic for Region B, it is generally high in all cases. 

Furthermore, although the model fits to Region B have an R
2
 exceeding 0.97, this represents 

the lowest R
2
 value seen over the ten regions examined (again because of the relative 

immaturity of this region). This again demonstrates that the R
2
 value is of little help in 

selecting the appropriate functional form for discovery projection. But in the absence of any 

theoretical guidance on the appropriate functional form, and given the wide variation in URR 
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estimates obtained using different functional forms, this again gives little confidence in the 

results. 

Figure 4.17:Change in R
2
 estimates for discovery projections in Region E using different 

lengths of time series 
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Figure 4.18 Change in R
2
 estimates for discovery projections in Region F using different 

lengths of time series 
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The results of the consistency over time tests test for all the regions examined are 

summarised in Table 4.5 and Figure 4.19. The main points are as follows: 

 The URR estimates for three out of the ten regions (A, H and I) were relatively consistent 

over time in both the logistic and Gompertz models, with the difference between the first 

and last estimate being less than 10%. All three regions appear to be at a relatively late 

stage in their discovery cycle. 

 The URR estimates for four out of the ten regions (B, E, F and J) were inconsistent over 

time in both the logistic and Gompertz models, with the difference between the first and 

last estimate being at least 20% (and typically much more). Two of these regions (B and 

E) appear to be at a relatively early stage of their discovery cycle.  
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 The URR estimates for the remaining three regions (C, D and G) were relatively 

consistent over time in the logistic model, but inconsistent in the Gompertz model. 

 With the logistic model, the URR estimates increased with the length of the time series in 

six regions (A, C, D, H, J and I) and decreased in three regions (E, F and G). The 

corresponding figures for the Gompertz model were four (A, H, I and J) and five (C, D, E, 

F and G), with two of the regions exhibiting inconsistent behaviour between the two 

models. Only Region B exhibited first a convergence and then a divergence in URR 

estimates.  In general, these results do not suggest any systematic tendency to either 

underestimate or overestimate the URR using this technique. 

 The regions that exhibited consistency over time in their URR estimates did not 

necessarily have a „better‟ fit in terms of R
2
 than those that exhibited inconsistency. 

Again, further research is required to identify whether our sample is representative of oil 

producing regions as a whole, or of regions at different levels of aggregation. The results 

suggest that discovery projection may lead to more reliable results than the Hubbert 

Linearisation production data for regions that are at a relatively mature stage in their 

discovery cycle. However, the technique performs poorly for regions at an earlier stage in 

their discovery cycle and the degree of inconsistency, both between functional forms and 

over time, remains relatively high for many of the regions examined here. In contrast to 

Hubbert Linearisation results, there does not appear to be a systematic tendency to over or 

underestimate URR in the regions examined here, although the choice of functional form can 

bias the results.  These results have been derived using aggregate data and it is likely that the 

consistency would be improved by distinguishing between onshore and offshore regions and 

by conducting the analysis at lower levels of spatial aggregation.  

Authors such as Laherrère (2004) claim that some of the drawbacks of discovery projection 

can be overcome through the use of creaming curves. Section 4.4 investigates whether this is 

the case for the ten regions examined here. 

Table 4.5 Summary of consistency over time tests for discovery projection 

Region   Logistic Gompertz 

 Pre/post 

discovery 

peak 

Final 

Gompertz 

URR 

estimate 

as % of 

D2007  

First 

minus last 

estimate 

as % of 

D2007 

Consistency First minus 

last 

estimate as 

% of D2007 

Consistency 

A Post 99 10 Good 2 Good 

B Pre 519 -77 Poor 147 Poor 

C Post 109 2 Good -22 Poor 

D Post 144 10 Good -39 Poor 

E Post 156 -49 Poor -2019 Poor 

F Post 236 -179 Poor -872 Poor 

G Post 127 -6 Good -194 Poor 

H Post 100 6 Good 4 Good 

I Post 98 3 Good 2 Good 

J Post 96 21 Poor 21 Poor 
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Figure 4.19 Summary of consistency over time for discovery projection 
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4.4 Creaming curves  

4.4.1 Background and approach 

The creaming curve technique involves:  

 plotting cumulative discovery estimates as a function of exploratory effort (  );  

 using non-linear regression to fit a particular functional form to this data; and 

 estimating the URR from the value of the relevant parameter(s) – which corresponds to 

the asymptote of the curve.  

Again, we use backdated cumulative discovery estimates ( ),( tB d ) that are not corrected for 

future reserve growth. The measure of exploratory effort ( ) is the cumulative number of 

exploratory, or „new field wildcat‟ (NFW) wells that have been drilled in the region.
67

 

Compared to discovery projection, creaming curves should be less sensitive to various 

economic and political factors that could affect both the rate ( dtd / ) and success 

( ),(' tB dd
 ) or „yield per effort‟ of exploratory activity. However, as Cleveland and 

Kaufmann (1991) have shown, exploratory activity is far from independent of such 

influences.  

We applied the creaming curve technique to the same ten regions as analysed in the previous 

sections. In each case, we used fitted one or more functional forms to the data using the 

nonlinear regression function in SPSS
©

. We first examined the consistency of the URR 

estimates obtained using different functional forms (Section 4.4.2) and then the consistency 

of the estimates obtained using both single and multiple curves (Section 4.4.3). Again, the 

analysis is confined to aggregate data for reasons of time, although this could reduce the 

accuracy of the technique. 

4.4.2 Results - consistency over functional form 

Remarkably, while authors such as Campbell and Laherrère publish numerous examples of 

creaming curves, they never specify the specific functional form employed (Campbell and 

Laherrere, 1998; Laherrere, 2003). In many instances the curve is referred to as a „hyperbola‟, 

but this term is somewhat ambiguous. In what follows, we use the rectangular hyperbola, 

which is frequently used in the modelling of biological interactions
68

: 

                                                 
67 The IHS database also contains information on the number of: a) appraisal wells at existing fields, including new-pool 

wildcats, deeper-pool wildcats and shallow-pool wildcats; and b) development wells at existing fields, which are used to 

produce from, inject into, monitor or dispose of liquids from reservoirs. It appears sensible to exclude appraisal and 

development wells from the measure of exploratory effort, since they refer to drilling activity at known fields rather than 

exploration for new fields. But since appraisal and development activity contributes to reserve growth at known fields, it will 

necessarily affect the „explained‟ variable of cumulative discoveries. This suggests that it may be interesting to explore the 

relationship between total drilling activity and cumulative discoveries as well as that between exploratory drilling activity 

and cumulative discoveries. However, only the latter approach is normally used. 

68 The “rectangular hyperbola” is one of the three conic section curves (others being parabola and ellipse). The curve 

consists of two asymptotic arms which meet in a symmetrical centre. Hyperbola are used in the modelling of many things 

including biological processes, mirroring the biological analogy seen in the logistic equation. The Michaelis-Menten 

equation is a rectangular hyperbola used to model enzyme kinetics (Motulsky and Christopoulos 2004). 
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(4.2)  

However, as with discovery projection, there are no theoretical reasons for choosing this 

particular functional form and it is legitimate to investigate others that may provide a 

comparable fit. The primary requirements are that the curve should rise immediately from 

zero and exhibit asymptopic behaviour. The following exponential function also meets these 

criteria:  

            (4.3) 

As an illustration, Figure 4.20 presents the results of fitting both a rectangular hyperbola and 

an exponential function to the data for Region A. This region exhibits the „classic‟ creaming 

curve shape, in that exploratory activity initially leads to the discovery of several large fields, 

but the returns to exploratory effort decrease rapidly as exploration proceeds. Both the 

exponential and hyperbolic curves provide a good fit to the data for this region, with the 

former having a marginally greater R
2
. But as was seen with discovery projection, the two 

models provide significantly different estimates of URR, with the estimate from the 

exponential model being 25% smaller than that from the hyperbolic model. Indeed, the 

exponential model suggests that 98% of the URR for this region has already been discovered. 

Since neither of these models have any theoretical justification, the appropriate choice 

between them is unclear. 

Figure 4.20: Hyperbolic and exponential creaming curves for Region A 
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Only six of the ten regions examined exhibited asymptopic behaviour comparable to that in 

Figure 4.20. For example, Figure 4.21 presents the results for Region B where the rate of 

discovery with respect to effort appears to be increasing over time – suggesting either 

increasing success rates or the discovery of increasingly large fields (or both). While a 

logistic model could be fit to this data, the accuracy of the URR estimate would be highly 

questionable. This example demonstrates that the creaming curve technique may only be 

applicable under certain circumstances. Region B is an unusual example, however, since it is 

at a relatively early stage in its discovery cycle (Figure 4.22).  
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Figure 4.21 Backdated discoveries as a function of exploratory effort in Region B 
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Figure 4.22 Rate of discovery over time for Region B with smoothed 5 year average  
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There are other examples, however, which suggest that the creaming curve technique may 

also be inappropriate for regions which are at a relatively advanced stage of their discovery 

cycle. As an illustration, Figure 4.23 presents data for the highly aggregated Region C. The 

data here is approximately linear which is supported by the high R
2
 for the linear regression. 

As in Figure 4.21, the results for Region C do not exhibit the expected asymptotic 

characteristics. But unlike Region B, Region C appears to be well past its peak in oil 

discovery (Figure 4.24). 
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Figure 4.23: Hyperbolic and linear creaming curves for Region L  
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Figure 4.24: Rate of discovery over time for Region L with smoothed 5 year average  
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It is unclear why the creaming curves for regions C, D and G failed to exhibit asymptotic 

behaviour. One possibility is the limitations of new field wildcat's (NFWs) as a measure of 

exploratory effort. Historically, the knowledge of the underlying geology in an oil play was 

very limited until the first exploratory wells were drilled (NFW‟s). Under these 

circumstances, all other variables being equal, the number of NFWs drilled may have 

provided a reasonably consistent metric for the amount of effort being expended on 

exploration. But modern seismic technologies permit a much better understanding of the 

underlying geology and may reduce the need for exploratory drilling. This hypothesis is 

supported by the observation that the success rate of exploratory drilling is increasing in 

many regions (Forbes and Zampelli, 2000; IEA, 2008; Managi, et al., 2005). We would still 

expect a trend towards declining field sizes, but the time-series may also be complicated by 

the fact that modern techniques allow field sizes to be estimated more accurately.  

Three other factors could also be relevant: 

 The IHS database does not distinguish between exploratory drilling for oil and that for 

natural gas. Hence, temporal variations in the relative proportion of exploratory effort 

devoted to each, together with differences in the yield per effort between oil and gas 

resources, could have a significant effect on the aggregate creaming curve. 

 The analysis in this section uses aggregate, country level data and does not distinguish 

between onshore and offshore regions. This could complicate the time-series, both 
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because these regions were explored at different times and also because the YPE may be 

significantly different for offshore and onshore exploration.
69

 

 Even when offshore and onshore regions are separated in the data, they may each 

encompass several sub-regions distinguished by either geology or exploration history, 

whose exploration proceeds at different rates at different times with different trends in 

yield per effort.   

Each of these factors could contribute to a straightening of the creaming curve (Figure 4.23), 

or may make a logistic functional form fit better than an exponential. But whatever the 

explanation, our results suggest that the „classic‟ creaming curve illustrated in Figure 4.20 

may not necessarily be representative at the aggregate, country level. 

The full results of our consistency over functional form test for creaming curves are 

summarised in Table 4.6 and Figure 4.25. For the six regions that exhibited asymptopic 

behaviour, the mean difference in URR estimates from the exponential and hyperbolic 

functional forms was 27% of D2007 while the mean difference in the R
2
 was only 0.017. For 

regions A, E and H the difference between the estimates from the two functional forms was 

very large, while for regions F, I and J the difference was relatively small. In all cases, the 

estimate from the exponential functional form was either smaller or equal to that from the 

hyperbola - again illustrating how the choice of functional form could bias the estimates, 

despite the minor differences in goodness of fit. As with discovery projection, several of the 

estimates (F, I and J) were less than the cumulative discoveries through to 2007 which 

suggests that there is limited scope for new discoveries in these regions - as indicated by the 

asymptopic behaviour of the creaming curves (Figure 4.25). But again, this neither rules out 

the possibility of future discovery cycles nor takes into account future reserve growth. While 

Region I is notable for the large fraction of URR contained in the earliest discovered fields, 

this pattern is unrepresentative of the regions examined here. 

                                                 
69 For example, Cleveland and Kaufmann (1997) found that offshore exploratory effort for natural gas in the US had a YPE 

that was 2 to 20 times greater than that for onshore exploration. 
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Table 4.6 Summary of consistency over functional form tests for creaming curves 

  Exponential Hyperbola Comparison 

Region Asymptotic? URR  

(% of 

D2007) 

R
2
 URR 

(% of 

D2007) 

R
2
 Diff in 

R
2
 

Diff in 

URR as 

% of 

D2007 

A Yes 102 0.988 141 0.981 0.007 39 

B No - - - - - - 

C No - - - - - - 

D No - - - - - - 

E Yes 252 0.989 286 0.983 0.006 42 

F Yes 94 0.931 97 0.899 0.032 3 

G No - - - - - - 

H Yes 131 0.993 196 0.992 0.001 65 

I Yes 97 0.966 108 0.93 0.036 11 

J Yes 124 0.96 231 0.95 0.019 14 

Figure 4.25 Summary of consistency over functional form tests for creaming curves 
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ε d
,t

εd

Region E

Backdated Cumulative 
Discovery

Hyperbola

Exponential

Exponential
URR = 252%
R2=0.989

Hyperbola
URR = 286%
R2=0.983

B
ε d
,t

εd

Region F

Backdated Cumulative 
Discovery

Hyperbola

Exponential

URR = 97%
R2=0.899

URR = 94%
R2=0.931
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B
ε d
,t

εd

Region H

Cumulative Backdated 
Discovery

Hyperbola

ExponentialExponential
URR = 131%
R2=0.993

Hyperbola
URR = 196%
R2=0.992

B
ε d
,t

εd

Region J

Cumulative Backdated 
Discovery

Hyperbola

Exponential

Exponential
URR = 124%
R2=0.96

Hyperbola
URR = 231%
R2=0.95

 

4.4.3 Results - consistency over the number of curves 

Of the six regions exhibiting asymptopic behaviour, only two (A and I) exhibited a „smooth‟ 

curve, while three (E, H and J) appeared to be better approximated by two curves. Such 

situations are frequently encountered in the literature, where it is argued that the individual 

curves represent discrete areas (distinguished by spatial location, depth, availability for 

exploration or some other factor) that were explored approximately sequentially over the 

history of the region (Campbell and Heapes, 2008; Laherrère, 2004). In practice, it appears 

more likely that the individual regions were explored in parallel, but the techniques 

employed by Campbell and Laherrère do not allow this to be accurately simulated. The use of 

multiple curves can be viewed as an inevitable complication of applying the technique to an 

aggregate region that is not geologically homogeneous and lacks a consistent exploration 

history. However, when creaming curves are estimated for individual countries, such a 

situation may be the norm. 

We tested this proposition by fitting two curves to regions E, H and J and comparing the 

resulting URR estimates with those obtained from a single curve. Under the assumption that 

the returns to exploratory effort have substantially reduced in one region before a second 

region is opened up for exploration, the appropriate „breakpoints‟ can be identified visually 

and the individual curves can be fit sequentially to different time periods of data. This 

appears to be the approach taken by Laherrère (2004) and others, but is nevertheless rather 

crude. More sophisticated approaches are available, that could potentially allow the 

simulation of multiple areas being explored simultaneously (Meyer, et al., 1999).  However, 

these approaches have not been applied to cumulative discovery data.  

Figure 4.26 presents the result of fitting a single rectangular hyperbola to the data from 

Region E. This gives an R
2
 of 0.996, compared to 0.983 for the single curve model. While the 

two-curve model leads to an estimated regional URR that is nearly twice the cumulative 

discoveries through to 2007, the single curve model gives an estimate that is half as large 
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again. Hence, the choice between the two models has a significant influence on the overall 

results.  

Figure 4.26: Creaming curve data for Region E fitted with a single hyperbola 

B
ε d
,t

εd

Backdated Cumulative Discovery

Hyperbola

R2 = 0.983

URR Estimate = 286%

 

Figure 4.27: Creaming curve data for Region E fitted with two sequential hyperbola 

B
ε d
,t

εd

Backdated Cumulative Discovery

Hyperbola 1

Hyperbola 2

R2 = 0.996

R2 = 0.996

URR estimate =  196%

 

One of the consequences of fitting multiple curves is the division of the dataset into smaller 

groupings. This creates the risk of overfitting, a statistical term which refers to the use of an 

overcomplicated model to describe too small a data set. In principle, a complicated model 

with many parameters could pass through every point in the dataset. But if this model is used 

to extrapolate forward, it is likely to be less accurate than a model containing fewer 

parameters as a result of increasing deviations at the extremes of the model. To illustrate this, 

Figure 4.28 compares an overfit polynomial model with a simple linear model. Note the large 

deviations at the extremes of the polynomial as a result of the overfitting. 
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Figure 4.28: Example of the difference between simple linear model and overfitted 

polynomial  

 

Source: „Overfitting‟, Wikipedia, 2009 

While there are no strict rules for deciding when a model is overfit, a useful rule of thumb is 

to ensure there are at least ten data points per parameter (Motulsky and Christopoulos, 

2004a). Though the functional forms for creaming curves are relatively simple (with only two 

or three parameters), the use of multiple curves can easily lead to ratios that are less than this. 

As an illustration, Figure 4.29 shows how two rectangular hyperbola may be fit to the data for 

Region H. With two parameters, a rectangular hyperbola should be fit to at least 20 data 

points, but the second curve in this example is fit to only seven data points (a ratio of 3.5 to 

1). Though this may seem a slightly extreme example, very similar curves are published by 

Campbell and Heapes (2008) and may also be found in the peer-reviewed literature 

(Laherrère, 2002a).  

Figure 4.29: Creaming curve data for Region H fitted with two sequential hyperbola  

B
εd
,t

εd

Backdated Cumulative Discovery

Hyperbolic Curve 1

Hyperbolic Curve 2

R2 = 0.911

R2 = 0.994

URR estimate =  196%

 

The results of our consistency over the number of curves tests are summarised in Table 4.7. 

For the three regions where both one and two curves were fit to the data, the mean difference 

in the R
2
 was 0.017 (with two curves providing a better fit in each case), while the mean 

difference in URR estimates was 103% of D2007 (with two curves providing a smaller 
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estimate in each case). The choice between single or multiple curves can therefore have a 

significant influence on the URR estimates, but without a detailed knowledge of the 

exploration history of the region, it is difficult to justify one choice over the other. While 

authors such Laherrère (2004) make reference to either the geological characteristics or 

exploration history of region, this appears to be largely an ex-post rationale for a choice of 

curves that is driven primarily by the „look‟ of the data. 

Table 4.7 Summary of consistency over the number of curves tests for creaming curves 

 Single curve Two curves Comparison 

Region R
2 URR R

2 URR Two curve 

minus 

single 

curve R
2  

Two curve 

minus single 

curve URR 

(% of D2007) 

E 0.983 286 0.996 196 0.013 90 
H 0.992 196 0.996 100 0.004 96 
J 0.950 231 0.983 109 0.033 122 

Mean     0.017 102.7 

Note: All estimates derived assuming a rectangular hyperbola 

4.5 Comparison of techniques 

As a final consistency check, we compare the URR estimates obtained from each of the three 

extrapolation techniques. In each case, we chose the „best fit‟ estimate on the basis of the R
2
 

value, although we recognise the limitations of this statistic when comparing non-nested 

models (Box 4.1). The results are summarised in Table 4.8. The main points are as follows: 

 Hubbert Linearisation versus discovery projection: Four of the regions (C, H, I and J) 

provided relatively consistent URR estimates, while the remainder (A, B, D, E, F and G) 

provided inconsistent estimates. 

 Discovery projection versus creaming curves: Of the six regions for which we were able 

to fit a creaming curve, only one (I) provided a URR estimate consistent with that from 

the corresponding discovery projection. 

 Hubbert Linearisation versus creaming curve: Of the six regions for which we were able 

to fit a creaming curve, three (A, F and I) provided URR estimates consistent with those 

from the corresponding Hubbert Linearisations. 

 Overall: Only one region (I) provided URR estimates that were consistent between all 

three techniques. Moreover, inconsistent URR estimates were frequently obtained for 

regions that appeared to be at a relatively advanced stage in their discovery and 

production cycle (e.g. E and A). 
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Table 4.8 Summary of consistency between techniques tests 

Region 1. 

Hubbert 

linearisation 

‘best fit’ 

2.  

Discovery 

projection 

‘best fit’ 

3. 

Creaming 

curve ‘best 

fit’ 

1 – 2 

% 

diff 

2 – 3 

% diff 

1 – 3 % 

diff 

Consistency? 

A 94 66 102 28 -36 -8 Poor 

B 140 519 - -379 -  -  Poor 

C 100 99 - 1 -  -  Poor 

D 105 144 - -39  -  - Poor 

E 397 111 252 286 -141 145 Poor 

F 91 135 94 -44 41 -3 Poor 

G 160 104 - 56  - -  Poor 

H 96 100 131 -4 -31 -35 Poor 

I 105 98 97 7 1 8 Good 

J 95 93 124 2 -31 -29 Poor 

Mean 138.3 146.9 133.3 -8.6 -32.8 13.0 Poor 

4.6 Summary and implications  

This section has used illustrative data from ten oil-producing regions to investigate the 

consistency of URR estimates from different curve fitting techniques (i.e. the extent to which 

one estimate differs from another). Any judgment of consistency will depend upon the 

accuracy expected from the relevant techniques which in turn will depend upon the maturity 

of the relevant discovery and/or production cycle. For illustrative purposes, we have judged 

two estimates to be consistent if they differ by less than 20% of the cumulative production 

(Q2007) or cumulative discoveries (D2007) in a region through to 2007. On this basis, Table 4.9 

summarises the overall results. A more or less stringent definition of consistency would not 

significantly change these results, since most estimates were found to be either broadly 

consistent or substantially different. 

The main findings are as follows. 

 The results raise concerns about the reliability of URR estimates from curve-fitting 

techniques - at least when (as is usually the case) they are applied at the country or 

regional level. In particular, we note that: a) in only one of the regions examined were the 

estimates consistent between all three curve-fitting techniques; b) in most cases, 

inconsistent results were obtained more often than consistent results; and c) the degree of 

inconsistency was frequently very large. Generally, the estimates were more likely to be 

consistent for those regions at a later stage of their discovery and/or production cycle, but 

inconsistent results were frequently obtained for mature regions as well. 

 Different functional forms were often found to fit the data equally well (on the basis of 

R
2
) but to provide substantially different estimates of URR. Convergence only occurs at a 

relatively late stage in the discovery or production cycle when an asymptote is clearly 

apparent. Given the lack of theoretical guidance on the appropriate choice of functional 

form, this reduces the confidence in the results. It also suggests that estimates of URR for 

many of the world‟s oil producing regions are likely to remain uncertain. 

 Particular concern must be expressed regarding the use of the „Hubbert Linearisation‟ 

technique. In addition to important statistical limitations (e.g. the error terms cannot be 

normally distributed), the frequency of „breaks‟ in the linear relationship suggests a 
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systematic tendency to underestimate the URR. Generally, it would be preferable to fit a 

non-linear curve to either production data or cumulative production data. 

 Discovery projection may provide more reliable results for regions that are at a relatively 

mature stage in their discovery cycle. However, the technique performs poorly for regions 

at an earlier stage in their discovery cycle and the degree of inconsistency, both between 

functional forms and over time, remains relatively high. There does not appear to be a 

systematic tendency to over or underestimate URR with this technique, but the choice of 

functional form can bias the results. Contrary to expectations, a logistic functional form 

was found to be more appropriate than an exponential in all the regions examined here.   

 The results do not support the claim that creaming curves are generally more reliable than 

discovery projection. Notably, the creaming curves for four of the regions did not exhibit 

asymptotic behaviour, although in two of these cases the corresponding discovery 

projection was asymptopic. Three regions could be fit with either one or two creaming 

curves, but the corresponding URR estimates were significantly different (i.e. more than 

100% of D2007). Without a detailed knowledge of the exploration history of a region, it is 

difficult to justify one choice over the other. Also, the use of multiple curves creates the 

risk of „overfitting‟.  

 The lack of consistency between URR estimates may result in part from: a) applying the 

technique to large regions that are not geologically homogeneous and lack a consistent 

exploration history; b) not a distinguishing between onshore and offshore regions c) not 

correcting the discovery data to allow for future reserve growth; and d) (for creaming 

curves) not distinguishing between the exploration for oil and the exploration for gas. 

Further research should therefore use the lowest possible level of spatial aggregation, 

distinguish between onshore and offshore regions and adjust for future reserve growth 

using functions derive from the technical literature. Disaggregation of exploratory activity 

would also be desirable, although this is not possible with the data source used here. The 

reliability of the techniques also needs to be investigated in a much more systematic 

manner.  Nevertheless, these results are sufficient to demonstrate the limitations of curve-

fitting technique as applied by advocates such as Campbell. The associated URR 

estimates and oil supply forecasts should therefore be treated with considerable caution. 
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Table 4.9 Results of consistency tests - summary 

 Maturity of region Hubbert 

Linearisation 

Discovery projection Creaming 

curve 

Comparison 

between 

techniques  

Overall 

judgment 

Region Post 

discovery 

peak 

Post 

production 

peak 

Consistency 

over time 

Consistency 

over 

functional 

form 

Consistency 

over time 

(logistic) 

Consistency 

over time 

(Gompertz) 

Consistency 

over 

functional 

form 

  

A Yes Yes Good Good Good Good   Good 

B          

C Yes   Good Good   Good Good 

D Yes Yes Good  Good     

E Yes         

F Yes Yes Good    Good   

G Yes    Good     

H Yes   Good Good Good Good  Good 

I Yes Yes Good Good Good Good Good Good Good 
J Yes Yes  Good      
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5 Statistical robustness of curve-fitting 
techniques 

5.1 Introduction 

The literature on curve-fitting techniques to estimate URR has generally paid little attention 

to the statistical issues involved. Hubbert‟s methods were relatively crude and most 

subsequent authors have neither significantly developed these techniques nor fully recognised 

their weaknesses. However, there are some important exceptions, including Wiorkowski 

(1981), Kaufmann (1991), Cleveland and Kaufmann (1997) and Pesaran and Samiei (1995).  

Most authors have assumed that the „shape‟ of the production or discovery cycle can be 

estimated from the historical data and that this shape will not be significantly affected by any 

future changes in prices, technology and other relevant variables. As a result, there has been a 

tendency to neglect these variables, despite the potential errors that may result. Moreover, 

some of the literature makes some very elementary errors, such as failing to specify either the 

relevant functional forms or the confidence intervals on the parameter estimates. In contrast, 

the statistical techniques used in both econometric models of oil supply and discovery 

process modelling are very sophisticated. This suggests that there could be considerable 

scope for improving the application of curve-fitting techniques: for example, by including 

additional variables such as oil prices in the model specification (Kaufmann, 1991); by 

allowing for structural breaks in the time-series (Reynolds, 2002); and by addressing some of 

the most important statistical weaknesses, such as serial correlation in the error terms 

(Pesaran and Samiei, 1995). 

The following sections briefly indicate how this could be done. Section 5.2 introduces three 

statistical issues relevant to curve-fitting techniques, namely model specification and 

comparison, missing variables and serial correlation. Section 5.3 uses a case study of global 

production to illustrate these issues and compares results from four different model 

specifications. Section 5.4 examines missing variables in more detail and uses examples from 

the literature to show how econometric and curve-fitting techniques may potentially be 

reconciled. Finally, Section 5.5 summarises the main conclusions and implications. 

5.2 Overview of statistical issues 

5.2.1 Specification of time-series models  

All curve-fitting techniques rely upon time-series data on oil production (Q(t) or Q’(t)) or oil 

discovery (B(t) or B’(t)), where the data is typically available on an annual basis. A wide 

range of statistical techniques are available to analyse such time-series, either for the purpose 

of understanding the underlying mechanisms that generated the data or to make forecasts. 

Ordinary least squares (OLS) regression forms the basis of many of these techniques and 

under certain assumptions this can provide parameter estimates (including URR) that are: a) 

unbiased (i.e. the expected value of the estimates equals the true value); b) consistent (i.e. the 

estimates approach the true value as the sample size increases); and c) efficient (i.e. the 

estimates have minimum variance) (Wooldridge, 2003). However, the required assumptions 
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are frequently violated with time series data, creating the need for re-specification of the 

model and/or more sophisticated estimation techniques (Wooldridge, 2003). 

Curve-fitting relies upon an assumed functional relationship between a time-series of the 

explained variable and time-series of one or more explanatory variables. Such an approach is 

a standard feature of econometrics, but what distinguishes curve-fitting is the absence of a 

theoretical framework that sufficient to justify the assumed relationship. Typically, the 

explanatory variable is simply time (t) or exploratory effort ( ), but in principle other 

explanatory variables (xnt) could also be included. Taking production projection as an 

example, an assumed relationship between cumulative production and time may be written 

as: 

(5.1) 

Where each ntx  is an explanatory variable defined for each interval of time (t=1,….T) and et. 

represents an „error‟ term indicating a departure between the assumed functional form 

( .........),,( 321 ttt xxxf ) and the actual value of cumulative production (Qt). For OLS to provide 

unbiased, consistent and efficient estimates, this error must be a normally distributed random 

variable with constant variance.  

At a minimum, cumulative production could simply be a function of time itself (t):  

(5.2) 

Where t=1,….T. This represents a global trend which is assumed to hold at all points in time 

with the parameters remaining constant throughout – as indicated by line a in Figure 5.1. A 

more complex alternative is a local trend, as indicated by line b in Figure 5.1.  

Figure 5.1 Gobal (a) and local (b) trends in time-series data 

Figure 1. Global (a) and Local (b) linear trends t
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The specification could be made more complex by including additional explanatory variables 

(xnt) and/or „lagged‟ values those variables (e.g. xnt-1, xnt-2). For example, cumulative 

ttttt exxxfQ  .........),,( 321

tt etQ  
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production could also be made a function of current oil prices (pt) together with the oil prices 

in the previous time period (pt-1): 

(5.3) 

Alternatively, the current value of the explained variable (Qt) may depend upon previous 

values of that variable:  

(5.4) 

A model in which the explained variable depends only on previous values of that variable is 

termed an autoregressive model (AR). An example is: ttt eQQ  11  If et is a normally 

distributed random variable, this equation implies that Qt is some percentage ( 1 ) of its value 

in period t-1 plus a random shock. This is termed an autoregressive model of order one 

(AR(1)) since there is only one „lag‟ of the explained variable. An AR(2) model is give by: 

tttt eQQQ   2211  . For stability, the coefficients on the lag terms must be less than 

unity. If 0.1n , the model is said to be integrated of order one (I(1)). Statistical procedures 

are available to test for I(1) variables and the standard approach to estimating such models 

when 0.11   is to take the first difference: 1 ttt QQQ .
 
The aim of differencing is to 

provide a stationary dependent variable, which means that the mean and variance are 

constant over time.  

The assumed functional form ( .........),,( 321 ttt xxxf ) may either be linear, such as a 

polynomial, or nonlinear, such as an exponential. Note that the term linear refers to the 

parameters rather than the explanatory variables. So for example, if   is a parameter and t is 

an explanatory variable, then a model containing the term 
2t  is linear while a model 

containing the term t  is nonlinear. In many cases, a model can be made linear in parameters 

through a transformation. For example, if cumulative production follows an exponential 

decay ( )exp( tQt   ), the equation can be made linear by taking logarithms 

( tQt   lnln ). However, it is not always appropriate to transform the data in this way 

and sometimes such a transformation is not possible (Myers, et al., 2002). In these 

circumstances, the equation may be estimated through nonlinear regression techniques.  

Two key aspects of statistical analysis are: a) assessing the goodness of fit of a model (i.e. 

how close the predicted values are to the true values); and b) estimating the precision of the 

estimated parameters (i.e. their standard errors or confidence intervals). A discussion of 

various measures of goodness of fit was provided earlier in Box 4.1. The usual approach is to 

fit several different models and choose the one that gives the „best‟ fit under one or more 

statistical measures. In addition, if the model is being used for forecasting, it is important to 

estimate confidence intervals for the forecast, based upon the standard errors of the parameter 

estimates.  

Another criterion for judging a model is the accuracy of its „out of sample‟ forecasts, which 

must be distinguished from the “goodness of fit” within the sample. To do this, set of data 

points from the end of the time-series is typically withheld during model estimation. These 

data points can then be compared with forecast values and the difference measured by the 

minimum mean squared error (MMSE) or some related measure. 

tttt epptQ  1321 

ttt eQtQ  121 
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An important weakness of the curve-fitting literature is the lack of attention to model 

specification and the limited discussion of goodness of fit, the precision of parameter 

estimates (including URR) and the confidence intervals of the relevant forecasts. For 

example, in their comprehensive „atlas‟ of oil depletion, Campbell and Heapes (2008) 

provide no information on these issues at all.  

5.2.2 Missing variables in model specification 

In general, simpler models (i.e. fewer xnt) are preferred because the inclusion of too many 

variables reduces the precision of the parameter estimates ( nt ). Also, a simpler model is 

easier to understand and adding variables reduces the degrees of freedom and hence the 

„power‟ of hypothesis tests (Ramanathan, 2002). However, one of the conditions for OLS to 

give unbiased, consistent and efficient estimates is that all of the statistically significant 

variables (xnt) are included in the model (including the relevant lagged values such as xnt-s). If 

a statistically significant variable is omitted from the model, the result can be omitted 

variable bias which has the following consequences: 

 The estimated values of all the regression coefficients will be biased unless the omitted 

variable is uncorrelated with every included variable. 

 Even if this condition is met, the estimated constant term ( ) will be biased and hence 

forecasts will be biased. 

 The estimated variance of the regression coefficients will be biased and hence hypothesis 

tests will be invalid. 

Omission of relevant variables can therefore have serious consequences. Since curve-fitting 

techniques typically only include a single explanatory variable (i.e. either time (t) or 

exploratory effort ( )) the resulting estimates of URR will only be unbiased if the omitted 

variables are uncorrelated with time or exploratory effort or have little or no influence on 

production and/or discovery trends. This seems unlikely in principle and a number of authors 

have shown that it does not hold in practice (Kaufmann, 1991; Kaufmann and Cleveland, 

2001).  

One important category of missing variables results from specific, one-off events, such as a 

major fall in price or policy intervention. Relevant examples include the oil crises of 1973 

and 1979, hurricanes in the Gulf of Mexico, the Piper Alpha disaster in the North Sea and the 

opening of a new region for exploration. These changes may be either abrupt or gradual and 

may lead to either a temporary or a permanent change in the relevant time-series. In Figure 

5.2 for example, A and B represent an abrupt and temporary change, D and E represent an 

abrupt and permanent change and C and F represent a gradual and permanent change. While 

simple curve-fitting cannot accommodate such changes, specific econometric techniques are 

available to detect and model them (Perron, 1997). 

The consequences of omitting relevant variables and the potential benefits of including them 

will be discussed further in Section 5.3.4. 
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Figure 5.2 Structural breaks in time series  

 

5.2.3 Serial correlation in the error terms 

A second (and related) condition for OLS to give unbiased, consistent and efficient estimates 

is that the error terms be uncorrelated (i.e. 0),(
_

xeeCorr st  for st  ). When this condition 

does not hold the errors are said to suffer from serial correlation, or autocorrelation, because 

they are correlated across time. For example, consider the case of errors from adjacent time 

periods. Suppose that when et-1>0 then, on average, the error in the next time period, et, is 

also positive. Then 0),( 1  tt eeCorr . In the simple model of Equation (5.2), „first order‟ 

serial correlation may be written as: 

(5.5) 

Where   ( )11    is the first order autocorrelation coefficient. Higher order serial 

correlation is also possible. A common way of checking for the presence of serial correlation 

is to plot the autocorrelation function (ACF) which indicates the correlation between Qt and 

Qt-k as a function of k, and to look for any patterns.  Also useful is the partial autocorrelation 

function (PACF) which indicates the correlation between Qt and Qt-k as a function of k after 

removing the effect of the intermediate Q‟s.
70

 There are also formal statistical techniques to 

                                                 
70 A large proportion of the correlation between Qt and Qt-k may be due to the correlation they had with the intervening lags – 

Qt-1, Qt-2, Qt-3 and so on. The partial correlation removes the influence of these intervening variables. 

1 ttt eetQ 
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identify the presence of serial correlation, the most common of which is the „Durbin Watson 

statistic.
71

 

Serial correlation commonly occurs as a result of omitted variables (Pindyck and Rubinfeld, 

1998). For example, in fitting a logistic model to global production data, the predicted values 

are consistently too high after the 1973 oil crisis because the logistic model does not include 

variables that allow the modelling of an oil embargo. Serial correlation may also be caused by 

measurement errors and incorrect specification of the functional form. In principle, if the 

appropriate number of lags of all the relevant variables is included within an appropriate 

functional form, there should be no serial correlation.  

If the serial correlation results from omitted variables, the OLS estimates and the forecasts 

based upon them could be biased. If it derives from some other source, the estimates and 

forecasts will be unbiased and consistent, but will be inefficient, implying that the precision 

of URR estimates will be overstated. It is commonly the case that the explanatory variables 

grow over time and the serial correlation is positive. Under these conditions, serial correlation 

will lead to underestimates of the variance of the parameters (including URR) and 

overestimates of the R
2
 for the model. This means that the goodness of fit of the model will 

be exaggerated, together with the accuracy of the parameter estimates.  

If serial correlation is found, the model should first be re-specified to assess whether the 

cause is missing variables, incorrect functional form or inappropriate lag structure. If this 

possibility has (as far as possible) been eliminated, there are a number of techniques to 

estimate models in the presence of serial correlation which typically involve estimating the 

relevant autocorrelation coefficients (  ) and using this to transform the variables. However, 

these tests and procedures are very rarely used in the simple curve-fitting models used to 

estimate URR. This is an important weakness since in practice the errors are very likely to be 

serially correlated (Considine and Dalton, 2008; Kaufmann, 1991; Pesaran and Samiei, 1995) 

5.2.4 Forecasting  

Curve-fitting techniques typically take historical data on cumulative production or 

discoveries and forecast future production or discoveries under the questionable assumption 

that the relationships identified in the past (e.g. logistic growth) will continue into the future. 

This can be understood, therefore as a particular form of forecasting.  

 

The statistical literature recognises two general approaches to forecasting. Econometric 

forecasting relates an explained variable to one or more explanatory variables and therefore 

seeks to understand and model the physical and behavioural factors that influence the 

explained variable. In contrast, time-series forecasting attempts to predict the future values of 

the explained variable solely on the basis of the past values of that variable. The time-series 

approach has generally been found to be superior to the econometric approach for short-term 

forecasting, but less so for long-term forecasting. However, the boundary between these two 

approaches is blurred (Ramanathan, 2002). 

                                                 
71 A Durbin-Watson statistic of 2 indicates that the data are not serially correlated, while values below 1 indicate significant 

positive serial correlation and values greater than 4 indicate significant negative serial correlation. However, this test is 

invalid if lagged dependent variables are present and it often gives inconclusive results. Hence, other tests are frequently 

preferred (Wooldridge, 2003). 



 

 

138 

138 

Both econometric and time-series forecasting provide an alternative to simple curve-fitting as 

a basis for forecasting future production or discovery. However, pure time-series models do 

not permit simple „what if‟ questions to be asked and since they do not explicitly model 

depletion, they are much less suitable for estimating URR. The basis of time-series 

forecasting is the autoregressive moving average (ARMA) model, which is defined as 

follows:  

(5.6) 

 

The ARMA model expresses the current value of the explained variable (Qt) as a linear 

combination of an autoregressive model of order p (AR(p)) and a moving average model of 

order q (MA(q)), where the latter is a linear combination of random variables (vt-n). The 

combination is typically referred to as a ARMA(p,q) model and is widely used.  

ARMA models are only suitable if the time-series of the dependent variable (Qt) is 

stationary, meaning that it has a constant mean and a variance that does not change over 

time.
72

  Trending variables such as Q(t) are not stationary, but it is possible to convert most 

non-stationary time-series to a stationary form through the process of differencing. For 

example, consider a linear trend of the form tQt   . The first difference of Qt is given 

by  1ttt QQQ  which is constant and hence stationary. Hence, a linear trend can be 

removed by differencing once. Similarly, a quadratic trend can be removed by differencing 

twice. If a non-stationary time-series can be converted to a stationary one by differencing d 

times the series is set to be integrated of order d and is written I(d). The differenced 

stationary series can then be modelled as an ARMA(p,q). In this case, the process that 

generates the series is called an autoregressive integrated moving average and the models are 

termed ARIMA models, denoted as ARIMA(p,q,d) (Ramanathan, 2002).  

Differencing may not be helpful in econometric analysis, since we are often interested in the 

determinants of the level form of the dependent variable rather than the first differenced 

form. Fortunately, a group of specialised econometric techniques based upon the so-called 

cointegration between different variables can allow such relationships to be investigated even 

when these variables are I(1) (Engle and Granger, 1997). These techniques are now standard 

feature of time-series econometrics, but there are very few applications to the estimation of 

URR.
73

  

5.2.5 Summary 

In summary, the use of curve-fitting techniques to estimate URR raises a number of standard 

but important statistical issues that are inadequately addressed in much of the literature. The 

most important of these are: 

 the different options for model specification and the need to test different specifications; 

                                                 
72 With a stationary series, the correlation between the variable at time t and that at time s depends only on the distance 

between the two time periods (t-s). 

73 A notable exception is Kaufmann and Cleveland (2001).  
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 the different approaches to comparing model specifications and the inadequacy of R
2
 as a 

criterion for choosing between different models (Box 4.1);  

 the possibility of missing variable bias and a consequent risk of bias in the estimates of 

URR; and 

 the risk of serial correlation in the error terms and the consequent risk of understating the 

standard error of the URR estimates and overestimating the goodness of fit of the model 

if an appropriate estimation method is not used. 

The following section illustrates these issues with the help of a case study. 

5.3 Illustration - global production projection 

Some of the issues introduced above may be illustrated by fitting the following four models 

to data on global oil production: 

 Cumulative production projection assuming a logistic curve. 

 Production projection assuming a first derivative of a logistic curve. 

 Production projection assuming a first derivative of a logistic curve and including a 

lagged dependent variable. 

 An ARIMA model of global production 

5.3.1 Model 1: global cumulative production projection 

The logistic model for cumulative production is as follows: 

(5.7) 

Where the subscript t refers to annual data and Q  represents the URR. This model was fit to 

the global cumulative production data for conventional oil and NGLs using the nonlinear 

regression facility of SPSS. Table 5.1 shows the parameter estimates and the 2R , with the 

estimates for URR being expressed as both a percentage of cumulative production through to 

2007 ( 2007Q ) and a percentage of cumulative discoveries through to 2007 ( 2007D ). The 2R  is 

very high and the standard errors small, but this likely to be a consequence of serial 

correlation. It is notable that the estimated URR is 39% less than the cumulative discoveries 

through to 2007 and only 29% more than the cumulative production through to 2007 

(although production has yet to peak). Despite the small standard error, these results are 

clearly implausible and illustrate the unreliability of production projection for regions have 

yet to reach their peak of production. Brecha (2008) and Bartlett (2000) find similar results in 

their projections of world oil production.  
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Table 5.1 Parameter estimates and goodness of fit for Model 1 

Parameters Estimate Std. Error R
2
 

Q
 (% of Q2007) 

Q
 (% of D2007) 

  


 

128.5 

61.2 

24972.30 

0.073 

1.5 

0.7 

1882.95 

0.001 

0.999 

Figure 5.3 shows the observed values of cumulative production and the fitted logistic curve. 

Visually, the fit appears to be relatively good but a closer examination of post 2002 data 

(Figure 5.4) shows that the difference between observed and fitted values is increasing with 

time, with the fitted cumulative production trending below the actual cumulative production.  

Figure 5.3 Model 1 curve fit to cumulative production 

 

Figure 5.4 Model 1 curve fit to cumulative production post 2002 
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5.3.2 Model 2: global production projection 

An alternative to Model 1 is to fit the first derivative of the logistic function to the data on 

annual production (Q’t). The relevant functional form is:  

(5.8) 

Table 5.2 shows the parameter estimates and the model 2R  while Figure 5.5 plots the 

observed and fitted values for production. Again, the 2R  is high and the standard errors 

small. The mean URR estimate from Model 2 is 28% greater than that from Model 1, but is 

still only 79% of cumulative discoveries through to 2007 and only 65% more than cumulative 

production through to 2007 (implying that more than half of the URR has been produced, 

despite production having yet to reach a peak). The reason for this highly conservative 

estimate is clear from Figure 5.5, which shows the fitted production trending downwards 

while actual production continues to increase (i.e. the „best fit‟ curve is past peak while actual 

production is not). 

Table 5.2 Parameter estimates and goodness of fit for Model 2 

Parameters Estimate Std. Error R
2
 

Q
 (% of Q2007) 

Q
 (% of D2007) 

  

  

165.0 

78.5 

5491.29 

0.059 

5.3 

2.5 

0.978 

Figure 5.5 Model 2 curve fit to rate of production 

 

Both of these models lead to implausible estimates of the global URR despite the high R
2 

and 

small standard errors of the parameter estimates. This suggests the presence of serial 

correlation which for Model 2 is confirmed by the autocorrelation function (ACF) and 

partial autocorrelation function (PACF) (Figure 5.6). Both of these indicate significant serial 
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correlation, as indicated by bars outside the confidence limits. As a result, the standard error 

of the URR estimate will be incorrect and the estimate itself may be biased. 

Figure 5.6 Autocorrelation function (ACF) and partial autocorrelation function (PACF) for 

Model 2 

 

 

5.3.3 Model 3: global production projection with lagged dependent 

variable 

One possible response to these difficulties is to re-estimate the model using a different length 

of time series: for example, by removing some of the earlier data points. However, this is 

unsatisfactory since it means that the parameter estimates (including URR) will depend upon 

the particular sample chosen. 

An alternative approach is to re-specify Model 2 to include a one-period lag of the dependent 

variable (Q’t-1) (Pesaran and Samiei, 1995). However, since the parameters of the logistic 

equation will differ from those in Equation (5.8) the parameter corresponding to Q  can no 

longer be interpreted as the URR. To illustrate this, we write this new equation as follows.  

(5.9) 
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Where the hats ( x̂ ) are used to indicate that the parameters are different from those in 

Equation (5.8). Tests of this model showed a very slow convergence and large standard 

errors. As an alternative, we try the following specification (Nickerson and Madsen, 2004): 

 

(5.10) 

The difference between this and Equation (5.9) is the second term on the right hand side, in 

which the effect of 1' tQ on tQ ' is corrected by the trend 
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. The R

2
 and parameter 

estimates for Model 3 are summarised in Table 5.3, while Figure 5.7 shows the 

corresponding curve fit. It is clear that inclusion of the lagged dependent variable ( 1' tQ ) 

allows Model 3 to provide a much better fit to the production data than Model 2.
74

 Also, the 

serial correlation largely disappears (Figure 5.8). 

Unfortunately, the introduction of lagged values into the model means that the URR ( Q ) 

does not enter Equation (5.10) explicitly. In a comparable model for cumulative production in 

the US, Pesaran and Samiei (1995) are able to calculate Q  algebraically from the new 

model specification. Unfortunately, the same is not possible for our model of global 

production, in part because production has yet to peak.
75

 Hence, while the introduction of a 

lagged dependent variable allows a much better fit to historical production data, as well as 

removing the serial correlation, it may not necessarily help in the calculation of the URR.  

Table 5.3 Parameter estimates and goodness of fit for Model 3 

Parameters Estimate Std. Error R
2
 

Q̂  

  

  

  

619.737 

3367530.891 

0.130 

1.074 

566.077 

24580000 

0.058 

0.031 

0.992 

                                                 
74 Note that the standard error corresponding to   is very large which might indicate over-parameterization. One possibility 

is to try a smaller number of parameters through a simpler functional form. 
75 As an alternative, we could adopt the greatly simplifying assumption that the peak of production occured in 2007. By 

integrating the area under the Q’(t) curve up to 2007 and assuming that production has a symmetrical distribution around the 

peak, we can estimate a value for Q  which is equal to 208.3% of cumulative production (Q2007) and 99.1% of cumulative 

discoveries (Q2007). 
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Figure 5.7 Model 3 curve fit to rate of production 

 

Figure 5.8 Autocorrelation function for Model 3 

 

5.3.4 Model 4: ARIMA model of global production: 

If our interest is confined solely to forecasting, an alternative is to dispense with an assumed 

functional form altogether and to model production using a pure time series approach. Serial 

correlation may be removed altogether by using the second difference of production 

( 21

2 ''2''   tttt QQQQ ) as the dependent variable. This type of differentiation ensures that 

the dependent variable is stationary (i.e. has constant mean and variance). An ARIMA(1,2,2) 

model for production (see Section 5.2.4) may then be defined as follows:  

(5.11) 

This model was fit using a specialised time-series program which provides confidence 

intervals on the fitted values. The results are illustrated in Figure 5.9. The model appears to 

perform as well as Model 3, but a formal comparison is difficult since the non-linear 

regression function used to estimate Model 3 does not provide confidence intervals. 

Inspection of the autocorrelation functions for Model 4 (Figure 5.10) suggests no residual 

serial correlation. 
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However, while both the Model 3 and Model 4 provide an excellent fit to historical data, 

neither is of much little help in estimating the URR. A better alternative is to address the 

omitted variable bias directly by including variables such as oil prices within the model 

specification. The following section review several studies of US oil production that take this 

approach. 

Figure 5.9 Model 4 – time series model of rate of production 

 

Figure 5.10 Model 4: (a) Autocorrelation function (ACF) (b) Partial autocorrelation function 

(PACF) 

 

5.4 Reconciling econometrics and curve-fitting 

Standard econometric models of oil supply use historical data to estimate relationships 

between exploration, discoveries and/or production and economic variables such as oil prices 

(Walls, 1992). Such models are likely to be biased because they ignore the geological 

determinants of discoveries and production, such as the skewed field size distribution and the 
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tendency to discover the large fields first. In contrast, simple curve-fitting models reflect 

these geological determinants by assuming a particular functional form, but may be biased 

because they ignore political and economic influences. For example, low oil prices and 

political constraints may restrict production when resources are abundant, while high prices 

may stabilise or increase production when depletion is advanced. These biases are typically 

indicated by the serial correlation of the error term (Kaufmann, 1991). 

This suggests that a promising approach would be to combine an assumed functional form to 

simulate the geological determinants of oil production or discovery with an econometric 

specification to simulate the economic and political determinants (Walls, 1994). The 

appropriate choice of explanatory variables will vary with both the nature of the model (e.g. 

production versus discovery projection) and the particular region under examination (e.g. the 

relevance of various political constraints) and will only be feasible if the relevant data is 

available (frequently it isn't). To date, relatively few studies have taken this approach and the 

majority have been confined to the United States. The following sections summarise these 

studies and highlight the lessons that can be learned. 

5.4.1 A two-stage production projection 

Kaufmann‟s (1991) study of oil production in the Lower 48 US states provides an interesting 

reconciliation of the two approaches. He begins by fitting a logistic curve to cumulative 

production in a similar manner to Model 1 above. He then takes the first difference of the 

fitted values ( tQ̂ ) to obtain an estimate of the annual rate of production ( 1
ˆˆ'ˆ
 ttt QQQ ) and 

calculates the normalised difference between this and the actual rate of production: 

tttt QQQR 'ˆ/)'ˆ'(  . Kaufmann then uses this residual ( tR ) as the explained variable in linear 

regression in which economic and political factors serve as explanatory variables. The 

objective is to assess the extent to which such factors cause production to deviate from the 

logistic trend. The chosen variables are: short-run oil prices (a running average of real oil 

prices lagged one and two years); long-run oil prices (a running average of real oil prices 

lagged and three, four and five years); the price of oil relative to natural gas; the fraction of 

Texan production capacity that was allowed to operate by the Texas Railroad Commission 

(TRC); and a variable indicating whether the production curve should be asymmetric. The 

rate of production ( tQ '
~

) is then calculated from )ˆ1('ˆ'
~

ttt RQQ  , where tQ'ˆ  is the rate of 

production predicted by the first difference of the logistic equation and the tR̂  is the residual 

predicted by the econometric analysis. 

As illustrated in Figure 5.11, Kaufmann‟s two-stage model accounts for most of the variation 

in annual oil production in the Lower 48 states between 1947 and 1985. In contrast, the 

simple logistic curve overestimates production throughout much of this period, in part 

because it neglects the effect of both low oil prices between 1947 and 1973 and the 

„prorationing‟ decisions of the TRC which shut in more than 50% of Texan capacity between 

1957 and 1968.
76

  Kaufmann found all of the explanatory variables to be statistically 

significant, with the projected rate of production falling faster after the peak than it rose prior 

to the peak. The URR is estimated from the sum of the URR generated from the first stage 

logistic model plus the sum of the deviations from the logistic curve over the full production 

cycle - which in turn, requires assumptions about the future values of the relevant economic 

                                                 
76 Between 1947 and 1985, 38% of the oil produced in the lower 48 states came from Texas. 
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and political variables. For example, with pro-rationing eliminated and relative prices held at 

1985 levels, Kaufmann estimates a URR for the Lower 48 of 190 Gb which is within the 

range of Hubbert‟s estimates. 

Figure 5.11 Kaufmann’s econometric model (solid line) of US lower 48 oil production (dots) 

as compared to logistic model (dashed line) 

 

Three points about Kaufmann's approach are worth noting. First, economic factors lead to 

deviations from the logistic model, but in the long-run physical depletion dominates and 

production returns to low levels whatever the prevailing level of prices. Second, Kaufmann 

justifies the symmetrical logistic curve on the grounds that it imposes very few assumptions 

and criticises the asymmetric Gompertz curve because it implicitly assumes that oil prices 

will rise in the later phase of production, contributing to a slower production decline. Third, 

Kaufmann observes that the long-run average cost curve for US oil production appears to be 

U-shaped, which provides further support for the logistic model. This argument is based upon 

a study by Cleveland (1991), but has its origins in the work of Slade (1982). Cleveland finds 

that US production costs fell between 1936 and the mid-1960s since the cost reducing effect 

of technical change overshadowed the cost increasing effect of resource depletion. After that 

point, resource depletion began to dominate and costs rose rapidly (see Figure 5.12). The 

production curve peaked in 1970 while the long-run cost curve reached its trough in the mid-

1960s. This seems unlikely to be a coincidence since the curves are estimated with different 

data (Kaufmann, 1991). However, evidence from other regions suggests that the long-run 

cost curve for oil production is not always U-shaped (Managi, et al., 2004).  
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Figure 5.12 The long run average cost of oil production in the lower 48 US states 

 

Source: Cleveland (1991) 

5.4.2 Production projection using cointegration techniques 

Kaufmann and Cleveland (2001) subsequently repeated their analysis of oil production in the 

Lower 48 using modern „cointegration‟ techniques. The explanatory variables were the same 

as in Kaufmann (1991), but allow for asymmetric responses to price increases and decreases 

(e.g. the response to a price rise may not be undone by a subsequent price decrease) (Gately, 

1992; Grubb, 1995). Also, by including average production costs as an explanatory variable, 

they no longer need to assume a particular functional form for the production cycle. In effect, 

the empirically estimated average cost curve (Figure 5.12) replaces the exogenous assumption 

of a bell-shaped production curve. The cost curve represent the net effect of resource 

depletion and technical change, with rising costs after 1970 indicating accelerating depletion. 

Using a „vector error correction model‟ (VECM) Kaufmann and Cleveland are able to 

account for most of the variation in oil production between 1938 in 1991. They conclude that 

economic variables have a critical influence on the shape of the production cycle and 

therefore on the date of peak production: 

“….the accuracy of Hubbert‟s original forecast for oil production in the lower 48 states is 
fortuitous. The cointegration analysis indicates that oil production in the lower 48 states 
shares stochastic trends with the decomposed price series, average costs, and pro-rationing 
decisions by the TRC. These stochastic trends are not present in the deterministic bell-
shaped curve, so the first difference of the bell-shaped curve drifts away from the annual 
change in oil production for extended periods…….Our results indicate that Hubbert was 
able to predict a peak in US production accurately because real oil prices, average real cost 
of production, and decisions by the TRC coevolved in a way that traced what appears to be 
a symmetric bell-shaped curve for production over time.  A different evolutionary path for 
any of these variables could have produced a pattern of production that was significantly 
different from a bell shaped curve……In effect, Hubbert got lucky.” (Kaufmann and 
Cleveland, 2001) 

While an important innovation, this method may not be applicable for other regions owing to 

the lack of data on production costs. Moreover, if this method is to be used estimate the 

regional URR, some assumption is required about future trends in production costs. These 

could be developed in a variety of ways, but if this involves curve-fitting to historical data 
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and extrapolation, the procedure begins to resemble standard curve-fitting. Also, the 

conclusion that „Hubbert got lucky‟ refers primarily to his predicted date of peak 

production.
77

  What is much less clear is whether these variables will make a significant 

difference to the final estimate of URR.  

5.4.3 Production projection with variable URR 

Pesaran
78

 and Samiei (1995) provide an insightful account of the statistical issues associated 

with estimating URR and illustrate these by fitting a number of models to US production 

data. They argue that Kaufmann‟s (1991) two-stage model is biased because the estimation of 

URR in the first stage does not take into account the effect of economic factors which only 

enter the analysis in the second stage. A more appropriate method would be to estimate the 

long-term trend and short-term effects simultaneously which could be achieved by modifying 

the logistic model to allow for the dependence of URR on a number of economic and other 

variables. That is: t

t AQ BX , where Xt is a vector of relevant variables, B a vector of 

coefficents and tQ  is the size of the URR given the economic, technological and other 

relevant factors that prevail at time t.  

With this model, the URR is only fixed if economic and other factors have no impact on the 

size of the resource (i.e. all the elements of B are zero). Pesaran and Samiei use this 

formulation of URR within a model of US production (Q’t), with the variables incorporated 

within Xt being the same as those employed by Kaufmann (1991). To eliminate problems of 

serial correlation, Pesaran and Samiei formulate a model that includes both the first 

difference of cumulative production and first and second order lags of the rate of production: 

(5.12) 

This model is found to explain over 98% of the variation in annual production over the period 

1948-1990. Using 1990 values of the exogenous variables, it leads to an estimate of 209 Gb 

for the Lower 48 URR, with a 95% probability of lying within the interval 188-229 Gb.  

Importantly, this estimate is higher than obtained from other formulations that do not take 

economic and other factors into account. Pesaran and Samiei also re-estimated the model 

over the period 1926-85 and used it to generate forecasts of annual production over the period 

1986-90. This provided estimates that were significantly more accurate than Hubbert‟s basic 

model.  

5.4.4 Hybrid modelling of yield per effort  

Very similar approaches can be used to modify and improve any of the curve-fitting 

techniques described in Section 3, although the relevant variables will vary in each case. A 

good example is Cleveland and Kaufmann (1991), who begin with Hubbert‟s basic 

exponential model of yield per effort (YPE) in the US: 

                                                 
77 Cavello (2004; 2005a; b) reaches a very similar conclusion through a more qualitative argument. 
78 M.H. Pesaran is a Professor of Economics and Fellow of Trinity College Cambridge and an internationally recognised 

econometrician.  
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            (5.13) 

As described in Section 3.5.2, this model provided a relatively poor fit to the historical data 

on yield per effort and tended to underestimate the US URR. Cleveland and Kaufmann 

modify this model by introducing two additional variables: 

 Drilling rates: Each year, the industry ranks prospective sites in order of expected 

profitability. A low rate of drilling in any year implies that only those sites that are most 

likely to be profitable have been drilled („highgrading‟), while a high rate of drilling 

implies the exploration of increasingly marginal sites. As a result, there should be an 

inverse relationship between yield per effort and the annual rate of drilling.
79

  

 Oil prices: At any level of drilling, some discoveries are not reported because they are 

uneconomic to develop (i.e. a „dry‟ hole is not necessarily dry) (Schuenemeyer and Drew, 

1983). The relevant cut-off point should be determined in part by real oil prices, with 

higher prices leading to more discoveries being reported. As a result, there should be a 

positive relationship between yield per effort and oil prices. 

The revised equation is as follows: 

            (5.14) 

Where p is the real price of oil, r is the rate of exploratory drilling and   and   are 

coefficients. This equation is found to provide a much better fit for YPE in the Lower 48 than 

Hubbert‟s simple exponential decline. While YPE has declined since the 1930s, there have 

been periods of relative stability or increases in YPE associated with changes in the rates of 

drilling and/or oil prices. If not properly accounted for, these short run changes can 

temporarily mask the decline associated with depletion, which in turn may lead to misleading 

forecasts of future discoveries. Cleveland and Kaufmann‟s results show, however, that 

physical depletion dominates in the long-term, implying that policies to accelerate 

exploratory drilling in the US are unlikely to yield significant amounts of oil (Kaufmann and 

Cleveland, 1991).  

Cleveland and Kaufmann (1997) estimate a very similar model for non-associated natural gas 

in the US. Historical discoveries are corrected for future reserve growth and allowance is 

made for shifts between offshore and onshore regions, since the former has a much larger 

YPE. Again, the regression model provided a much closer fit to the historical data that a 

simple exponential decline, but the long-run trend is only temporarily reversed by changes in 

energy prices.  

5.4.5 Modelling technical change 

Although technical change is not explicitly included in the above models, it is wrong to 

conclude that it is ignored.
80

 In the case of the YPE models, cumulative exploratory effort 

                                                 
79 This may be reinforced by the entry and exit from the industry of marginal, less efficient operators during periods of high 

and low drilling effort respectively. 

80 For example, Lynch (1999) argues that stable URR estimates make the “unrealistic assumption that technological progress 

will effectively cease”. But the data used to estimate the curve-fitting models include the effects of both resource depletion 

and technical change. If the same model is used for forecasting, the implicit assumption is that the relative effect of resource 

depletion and technical change will be unchanged. 
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( d ) is used as a proxy for the net effect of technical change and resource depletion, with the 

relative size of these effects determining the sign of the relevant coefficient ( ). Forecasts 

using these models do not ignore future technical change, but simply assume that the net 

effect of technical change and depletion will remain broadly unchanged. Nevertheless, given 

the revolutionary advances in exploration and production technology over the last 50 years, 

the explicit modelling of technical change could be valuable.  

One possibility is to simply use time as a proxy for technical change – which effectively 

assumes that it occurs a constant rate. This is the approach taken by Iledare and Pulsipher 

(1999) in their study of the YPE for oil in onshore Louisiana (a mature province). They 

estimate that technical change increased the discovery rate in Louisiana by 7.5% per year 

over the period 1977 to 1994, but this was insufficient to offset the negative effect of resource 

depletion (measured by cumulative drilling), which reduced the annual discovery rate by an 

average of 12% per year. Hence, as with the Cleveland and Kaufmann models, depletion 

effects dominated over other variables. 

A more sophisticated approach is taken by Managi, et al. (2005) in their study of YPE in the 

Gulf of Mexico over the period 1947-98.
81

 Contrary to the standard assumptions of curve-

fitting techniques, the YPE for this region appears to exhibit a U-shaped trend, with technical 

change more than offsetting the effect of resource depletion since the early 1970s (Figure 

5.13). The trend appears to be linked to technical improvements that permitted exploration in 

deeper waters, thereby expanding the productive area and allowing access to larger fields. 

Drawing upon earlier work by Cuddington and Moss (2001), Managi, et al. develop an novel 

measure for this technical change which comprises an index of the annual number of 

innovations adopted by the offshore industry weighted by estimates of the relative importance 

of those innovations (Managi, et al., 2004; NPC, 1995). The weights can increase over time 

to simulate both the slow diffusion of innovations and their continuing improvement.
82

  

Figure 5.13 Yield per effort for oil exploration in the Gulf of Mexico 1947-98 

 

Source: Managi, et al (2005) 

                                                 
81 This study is based upon Managi‟s PhD thesis (Managi, 2002). 
82 Lynch (2002) notes that it can take at least five years for significant innovations to become widely adopted, even in the US 

offshore industry, and the impact of factors such as YPE might not show up in the data for another five years. 
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Managi, et al. (2005) specify a exponential model for the YPE in the Gulf of Mexico 

( iti x

i

d eKtB
 ),(' ) in which the explanatory variables (xit) include annual and cumulative 

exploratory activity, oil prices and the average water depth of drilling. Depletion is modelled 

by cumulative discoveries while technical change is modelled by the above index. The 

estimation process corrects for serial correlation in the error terms. The estimated individual 

and net effects of technical change and depletion are illustrated in Figure 5.14 and Figure 

5.15 respectively. This shows that the pace of technical change has increased since 1975, 

greatly expanding the area of exploration and leading to a YPE in 2000 that is comparable to 

that achieved 50 years previously.
83

 While the geological diversity of the Gulf of Mexico 

may contribute to this result, a more likely reason is that exploration has been geographically 

restricted in the past, owing to the technical difficulties of deep-water drilling. As a result, 

fields may not have been found in the approximate declining order of size that is normally 

assumed.  

Since the URR does not appear explicitly in the equation for YPE, it can only be estimated by 

extrapolating the curve into the future and taking the integral. This in turn requires some 

explicit assumptions for the explanatory variables, including in particular the future rate of 

technical change. While depletion must eventually outpace technical change, the historical 

record gives little indication of when this will occur. As a result, the exploration history of 

this region currently provides an inadequate basis for the estimation of the URR. 

Figure 5.14 Individual effect of technical change and depletion on yield per effort for oil 

exploration in the Gulf of Mexico 1947-98  

 

                                                 
83 This is consistent with Forbes and Zampelli (2000), who found that technical change increased the exploratory success 

rate in the offshore US at an average annual rate of 8.3% over the period 1986-95. 



 

 

153 

153 

Figure 5.15 Net effect of technical change and depletion on yield per effort for oil exploration 

in the Gulf of Mexico 1947-98 

 

Source: Managi, et al (2005) 

5.4.6 The challenge of hybrid modelling  

This review suggests that a reconciliation of econometric and curve-fitting techniques can 

potentially overcome problems of missing variables and serial correlation. Such „hybrid‟ 

models can potentially reduce the biases associated with curve-fitting techniques and allow 

the dependence of URR on prices and other variables to be explored. However, both curve-

fitting and econometric techniques have their limitations and these are not necessarily 

overcome by combining them within a single model (Lynch, 2002). For example, the 

required data is frequently either lacking or unreliable and is rarely available at the level of 

disaggregation required. Since it is generally impractical to include more than a subset of the 

variables that could affect production and/or discovery trends (e.g. tax rules, leasing 

decisions, geographical restrictions on exploration, production/import/export quotas, relative 

fuel prices etc), these models may still be vulnerable to missing variable bias. While it would 

be useful to include technical change as an explanatory variable, it is difficult to find 

measures that adequately reflect the slow process of technical diffusion. Problems such as 

these may partly explain why there are so few „hybrid‟ studies and why the available studies 

are largely confined to the United States where the relevant data is more readily available   

5.5 Summary and implications 

This section has summarised the main statistical issues raised by curve-fitting techniques, 

highlighted the potential consequences for estimates of URR and provided some illustrations 

of how these issues may be addressed. The main conclusions are as follows: 

 The literature on curve-fitting techniques to estimate URR has paid insufficient attention 

to the statistical issues involved. Most authors have assumed that the „shape‟ of the 

production or discovery cycle can be estimated from the historical data and that this shape 

will not be significantly affected by any future changes in prices, technology and other 

relevant variables. As a result, there has been a tendency to neglect these variables, 

despite the potential errors that may result.  
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 The omission of variables such as oil prices and technical change does not necessarily 

mean that they are ignored. Instead, it amounts to assuming that the relative effect of 

these variables as compared to the effect of resource depletion has been relatively stable 

in the past and will remain broadly unchanged in the future. In practice, this assumption 

appears unlikely to be justified. 

 As a consequence of this neglect, many applications of curve-fitting techniques are likely 

to suffer from missing variable bias and/or serial correlation of the error terms. This could 

lead to biased estimates of model parameters (including URR), underestimates of the 

associated standard errors and overestimates of the model goodness of fit (i.e. the R
2
). 

Examples of this have been provided in both this section and Section 4. 

 These problems may potentially be addressed by including one or more lags of the 

dependent variable within the model specification. However, while this can provide a 

much better fit to the historical data, the re-specified model may not necessarily lend 

itself to the estimation of URR.   

 A more promising approach is to include some of the economic and political determinants 

of discovery and/or production within the model specification. The appropriate choice of 

explanatory variables will vary with both the nature of the model and the particular region 

under examination and will only be feasible if the relevant data is available. Relatively 

few studies have taken this approach to date and the majority of these have been confined 

to the United States.  

 The studies reviewed here include a two-stage production projection, a production 

projection involving cointegration techniques, a production projection in which URR is a 

made a function of economic and other variables and YPE models incorporating energy 

prices, annual drilling rates and other factors. All of these provided a much better fit to 

the relevant historical data than the basic curve-fitting model and largely remove the 

serial correlation. The study by Kaufmann and Cleveland (2001) is especially notable as 

their use of data on average production costs removes the need for an assumed functional 

form. However, the required data on production or discovery costs is unlikely to be 

available for other oil-producing regions. 

 „Hybrid models‟ such as these may be more suitable for short-term supply forecasting 

than for estimating the regional URR. The latter requires assumptions about the future 

values of the relevant explanatory variables and hence is subject to considerable 

uncertainty. Despite their better fit to historical data, it is not obvious that hybrid models 

lead to substantially different estimates of the regional URR than simple curve-fitting. 

However, they do allow the dependence of URR on energy prices and other factors to be 

directly explored. 

 Hybrid models cannot resolve all of the problems associated with curve fitting 

techniques. In particular, such models may still lead to misleading conclusions if applied 

to regions that lack either geological homogeneity or a consistent exploration history. 
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6 Global estimates of ultimately recoverable 
resources and their importance for future oil 
supply 

6.1 Introduction 

For almost ninety years, analysts of global oil supply have produced estimates of the global 

ultimately recoverable resource (URR) of „conventional‟ oil. These estimates frequently 

differ in their definition of conventional oil, as well as their methods, their assumptions and 

their results. Some have become trusted estimates, used to calibrate forecasts of future oil 

production, while others have proved highly controversial, inciting debate and criticism.  

While the estimates have grown over time as more of the world‟s oil regions have been 

explored and developed, a consensus on the global URR has yet to emerge. 

As with many aspects of oil supply, the comparison of published estimates of global URR is 

complicated by several issues. The estimates may include different petroleum liquids, be 

developed using different methods (or combinations of methods), relate to time periods, use 

different data sources and/or rely upon different economic and technical assumptions that 

may not be transparent. For example, reserve growth may or may not be accounted for, and 

where it is accounted for, different assumptions about the rate of growth may be employed. 

As a result, there is a considerable risk of „comparing apples and oranges‟ with such 

estimates. 

Perhaps the most prominent and authoritative estimates of global URR are from the US 

Geological Service (USGS). The most recent of these was published in 2000, following 100 

person-years of effort by a team of 41 geoscientists over a period of five years (Ahlbrandt, 

2002; USGS, 2000b). These estimates are significantly larger than previous USGS estimates 

and several commentators have disputed their validity (Laherrère, 2001b). Nevertheless, they 

underlie projections of global oil supply and associated carbon emissions by bodies such as 

the International Energy Agency (IEA, 2008), the Energy Information Administration (EIA, 

2008) and the Intergovernmental Panel on Climate Change (IPCC, 2007).  

This section provides an overview and evaluation of global URR estimates and assesses their 

implications for future global oil supply. The structure is as follows. Section 6.2 summarises 

and compares some global URR estimates that have been made in the past, illustrates how 

these have grown over time and looks in more detail at three of the more prominent 

estimates. Section 6.3 summarises the methods and results of the USGS World Petroleum 

Assessment 2000 and evaluates whether the experience since 2000 is consistent with these 

projections. Section 6.4 summarises how these estimates have been updated by the IEA 

World Energy Outlook 2008 together with a recent study by the Colorado School of Mines. 

Section 6.5 identifies the implied range of uncertainty over this variable and the implications 

for future global supply. Section 6.6 concludes. 
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6.2 A brief history of global estimates of ultimately 

recoverable resources 

Eugene Stebinger, once chief of Foreign Minerals at the USGS, was the first geologist to 

estimate the global URR of conventional oil (White, 1920). This early estimate totalled only 

43 Gb of oil, which compares to cumulative production through to 2007 of 1100 Gb (IEA, 

2008).
84

 White (1920) described Stebinger‟s estimate as conservative and suggested that a 

further 20 Gb were probably available. By 1942, Stebinger had increased his estimate of 

global URR by a factor of 13, to some 600 Gb (Pratt, 1942). Since this time, around 100 

estimates of global URR have been published from a variety of sources, including several 

repeated estimates by the same institutions or individuals. These estimates are summarised in 

Table 6.4. When comparing these estimates, it is important to remember that their 

assumptions and methods may differ, together with the purpose for which they were derived. 

Of particular importance is the differing coverage of petroleum liquids, which may or may 

not include lease condensate, natural gas liquids (NGLs), polar and deepwater oil and various 

types of heavy oil, including oil sands. Unfortunately, the coverage is not always clear and 

even where it is clear, different definitions and assumptions may apply (e.g. what is meant by 

„heavy oil‟). 

Most recent estimates of global URR have clustered in the range 2000 Gb to 3000 Gb, with 

the largest being Miller (1992) who estimates a URR of >4000 Gb for conventional oil. This 

compares with cumulative production of petroleum liquids through to 2007 of 1128 Gb and 

cumulative proved discoveries (i.e. cumulative production plus 1P reserves) of 2366 Gb 

(IEA, 2008) which is higher than many of the URR estimates! However, the latter figure 

includes NGLs, heavy oil and oil sands, while many of the URR estimates relate to a much 

narrower definition of „conventional‟ oil (i.e. we are comparing apples and oranges). In 

addition, authors such as Campbell (2002) argue that the figure for cumulative proved 

discoveries is incorrect because several countries reserve estimates are overstated. 

Figure 6.1 plots the URR estimates and fits linear regressions to indicate the approximate 

trends over three different time periods, namely: 1942 to 2007; 1970 to 2007 and 1987 to 

2007. All suggest a gradual increase in URR estimates over time, which may be expected 

given the increase in geological knowledge and the improvements in exploration and 

production technology that have occurred. The regression over the full period suggests an 

increase of around 17 Gb/year in the estimates of URR, while the regression over the period 

1970-2007 suggest that the rate of increase may have slowed (to 5 Gb/year). However, the 

post 1987 regression suggest an increase of 47 Gb/year. A similar upward trend can be seen 

in the repeated estimates from individual sources (Andrews and Udall, 2003). However, it 

would be wrong to attribute too much significance to such trends, given the considerable 

difficulties in comparing one estimate with another. In particular, several of the most recent 

estimates include NGLs while most of the earlier estimates do not. Since the USGS estimates 

that NGLs account for around 13% of the remaining resources of conventional liquids 

(Ahlbrandt, 2002), their exclusion or underestimation in earlier studies will have contributed 

to the observed upward trend. While such a trend cannot continue indefinitely, there does not 

seem to be any strong evidence of a levelling off over the last 20 years.  

 

                                                 
84 This figure includes conventional oil, condensate, NGLs, heavy oil and oil sands but excludes CTLs, GTLs and biofuels. 
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Table 6.4 Historical estimates of the global ultimately recoverable resource of conventional oil  

Year of 

Publication 

Author and/or Organisation Estimated URR 

(Gb) 

Notes 

1942 Pratt and Weeks 650  

1946 Duce (Aramco) 500
 

100 in the United States, 400 abroad. 

1946 Pogue (Chase Manhattan Bank) 605
 

49.2 cumulative production, plus 65.8 proved reserves, plus 

490 future discoveries. 

1948 Weeks (Standard Oil Co., New Jersey) 610
 

487 future discoveries. 

1949 Levorsen (Stanford) 1635
 

65 cumulative production, plus 65 discovered reserves, plus 

1500 undiscovered reserves. Based on estimates by Pogue 

(1946), and Weeks (1948) for onshore, and Pratt (1947) for 

offshore. 

1950 Levorsen (Stanford) 1635  

1950a Weeks (Standard Oil Co., New Jersey) 1010
 

Discussion to Levorsen (1950). 

1950b Weeks (Standard Oil Co., New Jersey) 1100
 

610 onshore, 400 offshore shelves. 

1953 MacNaughton, personal communication 1000  

1956 Hubbert (Shell) 1250  

1958 Weeks (Standard Oil Co., New Jersey) 3000
 

1500 primary recovery, plus 1500 secondary recovery; includes 

natural-gas liquids. 

1959 Weeks (Standard Oil Co., New Jersey) 3500
 

2000 primary recovery, plus 1500 secondary recovery; includes 

natural-gas liquids. 

1961 Weeks (Weeks Petroleum Corp.) 3500
 

2000 primary recovery, plus 1500 secondary recovery; includes 

natural-gas liquids. 

1962 Hubbert (Shell) 1250  

1963 Weeks (Weeks Petroleum Corp.) 2000  

1965 Hendricks (U.S. Geological Survey) 1984-2480
 

6162-6200 oil in place, 40% recovery. 

1967 Ryman (Standard Oil Co., New Jersey) 2090
 

According to Hubbert (1969). 

1967 Royal Dutch Shell 1800  

1968 Weeks (Weeks Petroleum Corp.) 3550
 

2200 primary recovery, plus 1350 secondary recovery. 

1969 Hubbert (U.S. Geological Survey) 1350-2100  

1970 Weeks (Weeks Petroleum Corp.) 3550
 

2200 primary recovery, plus 1350 secondary recovery. 

1970 Moody (Mobil) 1800  

1971a, b Warman (British Petroleum) 2000  

1971 Weeks (Weeks Petroleum Corp.) 3650
 

2290 primary recovery, plus 1360 secondary recovery. 

1972 ESSO 2100 Oil increasingly scarce by 2000 

1972 Bauquis et al (IFP) 1900  
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1972 Warman (British Petroleum) 1800  

1972 Linden (Institute of Gas Technology) 2945  

1972 Moody and Emmerich (Mobil) 1800-1900
 

1000 discovered, 800-900 yet to be discovered. 

1973 Schweinfurth (USGS) 2950  

1973 Odell (Erasmus) 4000  

1974 Bonillas (SOCAL) 2000  

1974 Howitt (BP) 1750  

1974 Kirby and Adams (British Petroleum) 1600-2000  

1974 Parent and Linden (Institute of Gas Technology) 3000-4000  

1975 MacKay (Bank of Montreal, Calgary) and North 

(Carleton University, Ottawa) 

1000-1050  

1975 Weeks (Weeks Petroleum Corp.) 3180
 

1900 onshore, 1280 offshore. 

1975a,b Moody (consultant) and Esser (Mobil) 2000-2030  

1975 Moody (consultant) and Geiger (Mobil) 2000
 

280 (90%), 2000 (50%), and 2200 (10%) 

1975 Linden and Parent (Institute of Gas Technology) 2685
 

Estimated total remaining recoverable. 

1975 Moody (consultant) 1800-1900
 

1000 discovered, 800-900 yet to be discovered. 

1975 National Academy of Sciences 2326  

1976 Grossling (U.S. Geological Survey) 2200-3000  

1976 Folinsbee 1800  

1976 American Petroleum Institute 2050  

1976 Barthel et al. (West Germany Geological Survey) 2500  

1977 Nelson (SOCAL) 2000  

1977 Parent and Linden (Institute of Gas Technology) 2000
 

Includes natural-gas liquids. 

1977 World Energy Conference 1889  

1977 Klemme (Weeks Petroleum Corp.) 1550
 

350 cumulative production, 600 proven reserves, 600 

undiscovered. 

1978 De Bruyne (Shell) 1600  

1978 Klemme 1750  

1978 Desprairies (Institut Francais du Petrole) 2220-2520
 

Delphi pool: 1620-2200-2870. 

1978 Moody (consultant) 2030  

1978 Nehring (Rand Corp.) 1700-2300  

1979 Meyerhoff 2200  

1979a,b Wood (Cities Service) 2163
 

1038 already discovered, 1125 to be discovered; 1500 (95), 

3300 (50), 3100 (10). 

1980 Halbouty and Moody (consultant) 2288  

1980 Schubert (World Energy Conference) 2600  

1980 Nehring (Rand Corp.) 1600-2000
 

Includes natural-gas liquids. 
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1980 Desprairies and Tissot (Institut Francais du 

Petrole) 

1830-2200  

1980 Roorda (Shell) 2400  

1981 Strickland (Conoco) 2100  

1981 Colitti (AGIP) 2100  

1981 Halbouty 2250  

1981 Hubbert and Root (U.S. Geological Survey) 2000  

1982 Nehring (Rand Corp.) 1600-2000
 

Includes natural-gas liquids. 

1982 Bois (Institut Francais du Petrole) 2600  

1983 Odell and Rosing 3000  

1983 Masters et al. (U.S. Geological Survey) 1718  

1983 Riva (Library of Congress) 1953  

1984 Martin (BP) 1700  

1984 Burollet (Total) 2213
 

524 billion cumulative production, plus 2313 reserves and to be 

discovered. 

1984 Masters et al. (U.S. Geological Survey) 1818  

1985 Tanzil (Consultant) 2594  

1986 Masters et al. (U.S. Geological Survey) 1718  

1986 Ivanhoe (consultant) 1700  

1987 Jenkins (BP) 1700  

1987 Masters et al. (U.S. Geological Survey) 1744  

1987 Pecqueur (Elf Aquitaine) 2200
 

Includes enhanced oil recovery. 

1987 Roadifer (Mobil) 2000  

1988 Riva (Library of Congress) 1765  

1989a, b Bookout (Shell) 2000  

1990 Masters et al. (U.S. Geological Survey) 2074  

1991 Masters et al. (U.S. Geological Survey) 2079  

1991 Campbell (consultant) 1650  

1991 Riva (Library of Congress) 2215  

1992 Masters et al. (U.S. Geological Survey) 2171  

1992 Miller (British Petroleum) >4000  

1993 Laherrère 1700  

1993 Townes (independent petroleum geologist) 2600-3000  

1993 Miremadi and Ismail (OPEC) 2200  

1994 Masters et al. (U.S. Geological Survey) 2272  

1994 Laherrère (Petroconsultants) 1800  

1995 Riva 2300  
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1995 Campbell (consultant) 1650  

1996 Ivanhoe 2000  

1996 MacKenzie (World Resources Institute) 1800-2600  

1996 Campbell (consultant) 1750  

1997 Campbell (consultant) 1800  

1997 Edwards (University of Colorado) 2836  

1997 Masters et al. (U.S. Geological Survey) 2272  

1997 Al-Jarri and Startzman (Texas A&M) 1760  

1998 Campbell and Laherrère (consultants) 1800  

1998 Hiller (Hanover, Germany) 1800-2570  

1998 Linden (Illinois Institute of Technology) 4000  

1998 Schollnberger (Amoco) 3300  

2000 U.S. Geological Survey 2000 3021 Oil available by 2025 

2001 Deffeyes (Princeton) 2100-2120  

2001 Odell 3000  

2001 Edwards (University of Colorado) 2750-3670  

2002 Edwards (University of Colorado) 3251  

2003 Nehring (personal estimate) 2500-3000 All liquids; 3500 “aggressive” 

2004 Odell 3000  

2008 Campbell and Heapes 1900  

Source: Salvador (2005), Andrews and Udall (2003) 
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Figure 6.1: Comparison of global URR estimates over the last 70 years 

 

The following sections examine three of these estimates in more detail. 

6.2.1 Campbell and Laherrère  

Campbell and Laherrère have produced several very conservative estimates of the global 

URR over the last 20 years - most of which are less than half of the most optimistic estimates. 

These estimates have underpinned their forecasts of an early peak in global oil production –

which have repeatedly proved incorrect (Lynch, 1998). 

Campbell and Laherrère obtain their global estimates by aggregating estimates for individual 

countries and regions. These are obtained from a combination of extrapolation techniques, 

including production decline curves and creaming curves. They emphasise the limitations of 

official reserve estimates, including inaccurate reporting by individual countries, inflation of 

OPEC reserves as a consequence of quota negotiations (by 287 Gb during the 1980s), the 

unlikely reporting of unchanged reserves from year to year (by 59 countries in 1997) and 

variations in reserve definitions from one country to another. To avoid these difficulties, 

Campbell and Laherrère rely upon 2P reserve estimates derived originally from the 

Petroconsultants database (subsequently subsumed into the IHS PEPS database). They argue 

that these estimates provide a more reliable indication of remaining resources than do official 

1P estimates from sources such as the BP Statistical Review. Though they acknowledge 

reserve growth, Campbell and Laherrère make no allowance for this in their estimates and 

also make a number of judgemental adjustments, most notably in significantly downgrading 

the reserve estimates for OPEC countries. Most importantly, Campbell uses a highly 

restrictive definition of conventional oil: 

“….. what is here termed Regular Conventional Oil is defined to exclude oil from coal and 

shales; Bitumen; Extra Heavy Oil (<10º API), Heavy Oil (10-17.5º API); Deepwater Oil and 

Gas (>500m); Polar Oil and Gas; Natural Gas Liquids from gas plants.” (Campbell and 

Heapes, 2008) 
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Campbell‟s earliest estimate of a global URR of 1650 Gb was made in 1991 (Campbell, 

1991), before he joined Petroconsultants and gained access to more reliable data. Based on 

this data, Campbell and Laherrère‟s published an influential report in 1997 which estimated 

the global URR to be 1800 Gb. Campbell‟s most recent estimate was for 1900 Gb, (Campbell 

and Heapes, 2008) indicating a 250 Gb increase over 17 years. This is still less than two 

thirds of the USGS 2000 estimate (Section 6.3) and 469 Gb less than cumulative 2P 

discoveries (IEA, 2008), but these figures relate to a broader definition of conventional oil 

that includes NGLs.  

The process Campbell uses to derive these estimates does not appear very robust. As an 

illustration, Figure 6.2 presents his extrapolation techniques as applied to Libya. It is notable 

that the extrapolation of the Hubbert Linearisation (in green) does not follow the actual data 

points (in black) in any obvious way and the first derivative of the logistic curve does not 

bear any relation to the actual production data. It is unclear from the surrounding text how 

these charts contribute to the estimate of URR for Libya. Similar problems are apparent in 

many of the regions examined. 

Figure 6.2: Presentation of extrapolation methods for Libya oil data as presented in 

Campbell and Heapes (2008). 

 

6.2.2 Miller (1992) 

As a counterpoint to the relatively small URR estimates of Campbell and Laherrère, one of 

the largest modern estimates of the global URR was published by Miller in 1992. This 

estimate excludes heavy oil, tar sands and shale oil. Miller proposes an alternative to the 

traditional methods of URR estimation, which he refers to as the “global oil system” (Figure 

6.3). Using this model, URR is estimated by attempting to quantify the total oil in place 

(referred to as the “reservoired” oil system) by calculating the balance between „oil 
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generation‟ and „oil seepage‟. The recoverable resource is estimated as a proportion of the oil 

in place, using assumptions about recovery factors. As can be seen in Figure 6.3, Miller 

concludes that a URR of 3960 Gb is plausible but notes that this depends upon uncertain 

assumptions about the rate of seepage and the state of equilibrium between oil generation and 

natural loss within the system. 

Figure 6.3 The global oil system model as presented by Miller (1992) 

 

Source: Miller (1992) 

Notes: Arrows represent flow rates, expressed in million barrels per year. 

 Global Seepage; oil which oxidises upon seeping to surface or oxidised within reservoir (mb/y) 

 Global Generation: Volume of oil generated within the source rock (mb/y) 

 Global Cracking: oil lost due to thermal cracking (mb/y) 

 Global Expelled Oil System: total volume of oil expelled by source rocks, with fixed volume, input and 

output at any specific point in time (b) 

 Reservoired Oil System: volume trapped in reservoirs, including all original oil-in-place, both known and 

yet-to-find (b) 

 Recoverable Reserves: estimate of URR based on recovery factor applied to Reservoired Oil System (b) 

6.2.3 Odell 

In contrast to Campbell and Laherrère, Odell has consistently provided relatively optimistic 

forecasts of regional and global oil supply, together with correspondingly optimistic estimates 

of the global URR (Odell and Rosing, 1980b). Much of Odell‟s optimism regarding oil 

supply comes from his estimates of the non-conventional URR and his estimates of the 

conventional URR have appeared more realistic over time in the light of other studies. 

In 1973, Odell forecast that estimate of conventional oil URR would reach 4000 Gb by 2000, 

on the basis of a linear extrapolation of historical trends (Figure 6.4) (Odell, 1973c). The 

assumption that estimates of global URR will continue to increase is perhaps unrealistic and 

4000 Bb is greater than most contemporary estimates (although see Section 6.4). Odell and 

Rosing (1980a) subsequently considered estimates of the global URR ranging from 2000 Gb 

to 11000 Gb as inputs to their model of future oil supply. Odell identifies 3000 Gb as a 

realistic estimate and has used this in subsequent modelling (Odell, 2004). Throughout his 

work, Odell does not make any primary estimates of global URR, but simply draws upon 

other published estimates. 
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Figure 6.4: Odell’s estimates of world ultimate reserves of crude oil from conventional 

sources (with extrapolation to the year 2000) 

 

Source: Odell (1973c) 

6.3 The USGS World Petroleum Assessment 2000 

6.3.1 Methods 

As indicated above, the most comprehensive and influential estimates of global URR have 

been produced by the US Geological Survey (USGS) which has published five assessments 

of the global URR for petroleum (conventional oil, NGLs and natural gas) since 1980 

(USGS, 2000b). Each of these assessments used a combination of methods to estimate the 

URR of geologically homogeneous regions, which were then aggregated to the level of the 

world as a whole. The assessment methods have changed significantly since 1980 and have 

greatly increased in complexity. The most recent and comprehensive assessment was 

completed in 2000 and runs to 30,000 pages, available only on CD-ROM (USGS, 2000b). 

The 2000 assessment considered petroleum resources that had the potential to be added to 

reserves between 1995 and 2025 using existing technology.
85

 This involves assumptions 

about technical and economic viability and implies that the results could both underestimate 

the global URR (since some resources may only be technically and economically accessible 

in the longer term) and overestimate resource availability up to 2030 (since political and other 

constraints may prevent resources from being accessed and exploited). However, the estimate 

will be referred to as the global URR in what follows. 

The USGS divided the world into eight oil producing regions, namely: 

 Former Soviet Union  

                                                 
85 Previous USGS assessments did not specify a particular time span.  
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 Middle East and North Africa  

 Asia Pacific  

 Europe  

 North America  

 Central and South America  

 Sub-Saharan Africa and Antarctica  

 South Asia  

Seven of these regions were assessed in depth using a common methodology (termed the 

„Seventh Approximation‟), while resource estimates for the United States were taken from 

previous studies by the USGS (1995) and the Minerals Management Service (1996). The 

world was divided into 937 petroleum provinces,
86

 406 of which were known to contain 

petroleum resources (354 outside the US and 52 within the US) while an additional 5 were 

considered likely to contain petroleum although no discoveries had yet been made.
87

 Formal 

assessments were made of 128 non-US provinces located in 96 countries and two jointly held 

areas. These were subdivided into 76 „priority‟ provinces containing 95% of the world's 

discovered petroleum and 52 „boutique‟ provinces which were more prospective (USGS, 

2000b). The distribution of resources between these provinces resembled the distribution of 

resources between different fields in a region, in that most of the petroleum was estimated to 

be contained within a small number of provinces. By implication, 538 provinces were 

excluded altogether from the assessment, presumably because they were considered unlikely 

to contribute to global oil supply over the 30 year time horizon of the study. The implications 

of this are discussed further in Section 6.4.2.   

The 128 provinces for which formal assessments were conducted (exclusive of the US) were 

divided into 159 Total Petroleum Systems (TPS) and 270 Assessment Units (AU). 

Assessments were made of 149 TPS and 246 AUs that were judged to be „significant‟ on a 

world scale.
88

 The TPS was a new geological concept, introduced for the first time in the 

2000 WPA, and comprising „all genetically related petroleum generated by a pod of mature 

source rocks‟ (USGS, 2000b).
89

 Each TPS was divided into one or more AUs, which were 

designed to be sufficiently homogeneous in terms of geology, field size distribution, 

exploration considerations, accessibility and risk to be examined using a single resource 

assessment methodology. The study excluded unconventional resources and imposed a 

minimum field size, which ranged from 1 to 20 million boe depending upon the individual 

AUs. For example, a larger minimum field size was assumed for offshore regions.  

                                                 
86 The 937 provinces were defined to encompass all the world's major land areas and adjoining water to depths of a least 

2000 m. A province is defined as an area having dimensions of perhaps hundreds to thousands of kilometres encompassing a 

natural geological entity (e.g. sedimentary basin, thrust belt, delta) or some combination of contiguous geological entities. 
87 Only three of the extra five provinces are actually included in the USGS 2000 study, namely North Barents, Provence, and 

the East Greenland Rift.  
88 In addition, 24 AUs were identified as containing unconventional resources, but these were not quantitatively assessed 

(USGS, 2000b). 
89 More specifically: “….an entity encompassing genetically related petroleum that occurs in seeps, shows and 

accumulations (discovered or undiscovered) that has been generated by a pod or by closely related pods of mature source 

rock, together with the essential mappable geological elements (source, reservoir, seal and overburden rock) that control 

fundamental processes of generation, migration, entrapment and preservation of petroleum.” (USGS, 2000b). 
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The assessment of undiscovered resources was based upon a mixture of geological 

assessments and discovery process modelling. The choice depended upon the level of 

exploration maturity of the region, with the results of several methods generally being 

combined. These provided estimates of the minimum, mode and maximum number of 

undiscovered fields, together with their minimum, median and maximum size. These 

numbers were used as inputs to a Monte Carlo simulation which derived probabilistic 

estimates of the size of undiscovered resources under the assumption of a shifted lognormal 

field size distribution (Charpentier, 2005). Probablistic assumptions about „co-product‟ ratios 

were then used to estimate the volume of oil in gas fields (i.e. NGLs) and vice versa.
90

  

Since the study uses a baseline of 1st January 1996, the estimates of cumulative discoveries 

(cumulative production plus 2P reserves) were already five years out of date by the time the 

study was published. Similarly, the estimates of „undiscovered‟ resources refer to resources 

that had the potential to be added to reserves between 1996 and 2025. Again, a portion of this 

had already been discovered by the time the study was published. 

6.3.2 Results 

Table 6.5 and Figure 6.5 present the USGS mean estimates of the global URR for petroleum 

liquids while Table 6.6 shows how this is split between oil and NGLs, together with the 

corresponding range of uncertainty. Table 6.7 shows the estimated regional breakdown of 

undiscovered resources. The following points may be highlighted: 

 The mean estimate for the global URR for petroleum liquids was 3345 Gb, of which 

90.3% (3021 Gb) was for conventional oil and the remainder NGLs. This represented a 

47% increase on the previous USGS estimate of 2273 Gb.
91

  

 This large increase derived in part from the inclusion of reserve growth for the first time 

and also from a significant increase in the estimated size of NGL resources. The latter 

were estimated to comprise 9.7% of the URR for liquids, 12.1% of the remaining 

resources and 22.0% of undiscovered resources, compared to only 1% of cumulative 

production through to 1996.  

 The mean estimate for undiscovered liquid resources was 939 Gb, or 28.1% of the 

estimated URR and 35.6% of the remaining resources. This is 48% larger than the mode 

estimate in the previous USGS assessment (471 Gb).  

 One third of the estimated undiscovered resources were estimated to be located in the 

Middle East, followed by the FSU (18.2%) and North America (17.2%). 

 Assuming a constant discovery rate, the mean estimates imply that an average of 31 Gb 

should be found each year between 1996 and 2025. This compares to an average of 14 Gb 

in the previous ten years (1986-1995) and 22 Gb in the previous twenty years (1976-

1995). In other words, these potential reserve additions could only be achieved through a 

major turnaround in global exploration success, which has been declining fairly 

continuously since the mid 1960s (Figure 6.6). Whether this decline is a result of physical 

depletion, restricted access to the most promising areas or price-induced reductions in 

                                                 
90 A more comprehensive summary of the methodology used can be found in Appendix 1 of Klett et al. (2005a) or Chapter 

AM of USGS (2000).  
91 Earlier USGS estimates were: 1719 Gb (1981), 1744 Gb (1985) and 2171 Gb (1990) respectively (USGS, 2000b).   
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exploration activity is disputed (Bentley, 2002; Mills, 2008). In practice, each is likely to 

have played a role.  

 The mean estimate for reserve growth was 730 Gb, or 21.8% of the estimated URR and 

27.8% of the remaining resources. Hence, reserve growth at existing fields was expected 

to contribute almost as much to future resource additions as new discoveries. 

 Only 21.4% (717 Gb) of the estimated URR had been produced through to January 1996. 

However, with cumulative production through to December 2007 of 1128 Gb, this figure 

has now increased to 33.7%, with the growth in annual production averaging 1.5%/year. 

Put another way, about a third of the oil that has ever been produced has been produced in 

the last fourteen years (1994-2007) and one quarter in the last ten years.  

 If consumption continues to grow at an average of 1.5%/year, the midpoint of the mean 

estimate of URR (1672 Gb) would be reached around 2024 (with production at 103 

mb/d). The midpoint would be reached later if demand grew more slowly or earlier if it 

grew more rapidly. It could also be reached earlier if new discoveries and/or reserve 

growth deliver less than the mean estimate of reserve additions. More importantly, 

various factors may prevent reserve growth and new discoveries from contributing to 

reserve additions at the rate that is required. 

Table 6.5 USGS WPA 2000: mean estimates of global URR for petroleum liquids (Gb) 

 US total liquids World (non-US) 

oil 

World (non-US) 

NGLs 

World Total 

Cumulative 

production 171 539 7 717 

Remaining 2P 

reserves 32 859 68 959 

Reserve growth 76 612 42 730 

Undiscovered 

resources 83 649 207 939 

URR 362 2659 324 3345 

Remaining 

resources 191 2120 317 2628 
Source: USGS (2000) 

Notes: All figures refer to January 1996.  
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Figure 6.5 USGS 2000: components of the estimated global URR for conventional oil 

Cumulative 

production (717 Gb)

2P Reserves (959 

Gb)Future reserves 

growth (730 Gb)

Undiscovered 

resources (939 Gb)

 

Figure 6.6 Comparing historical trends in backdated 2P discoveries with those implied by the 

USGS 2000 for the period 1995-2025 

0

10

20

30

40

50

60

70

80

1900 1920 1940 1960 1980 2000 2020 2040

Year

D
is

co
ve

ry
 (

G
b

)

Global Discovery (3 yr mov. avg.) Average discovery implied by USGS 2000

 



 

 

170 

170 

Table 6.6 USGS World Petroleum Assessment 2000: summary of global URR estimates for petroleum liquids 

 Oil NGLs 

 F95 F50 F5 Mean F95 F50 F5 Mean 

Rest of World         
Undiscovered 334 607 1107 649 95 189 378 207 
Reserve growth 192 612 1031 612 13 42 71 42 
Remaining reserves    859    68 
Cumulative 

Production 

   539    7 

Total    2659    324 

United States      

Undiscovered 66  104 83 Combined with oil 

Reserve growth    76 Combined with oil 

Remaining reserves    32 Combined with oil 

Cumulative 

Production 

   171 Combined with oil 

Total    362 Combined with oil 

World Total    3021     
Source: USGS (2000) 

Notes: All figures refer to January 1996.  Fx implies an estimated x% probability of the resource exceeding the indicated size. 
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Table 6.7 USGS WPA 2000: Mean estimates of undiscovered resources by region 

Region Oil NGLs Liquids % of total 

Former Soviet 

union 

116 54.8 170.8 

18.2% 

Middle East & 

North Africa 

229.9 81.7 311.6 

33.2% 

Asia-Pacific 29.8 15.4 45.2 4.8% 

Europe 22.3 13.7 36 3.8% 

North America 153.5 7.9 161.4 17.2% 

Central & South 

America 105.1 20.2 

 

125.3 13.3% 

Sub-Saharan 

Africa & 

Antarctica 71.5 10.8 

 

 

82.3 8.8% 

South Asia 3.6 2.6 6.2 0.7% 

Total 731.7 207.1 938.8 100% 

Source: USGS (2000) 

Notes: All figures refer to January 1996.   

The most controversial aspect of the USGS WPA 2000 was the assumptions about reserve 

growth (Laherrère, 2001b). While this process had been well studied in the US, it had been 

excluded from previous global assessments, owing to insufficient data. However, this neglect 

was becoming increasingly inappropriate, given that reserve growth appeared to be 

accounting for an increasing proportion of global reserve additions. Using the 

Petroconsultants database, the USGS (2000) found that the estimated URR for 186 giant 

fields outside the US had increased by 26% between 1981 and 1996. This was greater than 

would have been predicted by the reserve growth functions estimated from US oil fields, 

despite the Petroconsultants database containing 2P reserve data while the US function was 

estimated from 1P data. Hence, the neglect of non-US reserve growth no longer seemed 

viable. 

In contrast to the comprehensive and sophisticated assessment of undiscovered resources, the 

USGS methodology for estimating reserve growth was remarkably crude. Since the available 

data was considered inadequate - in terms of completeness, quality and internal consistency - 

to accurately estimate reserve growth functions for regions outside the US, the USGS chose 

instead to apply a single US reserve growth function to all oil and gas fields throughout the 

world.
92

 This gave point estimates for the „grown size‟ (by 2025) of each field that had been 

discovered before 1996. To reflect the uncertainty in these estimates, the USGS assumed a 

symmetrical triangular probability distribution around this estimate, with a minimum value of 

zero.
93

  

Much debate has arisen over the validity of applying US growth functions to global oil 

reserves in this way. For example, Laherrère (2001b) has argued that much of the US reserve 

growth is a reporting phenomenon, linked to the SEC rules regarding disclosure of highly 

conservative 1P reserve estimates, so it is inappropriate to apply this to 2P data. Similarly, an 

                                                 
92 The function was a weighted average of the oil and gas field functions used in the 1995 US national assessment (Attanasi, 

et al., 1999; Gautier, et al., 1995).   
93 Arguably, a minimum value of less than zero should have been used to reflect the possibility that 2P estimates could 

reduce overtime. 
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increasing proportion of global supply is projected to come from offshore fields, but reserve 

growth should be less for these fields owing to the more limited opportunities for additional 

drilling. However, the USGS was quite open about the limitations of its approach: 

“…..The forecast of world potential reserve growth described here is considered to be 

preliminary.... the present study is an attempt to provide a numerical hypotheses for world 

potential reserve growth that is valuable in itself and will perhaps acted as a stimulus for 

discussion and research aimed at reducing the uncertainty of world reserve growth estimates.” 

(USGS, 2000b) 

The USGS notes that its approach may overestimate reserve growth if the criteria for 

reporting non-US reserves was less restrictive than in the US (as they are), if reserves are 

overstated in some countries (as seems likely), or if non-US fields have more development 

prior to the release of initial field size estimates (leading to more accurate initial reserve 

estimates and reducing the potential for future growth). At the same time, the approach could 

underestimate reserve growth over the next 30 years if non-US fields benefit from better 

technology than that which determined the historical US growth function, or if these fields 

have not been developed as fast as US fields of the same age. In practice, the relative 

importance of these different factors may be expected to vary widely from one region to 

another and one type of field to another. But in the absence of good data, there is room for a 

range of views on the net effect at the global level. 

6.3.3 Evaluation 

Since we are now 40% of the way through USGS assessment period (1995-2025), some 

evaluation of the „accuracy‟ of the assessment can be made. But it is important to recognise 

that the study did not predict what would actually be found in 30 years, but instead estimated 

what could potentially be found using existing technology. In other words, various political, 

economic and investment constraints could (and almost certainly have) prevented reserve 

additions.  

The USGS evaluated their assessment using IHS data through to December 2003 (i.e. 27% of 

the assessment period) (Klett, et al., 2005a). They found that only 69 Gb of oil had been 

discovered in the 128 assessed provinces (i.e. those outside the US), or less than 11% of the 

mean estimate of undiscovered resources (649 Gb) for those provinces. Assuming a constant 

discovery rate, a total of 173b should have been discovered by 2003 or 27% of the 

undiscovered resource. In other words, real-world oil discoveries outside the US were less 

than half of what was „expected‟ over this period. Klett et al. (2005a) highlight a number of 

possible reasons for this, including limited access to resources in Iraq, Iran
94

 and Libya, 

political and economic instability in Russia and the Central Asian republics and low oil prices 

during the late 1990s leading to low rates of exploratory drilling. The IEA (2008) reports a 

fall in the average number of fields discovered per year since 1996 as well as the average size 

of those fields which suggests that there has been some reduction in exploratory activity.   

Although not mentioned by Klett et al., an additional reason for the apparently low discovery 

rate may be that the 69 Gb figure represents the 2003 estimate of the URR of the fields 

discovered in the previous eight years and therefore has not been adjusted for future reserve 

growth (i.e it is 2007,'
dt

B  and not 2025,'
dt

B ). If this adjustment was made, the „actual‟ 

                                                 
94 Although, Iran had the largest amount of discoveries between 1993 and 2002. 
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discoveries may be much closer to the „forecast‟ discoveries. For example, the „modified 

Arrington‟ reserve growth function depicted in Figure 2.2 projects a quadrupling of the initial 

estimate of URR in 20 years, with the majority of the increase occurring in the first ten years 

(Verma, 2005).  

In contrast to new discoveries, reserve growth appeared to be tracking the USGS projections 

relatively well. From analysis of the IHS database, Klett, et al. (2005a) conclude that a total 

of 171 Gb had been added through reserve growth by 2003, which is 28% of what was 

expected over the full 30 years and more than twice the resource additions through new 

discoveries. This suggests that (contrary to be expectations of many critics), the US reserve 

growth function works relatively well when applied to 2P data - at least at the global level. 

However, some of the apparent reserve growth in the IHS PEPS database may result from 

revisions to the reserve estimates of various OPEC countries which remain a subject of 

controversy (Thompson, et al., 2009b). For example, Stark and Chew (2005) found a global 

total of 465 Gb of reserve growth between 1995 and 2003, of which 175 Gb was attributed to 

„classic‟ reserve growth and the remainder to „new and revised data‟. This distinction 

suggests that much of the apparent reserve growth could derive from factors such the 

inclusion of previously omitted fields in the industry databases and from revised estimates of 

fields where the data was poor. The biggest growth in absolute terms derived from Middle 

East fields where the reserves data is particularly uncertain. 

The most uncertain estimates in the USGS 2000 assessment were for relatively unexplored 

regions of the world, such as the East Greenland Rift. Here, the USGS estimated a 95% 

probability of oil resources exceeding zero, a 5% probability of more than 111.8 Gb and a 

mean estimate of 47 Gb. In a recent reappraisal of this area, the USGS (2007) downgraded 

the mean estimate to only 8.9 Gb (although the estimate for NGLs was doubled from 4 to 

8Gb). While this downgrading is regionally significant, it only amounts to 1.4% of the 2000 

estimate of remaining resources (2628 Gb). Also, given the formidable difficulties of 

accessing resources in East Greenland, this region seems unlikely to make a significant 

contribution to global oil production before 2025. 

As the USGS acknowledges, the estimates for relatively unexplored regions must remain 

highly uncertain. While very few regions are wholly unexplored, there are still large areas 

that remain poorly explored, including parts of central and southern Africa, the offshore 

regions of Kenya and Namibia, large parts of Libya and the Middle East, and offshore 

regions of Argentina, Colombia, Peru, Venezuela and Mexico. Many of these were excluded 

altogether from the USGS assessment, while exploration in many of the included regions was 

restricted by various political, economic and technical constraints. If these continue, the 

potential reserve additions identified by the USGS will not be realised before 2025, even if 

the resource is actually there. This in turn could lead to supply difficulties occurring at an 

earlier date. For example, suppose that the anticipated reserve growth is fully realised by 

2025, but only half the estimated undiscovered resources are developed. If consumption 

grows at 1.5%/year, the midpoint would be reached as early as 2017 (Strahan, 2007a).  

6.4 Recent modifications to the USGS estimates 

6.4.1 The IEA World Energy Outlook 2008 

An updated assessment of the global URR was presented in the IEA World Energy Outlook 

2008 (IEA, 2008). This took the USGS 2000 study as the primary data source, but updated 
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this with information from the IHS database, a recent evaluation of the USGS 2000 

assessment (Klett, et al., 2007), additional information from the USGS and the IEA‟s own 

databases and analyses. The results for total petroleum liquids are summarised in Table 6.8 

and Figure 6.7 (note that the IEA do not provide a breakdown between oil and NGLs). The 

most notable point is that the IEA estimate the global URR for conventional petroleum 

liquids to be 3577 Gb which is 6.9% larger than the earlier USGS estimate. Furthermore, 

they estimate a 90% probability of the URR exceeding 2400 Gb and a 5% probability of it 

exceeding 4495 Gb. The mean estimate of remaining resources is 2448 Gb, or 68% of URR. 

Remaining 2P reserves are estimated to have increased by 29% since 1996 which indicates 

that reserve growth and new discoveries have more than offset the 411 Gb of production over 

this period. The remaining contribution from reserve growth is estimated at 402 Gb (16% of 

remaining resources), while that from undiscovered resources is estimated at 805 Gb (33% of 

remaining resources). The estimates of reserve growth and undiscovered resources are lower 

than in the USGS 2000 study, in part because a proportion of both have already been 

converted into production and/or 2P reserves. It is also notable that 86% of the remaining 

resources are estimated to lie outside the OECD. 

Table 6.8 IEA 2008 WEO: mean estimates of global URR for petroleum liquids (Gb) 

 OECD Non-OECD World % diff from 

USGS 2000 

OECD as % 

of total 

Cumulative 

production 

363 765 1128 

57.3% 32.2% 

Remaining 2P 

reserves 

95 1147 1241 

29.4% 7.7% 

Reserve 

growth 

27 375 402 

-44.9% 6.7% 

Undiscovered 

resources 

185 620 805 

-14.3% 23.0% 

URR 670 2907 3577 6.9% 18.7% 

Remaining 

resources 

307 2142 2448 

-52.8% 24.7% 
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Figure 6.7 IEA 2008: components of the estimated global URR for conventional oil 

Cumulative 

production (1128 

Gb)

2P Reserves (1241 

Gb)

Future reserves 

growth (402 Gb)

Undiscovered 

resources (805 Gb)

The IEA estimates (Table 6.8) exclude „conventional oil produced by unconventional means‟, 

but the precise definition of this category is unclear. The estimate would appear to exclude 

the Artic region, for example, which remains both largely unexplored and extremely difficult 

to exploit. Much of the Artic was excluded from the USGS 2000 assessment, presumably 

because it was considered unlikely to contribute to global supply before 2025. But in an 

updated assessment for this region published in 2008, the USGS provided a mean estimate of 

134 Gb of undiscovered petroleum liquids (90 Gb oil and 44 Gb NGLs) (USGS, 2008). This 

would increase the global URR for petroleum liquids by 3.7% and the remaining resources by 

5.5%. 

The IEA (2008) also provide a long-term oil supply cost curve which appears to exclude 

NGLs but include „conventional oil produced by unconventional means‟. This curve includes 

the following estimates of the size of remaining resources: 

Conventional oil:   2100Gb
95

 

Enhanced oil recovery (EOR): 400 - 500 Gb 

Deepwater and ultra deepwater: 160 Gb 

Artic:     90 Gb 

                                                 
95 Comparison with Table 6.5 implies a mean estimate of 348 Gb for the remaining resources of NGLs. This is larger than 

the corresponding estimate in the USGS 2000 study (317 Gb), despite significant production of NGLs in the intervening 12 

years. 
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Combining these estimates and adding the implied contribution from NGLs (348 Gb) leads to 

a higher estimate of the remaining resources of petroleum liquids - 3148 Gb. This in turn 

implies a URR of 4276 Gb which is significantly larger than the figure in Table 6.8 but still 

excludes heavy oil and oil sands. Hence, the URR implied by the IEA supply curve is larger 

than the URR given in the table and represents one of the largest estimates seem to date. It is 

notable, however, that this estimate is very sensitive to the assumptions about EOR which the 

IEA states could potentially increase recovery factors from their current average of 35% to 

around 50%. Although this would provide an additional 1200 Gb of recoverable resources, 

the IEA estimates that it would take „much more than two decades‟ to achieve. The estimated 

contribution from EOR in the supply curve data appears to imply a increase in the average 

recovery rate to around 40%, but in its supply forecasts to 2030, the IEA anticipates a 

cumulative contribution of only 24 Gb from EOR before 2030 which is less than 12% of the 

estimated potential. Similarly, it projects that only 14% (114 Gb) of the undiscovered 

resources will be found before 2030. 

6.4.2 Colorado School of Mines 

A comparably optimistic assessment of the global URR is provided by Aguilera, et al. 

(2009). This estimate is also based upon the USGS 2000 study but (unlike the IEA) does not 

update the figures to allow for production, discoveries and reserve growth since 1996. 

Instead, it increases the USGS estimates in two interesting and somewhat unconventional 

ways. 

In the first stage, Aguilera et al. argue that the USGS underestimates total petroleum 

resources because they only assessed 409 provinces out of the global total of 937.
96

 

Moreover, only 200 of these were assessed in detail. Table RH-1 in the USGS study ranks the 

409 provinces in descending order of size, which shows that the provinces that were not 

assessed in detail typically contain less than <0.1% of cumulative non-US discoveries 

(USGS, 2000b).  

The 528 provinces that were excluded from the study remain unexplored but could 

potentially contain petroleum resources. This includes regions such as the Artic, Antarctic 

and much of sub-Saharan Africa. The main reason for excluding these was that they were 

considered unlikely to contribute to global supply over the 30 year time horizon of the USGS 

study. This could be because they were relatively small or because they were relatively 

inaccessible and hence difficult to exploit (e.g. the Artic). By including estimates of the 

resources contained in these provinces, Aguilera et al. may obtain a better estimate of the 

„long-term‟ global URR. However, if these resources are difficult to access and exploit, they 

may not necessarily contribute to oil supply in the short to medium term and hence may have 

no influence on the date of the global peak. In this context, the following two quotes should 

be noted:  

“ the USGS assessment is not exhaustive, because it does not cover all sedimentary basins 
of the world. Relatively small volumes of oil or gas have been found in an additional 279 
provinces, and significant accumulations may occur in these or other basins that were not 
assessed. The estimates are therefore conservative.” (Ahlbrandt and McCabe, 2002) 

                                                 
96 This includes the 406 provinces that were known to contain petroleum, but only three of the five that were considered 

likely to contain petroleum.  Of these, only 200 were assessed in detail. 
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"We believe that the USGS (2000) estimates are conservative for a variety of reasons, chief among 
which are that the USGS assessment did not encompass all geologically conceivable small sources 
of conventionally reservoired crude oil and was limited to the assessment of reserves that would be 
added within a 30 year time frame because, in part, technological changes beyond 30 years are 
difficult, if not impossible, to conceptualize and quantify.” (US Energy Information 
Administration) 

To estimate the size of the resources in the unassessed provinces, Aguilera et al fit a „variable 

size distribution‟ (VSD) model to known resources contained within the 200 assessed 

provinces. This approach is analogous to the field size distribution models for estimating 

URR that were reviewed in Section 2.5. But rather than assuming a particular (e.g. 

lognormal) size distribution, the model “…. allows the data to determine the size distribution 

relationship rather than specifying this relationship ex ante” (Aguilera, et al., 2009). Aguilera, 

et al then extrapolate this curve to estimate that 593 Gb of petroleum liquids are contained in 

the remaining 735 provinces – which is approximately one fifth of the remaining resources 

identified by the original USGS study. 

In the second stage, Aguilera et al. assume that reserve growth also applies to undiscovered 

resources and can be estimated using the reserve growth functions used previously by the 

USGS. As a result, they adjust these estimates upwards by as much as 50% for both of 

assessed and unassessed provinces. This leads to an additional 1025 Gb of petroleum liquids. 

The net result of these two adjustments is an estimate of 3516 Gb for the remaining resources 

or petroleum liquids and an estimate of 4233 Gb for the URR.
97

 This figure is comparable to 

that implied by the IEA‟s supply curve (see above), but derived through an entirely different 

route. Since Aguilera, et al make no assumptions about EOR, a combination of their 

approach with the IEA‟s assumptions could potentially lead to an even more optimistic 

estimate for the global URR.  

Aguilera et al.‟s approach is questionable in a number of respects. First, it may be 

unreasonable to assume that all of the 937 provinces contain recoverable liquids and many of 

those that do (e.g. in the Artic regions) are likely to remain relatively inaccessible in the 

medium-term. Second, the unassessed provinces are significantly smaller (in resource size) 

than the assessed provinces, raising questions about both the economic viability of extraction 

and the net energy yield. Third, the application of reserve growth multipliers to the mean 

estimates of undiscovered resources seems difficult to justify. These multipliers were derived 

from studies of existing (frequently very old) fields, they relate to estimates derived from 

exploratory drilling and production experience and they reflect factors such as conservative 

initial reporting and improvements in recovery technology over the past 50 years. In contrast, 

the estimates of undiscovered resources are based largely on geological information, already 

contain wide confidence intervals to reflect uncertainty and are implicitly based upon 

assumptions about recovery factors that reflect modern technology. It therefore seems 

something of a leap of faith to multiply these estimates by such a large factor and as far as we 

are aware, no other researchers have done so. 

While the studies by Aguilera et al and the IEA have „pushed the envelope‟ of global URR 

estimates, the relevance of these estimates to forecasts of global oil supply needs to be 

questioned. This is because the relevant question is not simply whether the resource is there, 

                                                 
97 Since Aguilera, et al are working with the original USGS data (which applies to 1996), the URR is estimated here by 

adding Aguilera, et al’s estimate of remaining resources to the USGS figure for cumulative production through to 1996. 
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but whether it can be accessed sufficiently quickly to contribute to global oil supply in the 

medium-term. Multiple factors will influence this, including the physical accessibility of the 

relevant regions, the technical difficulties of extracting the resource, the implied investment 

requirements, the degree to which the resource can be accessed by independent oil companies 

and so on. Hence, even if the more optimistic URR estimates are correct, this may not make 

any difference to the date of the global oil supply peak. The following section explores this 

relationship between stocks (global URR) and flows (global supply) in more detail. 

6.5 The implications of global URR estimates for future 

global supply 

The above review demonstrates that contemporary estimates of the global URR for 

conventional oil fall within the range 2000-4300 Gb, while the corresponding estimates of 

the quantity of remaining resources fall within the range 870 to 3170 Gb. In other words, the 

highest estimate of remaining resources is four times greater than the lowest estimate. While 

the lower end of this range arguably results from an excessively narrow definition of 

conventional oil, the upper end arguably results from excessively optimistic assumptions 

about reserve growth, undiscovered resources and/or the future potential of enhanced oil 

recovery. But while excluding both could narrow the range, the degree of uncertainty is likely 

to remain very high for the foreseeable future. This in turn, leads to a corresponding 

uncertainty in the projections of future global oil supply. In particular, precise forecasts of the 

date of peak production appear wholly unwarranted when there so much uncertainty over this 

key parameter.  

It is useful to explore the implications of this uncertainty with the help of a simple logistic 

model of global liquids production – where liquids is defined here to include crude oil, 

NGLs, condensate, heavy oils (<10
o
 API) and oil sands. As illustrated in Section 5.3, the 

logistic model provides a relatively poor fit to global production trends for these liquids, in 

part because it fails to account for the effects of the oil shocks in the 1970s. The „best-fit‟ 

logistic model for cumulative production leads to a global URR estimate for these liquids of 

1440 Gb which is less than cumulative global discoveries through to 2007 and only 29% 

more than the cumulative production. Similarly, a „best fit‟ model of the rate of production 

gives a global URR estimate of 1860 Gb, which is only 65% more than cumulative global 

production and lower than the most pessimistic URR estimates considered here – despite a 

more inclusive definition of liquids. However, instead of using non-linear regression to 

estimate the URR, we can instead assume a value for the URR and estimate „best-fit‟ values 

for the other two parameters – including the date of peak production (tm). By assuming a 

range of values for the global URR, we can investigate the sensitivity of the data of the peak 

to the size of the global resource.
98

  

Figure 6.8 and Figure 6.9 show the results of such an exercise in which a first differential of 

the logistic curve has been fit to annual global production data using assumptions for the 

global URR ranging from 2000 Gb to 4500 Gb. For an estimate of 2500 Gb, the model gives 

peak production in 2009 at a level of 30 Gb/year (82 Mb/day), while for an estimate of 4500 

Gb, the model gives peak production in 2032 at a level of 42 Gb/year (115 Mb/day). Hence, a 

                                                 
98 Earlier investigations along these lines have been conducted by Bartlett (2000), Carlson (2007a; b) and Brecha (2008; 

Brecha, et al., 2007) among others. 
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125% increase in the size of the URR (or a 260% increase in the size of the remaining 

resource), delays the date of peak production by only 23 years. Put another way, increasing 

the global URR by one billion barrels delays the date of peak production by only 4.7 days.
99

 

To delay the date of peak production by one year would require the addition of some 78 

billion barrels to the global URR, which is two and half times greater than global production 

in 2007 and almost seven times greater than global discoveries in that year.
100

 To put this in 

perspective, it implies that the discovery of new resources equivalent to the UK portion of the 

North Sea would delay the date of global peak production by only six months – even 

assuming that those resources could be developed and produced within the required 

timeframe. Similarly, the discovery of resources equivalent to those of the entire United 

States would delay the date of the global peak by less than four years.  

These sobering figures merely reflect the overwhelming power of exponential growth.
101

 As a 

consequence, the range of uncertainty over the date of peak production must be significantly 

less than the range of uncertainty over the size of the resource. As Brandt (2007) notes: 

“…..Hubbert-like theories based on good estimates of ultimate recovery cannot be wrong by 

decades, regardless of the details”. 

Figure 6.8 The peaking of global conventional oil production under different assumptions 

about the global URR - simple logistic model 
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99 Using production data through to 1995 and a slightly less inclusive definition of liquids, Bartlett estimated a corresponding 

figure of 5.5 days (Bartlett, 2000).  
100 This may be an overstatement, since the discovery figure has not been corrected for future reserve growth. 
101 Bartlett (1969) comments that „The greatest shortcoming of the human race is our inability to understand the exponential 

function.‟ 
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Figure 6.9 Sensitivity of the date of global peak production of conventional oil to different 

assumptions about the global URR – simple logistic model 
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A fair criticism of the above analysis is that the global production cycle is unlikely to be 

symmetric. For example, it is possible that production could decline rapidly as the giant fields 

are depleted and production shifts towards much smaller fields. Equally, it is possible that 

production could decline more slowly as price signals provide incentives for demand 

reduction and enhanced oil recovery.
102

 Hence, uncertainties about the size of the global URR 

are compounded by uncertainties about the future shape of the global production cycle.  

In an insightful paper, Kaufmann and Shiers (2008) address these uncertainties through a 

form of sensitivity testing. They develop a bell-shaped model for global production that is 

solved iteratively as a set of three equations:  
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(6.1) 

 

 

Where tm is the date of peak production, rinc is the rate of production growth immediately 

before the peak and rdec is the rate of production decline immediately after the peak. The 

equations are constrained by the requirement that cumulative production is less than the 

assumed URR. By combining, four assumptions about the size of the global URR with four 

assumptions about rinc and four assumptions about rdec, Kaufmann and Shiers are able to 

generate 64 scenarios for the future global production cycle that include varying degrees of 

asymmetry (to both the left and the right) and varying degrees of optimism about the size of 

the resource. As an illustration, Figure 6.10, shows four possible scenarios for an assumed 

URR of 3000 Gb.  

                                                 
102 For example, Brandt‟s (2007) empirical study of 74 oil-producing regions found that the production cycle was most 

commonly asymmetric, with a rate of decline typically being less than the rate of increase. 
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Figure 6.10 Illustrative scenarios for future global oil production with a URR of 3 Gb 

 

Source: Kaufmann and Shiers (2008) 

Note: a) dashed line: rinc=0.08, rdec=0.02; b) dotted line: rinc=0.08, rdec=0.08; c) long dashed line: rinc=0.02, 

rdec=0.02; d) dashed-dotted line: rinc=0.02, rdec=0.08. All scenarios assume a URR of 3000 Gb. 

Despite this wide range of scenarios, Kaufmann and Shiers find that large differences in the 

assumed URR lead to relatively small differences in the date of peak production. In 

particular, for 53 of the 64 scenarios, the date of peak production is found to lie between 2009 

and 2031. Holding rinc  and rdec constant, the date of peak production is found to increase by 

20-25 years as the assumed URR is increased from 2 Gb to 4.5 Gb. Kaufmann and Shiers 

also show that, for any given value of URR, changing the initial growth and decline rates has 

relatively little effect on the date of peak production. Scenarios with two peaks were also 

considered, but the URR constraint implies either that the annual rate of production for the 

second peak is lower than that for the first peak, or that production declines very rapidly after 

the second peak. As a result, the single peak scenarios were considered to be „best case‟.  

The results imply that delaying the peak in global oil production beyond 2030 requires both 

optimistic assumptions about the size of the global URR (i.e. 4 Gb or more), together with a 

relatively steep post-peak decline rate (e.g. an initial decline rate of 8%/year, or an average 

post-peak decline rate of ~4%/year). This form of asymmetry appears relatively unlikely and 

could also have serious implications once the peak is passed. For most combinations of the 

three parameters, the annual production of conventional oil is found to fall by 10 Mb/day 

within 5 to 10 years after the peak. To put this in perspective, this is equivalent to one eighth 

of current production or equal to the current output of Saudi Arabia. Later peaks generally 

imply faster rates of decline which in turn implies that substitutes must be developed faster 

and/or demand must fall more rapidly. While the implications of this are beyond the scope of 

the present study, the challenge appears formidable (Hirsch, 2008; Hirsch, et al., 2005). 

One weakness of the Kaufmann and Shiers study is the failure to consider demand-side 

shocks. The smallest value they considered for rinc was 2%/year, but in practice the supply of 

liquids fell in 2008 as a result of the economic recession. Supply is anticipated to fall further 

in 2009 and it is not yet clear when it will recover. The result may be to delay the data of 
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global peak production by several years in a similar manner to the oil shocks of the 1970s. 

However, the recession has also led to the cancellation of many field development projects. 

Given the rate of production decline from existing fields and the lead time required to 

develop new fields, this could lead to a near-term supply constraint should demand growth 

resume (IEA, 2008).  

6.6 Summary 

This section has summarised the various estimates of the global URR for conventional oil 

that have appeared over the last 50 years. It has examined the USGS World Petroleum 

Assessment in some detail and evaluated how more recent analysis and experience has 

modified the USGS estimates. It has also examined the implications of the global URR 

estimates for the future supply of conventional oil and the date of peak supply. The key 

conclusions are as follows: 

 Estimates of the global URR for conventional oil vary widely in their methods, 

assumptions and results and the comparison between them is greatly complicated by the 

differing coverage of petroleum liquids - including in particular the inclusion or exclusion 

of NGLs. There is no universally agreed definition of „conventional oil‟ and the more 

pessimistic estimates of URR result in part from an excessively narrow definition. Further 

difficulties arise from the use of competing reserve definitions in the estimation of 

cumulative discoveries, the uncertainty over the remaining reserves of various OPEC 

countries, the use of differing time-frames for the definition of URR and the treatment of 

reserve growth. All these factors contribute to considerable variability between different 

estimates. 

 Global URR estimates have been trending upwards for the last 50 years and this trend 

shows little sign of diminishing. While many cluster in the range 2000-3000 Gb, credible 

estimates now exceed 3500 Gb.   

 The USGS World Petroleum Assessment 2000 was a significant departure from previous 

studies, both in terms of the depth of the analysis and the size of the resulting estimates (a 

URR of 3345 Gb, or 47% larger than the previous USGS estimate). This estimate rested 

in part on some remarkably crude assumptions about reserve growth that have been 

widely criticised. Nevertheless, subsequent analysis indicates that these assumptions have 

proved broadly correct. Also, while the rate of new discoveries appears to be lower than 

anticipated by the USGS, this is partly a consequence of restrictions on exploration in 

certain regions and the failure to adjust these estimates to allow for future reserve growth. 

Hence, the repeated assertions that the USGS study is „discredited‟ or „over-optimistic‟ 

are at best premature. 

 The recent IEA World Energy Outlook gives a slightly larger figure of 3577 Gb for the 

global URR of conventional oil. But when „conventional oil produced by unconventional 

means‟ is included, the IEA report appears to suggest a figure of 4276 Gb. This larger 

estimate rests in part on contentious assumptions about reserve growth, undiscovered 

resources and/or the future potential of enhanced oil recovery.  

 An update of the USGS study has also been provided by Aguilera, et al (2009). By 

including the resources contained with previously unassessed provinces, together with 

generous assumptions about reserve growth, they arrive at a estimate of 4233 Gb for the 

global URR. Since this is comparable to the IEA estimate, but arrived at by entirely 
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different means, it suggests that an even larger estimate is plausible. However, several of 

the assumptions used by Aguilera, et al appear very questionable. 

 Contemporary estimates of the global URR for conventional oil fall within the range 

2000-4300 Gb, while the corresponding estimates of the quantity of remaining resources 

fall within the range 870 to 3170 Gb. Hence, there is a factor of four difference between 

the lowest and highest estimate of remaining resources. While both the lower and higher 

end of this range seem questionable, the degree of uncertainty in URR estimates appears 

unlikely to be significantly reduced within the foreseeable future. This leads to a 

corresponding uncertainty in the projections of future global oil supply. Precise forecasts 

of the date of peak production appear unwarranted when there so much uncertainty over 

this key parameter. 

 The implications of this uncertainty for the date of peak production may be demonstrated 

with the help of a simple logistic model. This suggests that increasing the global URR by 

one billion barrels would delay the date of peak production by only 4.7 days. To put this 

in perspective, it implies that the discovery of new resources equivalent to the UK portion 

of the North Sea would delay the peak by only six months. This result is not substantially 

changed if a more sophisticated model is used, that allows for varying degrees of 

asymmetry in the production cycle. For a wide range of assumptions about the size of the 

global URR and the rate of change of production before and after the peak, the date of 

peak production is found to lie between 2009 and 2031. Delaying the peak beyond 2030 

requires very optimistic assumptions about the size of the global URR and also implies a 

relatively steep post-peak decline rate. 

 These calculations do not consider the possibility that the date of peak production could 

be delayed by demand reductions or much slower demand growth, perhaps as a 

consequence of economic recession. However, by delaying upstream investments, 

economic recession could also contribute to near-term supply-constraints.   

 Other things being equal, larger estimates of the global URR for conventional oil lead to 

more optimistic forecasts for future global oil supply. However, even if the larger 

estimates are correct, it does not necessarily follow that the resource can be accessed at 

the required rate to maintain global production at a particular level. Multiple political, 

economic and technological factors may prevent this occurring. In particular, the larger 

estimates may reflect the resources contained within small fields in relatively inaccessible 

regions, or rely upon optimistic assumptions about future improvements in the global 

average recovery rate. If these resources can only be accessed relatively slowly at high 

cost, or if their net energy yield is relatively low, they may have little or no influence on 

the date of global peak production. However, larger resources may contribute to a slower 

decline in production following the peak. 
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7 Summary and conclusions 

The key lessons from this review may be grouped under three headings 

7.1 Methods and principles 

 There are a variety of methods for estimating URR and many variations on the basic 

techniques. „Geological‟ techniques are more appropriate for relatively explored regions 

while „extrapolation‟ techniques are more appropriate where exploration is advanced. The 

confidence bounds on these estimates are commonly very large and the few studies that 

compare different techniques show they can lead to quite different results. Accuracy can 

be improved through analysing disaggregate regions, but this is resource intensive and 

generally requires access to proprietary data. All estimation techniques have identifiable 

limitations and it is important that estimates are accompanied by confidence intervals and 

full details about the methodology and assumptions made. 

 The extrapolation techniques differ in degree rather than kind and share many of the same 

strengths and weaknesses. But a key practical difference is that field-size distribution and 

discovery process techniques require data on individual fields, while simple curve-fitting 

only requires aggregate data. All assume a skewed field size distribution and diminishing 

returns to exploration, with the large fields being found relatively early. But these 

assumptions will only hold if depletion outweighs the effect of technical change and if the 

region is geologically homogeneous and has had a relatively unrestricted exploration 

history. This is frequently not the case.  

 Assumptions about the field size distribution and discovery process underlie most of the 

extrapolation techniques. It is generally acknowledged that the majority of oil resources 

are contained in a small number of large fields, with around 100 oil fields accounting for 

up to half of global oil production and up to 500 fields accounting for two thirds of 

cumulative discoveries. Most of these fields are relatively old, many are well past their 

peak of production and most of the rest will begin to decline within the next decade or so. 

The remaining reserves at these fields, their future production profile and the potential for 

reserve growth is therefore of critical importance for future global supply. 

 The proportion of total resources contained within small, undiscovered fields continues to 

be disputed. While the observed lognormal size distribution of discovered fields is likely 

to be the result of sampling bias, there is insufficient evidence to conclude whether a 

„linear‟ or „parabolic fractal‟ better describes the population size distribution. While 

technical improvements and higher prices should make more small fields viable, many 

will remain uneconomic to develop and the exploitation of the rest will be subject to 

rapidly diminishing returns. As a result, the competing estimates of the resources 

contained in small fields should be of less significance to future supply than the potential 

for increased recovery from the giant fields. 

7.2 Curve fitting techniques 

 The popularity of curve-fitting techniques to estimate URR derives from their simplicity 

and the relative availability of the required data. But many applications of curve-fitting 

take insufficient account of the weaknesses of these techniques, including: the inadequate 

theoretical basis; the sensitivity of the estimates to the choice of functional form; the risk 
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of overfitting multi cycle models; the inability to anticipate future cycles of production or 

discovery; and the neglect of economic political and other variables. In general, these 

weaknesses appear more likely to lead to underestimates of the URR and have probably 

contributed to excessively pessimistic forecasts of oil supply. 

 Curve fitting to discovery data introduces additional complications such as the 

uncertainty in reserve estimates and the need to adjust estimates to allow for future 

reserve growth. The common failure to make such adjustments is likely to have further 

contributed to underestimates of resource size.  

 Tests of curve fitting techniques using illustrative data from a number of regions has 

shown how different techniques, functional forms, length of time series and numbers of 

curves can lead to inconsistent results. But although the results raise concerns about the 

reliability of curve-fitting estimates, the degree of uncertainty may be expected to decline 

in the future as exploration matures.  Also, accuracy may be improved by using the 

lowest possible level of spatial aggregation, distinguishing between onshore and offshore 

regions and adjusting for future reserve growth using functions derive from the technical 

literature. 

 The literature on curve-fitting techniques has generally paid insufficient attention to the 

statistical issues involved, such as goodness of fit, missing variables and serial correlation 

of the error terms. Where data is available, some of the limitations of curve fitting may be 

overcome with the use of hybrid models that incorporate relevant economic and political 

variables. But despite their better fit to historical data, such models may not lead to 

substantially different estimates of the URR. 

 These limitations do not mean that curve fitting should be abandoned, but do imply that 

its applicability is more limited than commonly assumed and that the confidence bounds 

on the results are wider than is commonly assumed. Where possible, resource assessments 

should employ multiple techniques and sources of data and acknowledge the uncertainty 

in the results obtained. 

7.3 Global Estimates 

 Estimates of the global URR for conventional oil vary widely in their methods, 

assumptions and results. Comparison is complicated by the differing definitions of 

„conventional oil‟ and the more pessimistic estimates of the global URR result in part 

from an excessively narrow definition. Further difficulties arise from the use of 

competing reserve definitions and differing time-frames for the definition of URR, 

together with uncertainty over OPEC reserves and the inconsistent treatment of reserve 

growth. The information currently available does not allow strong constraints to be placed 

on the last two variables. 

 Estimates of the global URR of conventional oil have been trending upwards for the last 

50 years and this trend shows little sign of diminishing. Contemporary estimates fall 

within the range 2000-4300 Gb, while the corresponding estimates of the quantity of 

remaining resources fall within the range 870 to 3170 Gb. This wide range leads to a 

corresponding uncertainty in the projections of future global oil supply and the date of 

peak production.  

 The USGS estimated a global URR of 3345 Gb in 2000 and in 2008 the IEA revised this 

upwards to 3577 Gb. Despite being much larger than previous estimates, the repeated 

assertions that the USGS estimates are „discredited‟ or „over-optimistic‟ appear at best 
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premature. Global reserve growth appears to be matching the USGS assumptions, the size 

of recent discoveries may have been underestimated, there are continuing restrictions on 

exploration in the most promising areas and a more recent study by Aguilera et al’s 

comes to comparably optimistic conclusions. However, the IEA estimate relies upon a 

large contribution from EOR that they anticipate will take decades to be realised while 

some of Aguilera et al’s assumptions appear questionable. 

 In a simple logistic model, increasing the global URR by one billion barrels would delay 

the date of peak production by only 4.7 days. This result is not substantially changed if a 

more sophisticated model is used, that allows for varying degrees of asymmetry in the 

production cycle (Kaufmann and Shiers, 2008). For a range of assumptions about the size 

of the global URR and the rate of change of production before and after the peak, the date 

of peak production is found to lie between 2009 and 2031. Delaying the peak beyond 

2030 requires optimistic assumptions about the global URR combined with a relatively 

steep post-peak decline rate and/or slower rates of demand growth than are 

conventionally assumed. Forecasts that predict no peak before 2030 should be evaluated 

on this basis.  

 Even if the larger URR estimates are correct, it does not necessarily follow that the 

resource can or will be accessed at the rate required to maintain global production at a 

particular level. If these resources can only be accessed relatively slowly at high cost, 

supply constraints could inhibit demand growth. Furthermore, if producers lack the 

incentive to maximize production, demand growth could be constrained further – 

especially in the importing countries. Hence, the primary issue for the period to 2030 is 

the rate at which the resource can be accessed and produced. 

 

 



 

 

188 

188 



 

 

189 

189 

References 
Adamic, L. A. and B. A. Huberman. (2002). "Zipf, power laws and the Internet." 

Glottometrics, 3, pp. 143-50. 

Adelman, M. A. (1991). "Oil Fallacies." Foreign Policy, 82, pp. 3-16. 

Adelman, M. A. (1993). The Economics of Petroleum Supply: Papers, 1962-1993: MIT 

Press. 

Aguilera, R. F., R. G. Eggert, G. Lagos, and J. E. Tilton. (2009). "Depletion in the future 

availability of petroleum resources." Energy Journal, 30:1, pp. 141-74. 

Ahlbrandt, T. S. (2002). "Future petroleum energy resources of the world." International 

Geology Review, 44:12, pp. 1092-104. 

Ahlbrandt, T. S. and T. R. Klett. (2005). "Comparison of Methods Used to Estimate 

Conventional Undiscovered Petroleum Resources: World Examples." Natural 

Resources Research, 14:3, pp. 187-210. 

Ahlbrandt, T. S. and P. McCabe. (2002). "Global petroleum resources: a view to the future." 

Geotimes. 

Ahmed, T. H. (2006). Reservoir Engineering Handbook: Gulf Professional Publishing. 

Andrews, S. and R. Udall. (2003). "Oil prophets: looking at world oil studies over time." 

ASPO Conference: Paris, France. 

Arps, J. J. (1945). "Analysis of decline curves." Trans AIME, pp. 160-247. 

Arps, J. J. (1956). "Estimation of primary oil reserves." Trans AIME, 207, pp. 182-91. 

Arps, J. J., M. Mortada, and A. E. Smith. (1971). "Relationship Between Proved Reserves 

and Exploratory Effort." Journal of Petroleum Technology, pp. 671–75  

Arps, J. J. and T. J. Roberts. (1958). "Economics of drilling for Cretaceous oil on the east 

flank of Denver-Julesberg basin " AAPG Bulletin, 42:11, pp. 2549-66. 

Arrington, J. R. (1960). "Predicting the size of crude reserves is key to evaluating exploration 

programs." Oil and Gas Journal, 58:9, pp. 130-34. 

Attanasi, E. D. and R. R. Charpentier. (2002). "Comparison of two probability distributions 

used to model sizes of undiscovered oil and gas accumulations-does the tail wag the 

assessment?" Journal of mathematical Geology, 34:6, pp. 767-77. 

Attanasi, E. D. and L. J. Drew. (1984). "Lognormal field size distributions as a consequence 

of economic truncation." Mathematical Geology, 17:4, pp. 335-51. 

Attanasi, E. D., L. J. Drew, and D. H. Root. (1981). "Physical variables and the petroleum 

discovery process," in J.  Ramsay ed. The economics of exploration for energy 

resources. Greenwich JAI Press. 

Attanasi, E. D., R. F. Mast, and D. H. Root. (1999). "Oil, gas field growth projections: 

Wishful thinking or reality?" Oil and Gas Journal, 97:14, pp. 3. 

Attanasi, E. D. and D. H. Root. (1994). "The enigma of oil and gas field growth." AAPG 

Bulletin, 78:3, pp. 321-32. 

Attansi, E. D. and D. H. Root. (1994). "The enigma of oil and gas field growth." AAPG 

Bulletin, 78:3, pp. 321-32. 



 

 

190 

190 

Ausloos, M. and M. Dirickx. (2005). The logistic map and the route to chaos: from the 

beginnings to modern applications. Berlin; London: Springer. 

Barker, R. O., E. S. W. Jong, and J. G. Virues. (2004). "Understanding the enigma of reserves 

growth: the whys." Canadian International Petroleum Conference: Calgary, Alberta, 

Canada. 

Barouch, E. and G. M. Kaufman. (1975). "Probablistic modelling of oil and gas discovery." 

Energy: mathematics and models SIAM Institute for Mathematics and Society, pp. 

133-52. 

Barouch, E. and G. M. Kaufman. (1978). "The interface between geostatistical modelling of 

oil and gas discovery and economics." Mathematical Geology, 10:5, pp. 611-26. 

Bartlett, A. A. (2000). "An analysis of US and world oil production patterns using Hubbert-

style curves." Mathematical Geology, 32:1, pp. 1-17. 

Barton, C. C. and C. H. Scholz. (1995). "The fractal size and spatial distribution of 

hydrocarbon accumulation's," in C. C. Barton and P.R. La Pointe eds. Fractals in 

Petroleum Geology and Earth Processes Springer. Springer. 

Bass, F. M. (1969). "A new product growth model for consumer durables." Management 

Science, 15, pp. 215-27. 

Bates, D. M. and D. G. Watts. (2007). Nonlinear regression analysis and its applications. 

New York: Chichester: Wiley. 

Baxter, G. G., A. H. C. Cargill, P. E. Hart, G. M. Kaufmann, and F. Urquidi-Barrau. (1978). 

"Workshop on the Delphi method." Journal of the International Association for 

Mathematical Geology, 10:5, pp. 581-87. 

Bentley, R. W. (2002). "Global oil and gas depletion: An overview." Energy Policy, 30:3, pp. 

189-205. 

Bentley, R. W. (2009). "A primer on oil peaking." Background note for the UKERC study on 

global oil depletion. UK Energy Research Centre: London. 

Bentley, R. W., R. H. Booth, J. D. Burton, M. L. Coleman, B. W. Sellwood, and G. R. 

Whitfield. (2000). "Perspectives on future of oil." Energy Exploration & Exploitation, 

18:2-3, pp. 147-206. 

Bentley, R. W., S. A. Mannan, and S. J. Wheeler. (2007). "Assessing the date of the global 

oil peak: the need to use 2P reserves." Energy Policy, 35:12, pp. 6364-82. 

Bentley, R. W., R. G. Miller, S. Wheeler, and G. Boyle. (2009). "Comparison of global oil 

supply forecasts." UKERC Review of Evidence on Global Oil Depletion: Technical 

Report 7. UK Energy Research Centre: London. 

Bloomfield, P., M. Hudson, K. Kim, and G. S. Watsion. (1979). "The use of the lognormal 

distribution in estimating crude oil resources." Resource Estimation and Validation 

Project, Department of Statistics and Geology, Princeton University: Princeton, NJ. 

Bowden, G. (1985). "The Social Construction of Validity in Estimates of US Crude Oil 

Reserves." Social Studies of Science, 15:2, pp. 207-40. 

BP. (2008). "Statistical Review of World Energy 2008 ". BP plc: London. 

Brandt, A. R. (2007). "Testing Hubbert." Energy Policy, 35:5, pp. 3074-88. 



 

 

191 

191 

Brecha, R. J. (2008). "Emission scenarios in the face of fossil-fuel peaking." Energy Policy, 

36:9, pp. 3492-504. 

Brecha, R. J., R. Berney, and B. Craver. (2007). "Revisiting Hafemeister's science and 

society tests." American Journal of Physics, 75:10, pp. 916-30  

Byrd, L. T., R. M. Kumar, A. F. Williams, and D. L. Moore. (1985). "US oil and gas finding 

and development costs 1973-1982, lower 48 onshore and offshore." Journal of 

Petroleum Technology, 31, pp. 2040-48. 

Caithamer, P. (2008). "Regression and time series analysis of the world oil peak of 

production: another look." Journal of Mathematical Geosciences, 40:6, pp. 1874-. 

Campbell, C. and J. Laherrère. (1995). "The world's supply of oil 1930-2050." 

Petroconsultants S.A.: Geneva. 

Campbell, C. J. (1991). The golden century of oil 1950:2050: the depletion of a resource: 

Springer. 

Campbell, C. J. (1996). "Status of world oil depletion at the end of 1995." Energy 

Exploration & Exploitation, 14:1, pp. 63-81. 

Campbell, C. J. (1997). The Coming Oil Crisis: Multi-science publishing & Petroconsultants. 

Campbell, C. J. (2002). "The assessment and importance of oil depletion." Energy 

Exploration & Exploitation, 20-1:6-1, pp. 407-35. 

Campbell, C. J. and S. Heapes. (2008). An atlas of oil and gas depletion. Huddersfield: 

Jeremy Mills Publishing. 

Campbell, C. J. and J. H. Laherrere. (1998). "The End of Cheap Oil." Scientific American., 

278:3, pp. 60. 

Capen, E. (1976). "The difficulty of assessing uncertainty." Journal of Petroleum 

Technology, 28, pp. 843-50. 

Carlson, W. B. (2007a). "Analysis of World Oil Production Based on the Fitting of the 

Logistic Function and its Derivatives." Energy Sources Part B: Economics, Planning 

and Policy, 2:4, pp. 421-28. 

Carlson, W. B. (2007b). "Sensitivity of Predicted Oil Production to the Sigmoid Function." 

Energy Sources Part B: Economics, Planning and Policy, 2:4, pp. 321-27. 

Cavallo, A. J. (2004). "Hubbert's Petroleum Production Model: An Evaluation and 

Implications for World Oil Production Forecasts." Natural Resources Research, 13:4, 

pp. 211-21. 

Cavallo, A. J. (2005a). "Hubbert's model: Uses, meanings, and limits-1." Oil and Gas 

Journal, 103:21, pp. 22-24. 

Cavallo, A. J. (2005b). "Hubbert's model: Uses, meanings, and limits - 2." Oil and Gas 

Journal, 103:22, pp. 20-25. 

Chang, C.-P. and Z.-S. Lin. (1999). "Stochastic analysis of production decline data for 

production prediction and reserves estimation." Journal of Petroleum Science and 

Engineering, 23:3-4, pp. 149-60. 

Charpentier, R. L. (2005). "Guiding principles of USGS methodology for assessment of 

undiscovered conventional oil and gas resources." Natural Resources Research, 14:3, 

pp. 175-86. 



 

 

192 

192 

Charpentier, R. L., G. L. Dolton, and G. F. Ulmishek. (1995a). "Annotated bibliography of 

methodology for an assessment of undiscovered oil and gas resources." Nonrenewable 

Resources, 4:2, pp. 154-86. 

Charpentier, R. R. (2003). "The future of petroleum: optimism, pessimism, or something 

else?" USGS Open File Report 03-137. US Geological Survey. 

Charpentier, R. R., G. L. Dolton, and G. F. Ulmishek. (1995b). "Annotated bibliography of 

methodology for assessment of undiscovered oil and gas resources." Natural 

Resources Research, 4:2, pp. 154-86. 

Chaudhry, A. U. (2003). "Application of Decline Curve Analysis Methods." Gas Well 

Testing Handbook. Burlington Gulf Professional Publishing, pp. 637-63. 

Cleveland, C. J. (1991). "Physical and economic aspects of resource quality: the cost of oil 

supply in the lower 48 United States, 1936-1988." Resources and Energy, 13:2, pp. 

163-88. 

Cleveland, C. J. (1992a). "Energy surplus and energy quality in the extraction of fossil fuels 

in the U.S." Ecological Economics, 6:2, pp. 139-62. 

Cleveland, C. J. (1992b). "Yield per effort for additions to crude-oil reserves in the lower 48 

united-states, 1946-1989." AAPG Bulletin, 76:6, pp. 948-58. 

Cleveland, C. J. and R. K. Kaufmann. (1991). "Forecasting ultimate oil recovery and its rate 

of production: incorporating economic forces into the models of M. King Hubbert." 

The Energy Journal, 12:2, pp. 17-46. 

Cleveland, C. J. and R. K. Kaufmann. (1997). "Natural gas in the US: how far can technology 

stretch the resource base." The Energy Journal, 18:2, pp. 89-108. 

Coustau, H. (1979). "Logique de distribution des tailles des champts dans les bassins." 

Petrole et Techniques, May. 

Cramer Barton, C. and P. R. La Pointe. (1995). Fractals in Petroleum Geology and Earth 

Processes Springer. 

Cuddington, J. T. and D. L. Moss. (2001). "Technical change, depletion and the US 

petroleum industry." American Economic Review, 914, pp. 1135–48. 

Davies, A. W. (1981). "Discussion of the paper by Mr Meisner and Mr Demirmen." Journal 

of the Royal Statistical Society, 144:1, pp. 24-25. 

Davies, J. C. and T. Chang. (1989). "Estimating potential for small fields are mature 

petroleum provinces." AAPG Bulletin, 73:8, pp. 967-76. 

Deffeyes, K. S. (2003). "Hubbert„s Peak: The Impending World Oil Shortage." Princeton 

University Press. 

Deffeyes, K. S. (2005). Beyond oil; the view from Hubbert's peak. United States (USA): Hill 

and Wang, New York, NY, United States (USA). 

Divi, R. S. (2004). "Probabilistic methods in petroleum resource assessment, with some 

examples using data from the Arabian region." Journal of Petroleum Science and 

Engineering, 42:2-4, pp. 95-106. 

Dow, W. G. (1972). "Application of oil correlation and source rock data to exploration in 

Williston basin." AAPG Bulletin, 56, pp. 615. 



 

 

193 

193 

Drew, L. J. (1997). Undiscovered Petroleum and Mineral Resources: assessment and 

controversy Springer. 

Drew, L. J., E. D. Attanasi, and J. H. Schuenemeyer. (1988). "Observed oil and gas field size 

distributions: a consequence of the discovery process and the prices of oil and gas." 

Mathematical Geology, 20:20, pp. 939-53. 

Drew, L. J. and J. C. Griffiths. (1965). "Size, shape and arrangement of some oilfields in the 

USA." 1965 symposium, Computer applications in the mineral industries: FF-1-31: 

Pennsylvania State University. 

Drew, L. J. and J. H. Schuenemeyer. (1992). "A petroleum discovery rate forecast revisited-

the problem of field growth." Nonrenewable Resources, 1:1, pp. 51-60. 

Drew, L. J. and J. H. Schuenemeyer. (1993). "The evolution and use of discovery process 

models at the US Geological Survey." AAPG Bulletin, 77:3, pp. 467-78. 

Drew, L. J., J. H. Schuenemeyer, and W. J. Bawiec. (1982a). "Estimation of the future rate of 

oil and gas discoveries in the Gulf of Mexico." Professional Paper 1252. US 

Geological Survey. 

Drew, L. J., J. H. Schuenemeyer, and W. J. Bawiec. (1982b). "Estimation of the future rates 

of discovery of oil and gas in the Gulf of Mexico." Professional Paper 1252. US 

Geological Survey. 

Drew, L. J., J. H. Schuenemeyer, and R. F. Mast. (1995). "Application of the modified Arps-

Roberts discovery proces model to the 1995 U.S. National Oil and Gas Assessment " 

Natural Resources Research, 4:3, pp. 242-52. 

EIA. (2008). "International Energy Outlook 2008 " DOE/EIA-0484(2008). Energy 

Information Administration: Washington, DC, USA. 

Energy information Administration. (1990). "US oil and gas reserves by year of field 

discovery." DOE/EIA-0534. 

Engle, R. F. and C. W. J. Granger. (1997). "Cointegration and error correction: 

representation, estimation and testing." Econometricaa, 55, pp. 251-76. 

Forbes, K. F. and E. M. Zampelli. (2000). "Technology and the exploratory success rate in 

the U.S. offshore." Energy Journal, 21:1. 

Forman, D. and A. L. Hinde. (1985). "Improved statistical method for assessment of 

undiscovered petroleum resources." AAPG Bulletin, 69:1, pp. 106-18. 

Gately, D. (1992). "Imperfect price reversed ability of US gasoline demand: asymmetric 

responses to price increases and declines." Energy Journal, 13:4, pp. 179-207. 

Gautier, D. L. (2004). "Oil and natural gas resource assessment: geological methods," in C.J. 

Cleveland ed. The Encyclopedia of Energy. Cheltenham Edward Elgar. 

Gautier, D. L., G. L. Dolton, K. I. Takahashi, and K. L. Varnes. (1995). "National assessment 

of United States oil and gas resources-results, methodology and supporting data." US 

Geological Survey Digital Data Series DDS-30. 

Gautier, D. L. and T. R. Klett. (2005). "Reserve growth in chalk fields of the North Sea; 

Petroleum geology; north-west Europe and global perspectives; proceedings of the 6th 

Petroleum geology conference." 6th Petroleum geology conference, London, United 

Kingdom, Oct. 6-9, 2003, 6, pp. 169-75. 



 

 

194 

194 

Gautier, D. L., T. R. Klett, and B. S. Pierce. (2005). "Global significance of reserve growth." 

25. U. S. Geological Survey, Reston, VA, United States (USA): United States (USA). 

Gess, G. and C. Bois. (1977). "Study of petroleum zones - a contribution to the appraisal of 

hydrocarbon resources," in R.F. Meyer ed. The future of supply of nature-made 

petroleum and gas. New York Pergamon Press, pp. 155-78. 

Gompertz, B. (1825). "On the nature of the function expressive of the law of human 

mortality; and on a new mode of determining the value of life contingencies." In a 

letter to Francis Baily, Printed by W. Nicol: London. 

Gowdy, J. and J. Roxana. (2007). "Technology and petroleum exhaustion: Evidence from two 

mega-oilfields." Energy, 32:8, pp. 1448-54. 

Grubb, M. J. (1995). "Asymmetrical price elasticities of energy demand," in T. Barker, P. 

Ekins and N. Johnstone eds. Global warming and energy demand. London and New 

York Routledge. 

Harbaugh, J. W., J. C. Davies, and J. Wendebourg. (1995). Computing risk for oil prospects. 

Oxford: Pergamon Press. 

Harris, d. P. (1977). "Conventional crude oil resources of the United States: recent estimates, 

method for estimation and policy considerations." Materials and Society, 1, pp. 263-

86. 

Haun, J. D. (1981). "Future of Petroleum exploration in the United States." AAPG Bulletin, 

65:1720-1727. 

Hendricks, T. A. (1965). "Resources of oil, gas and natural gas liquids in the United States 

and the world." US Geological Survey Circular 522. 

Herbert, J. H. (1982). "A Review and Comparison of Some Commonly Used Methods of 

Estimating Petroleum Resource Availability." Energy Sources, Part A: Recovery, 

Utilization, and Environmental Effects, 6:4, pp. 293-320. 

Hewett, D. F. (1929). "Cycles in metal production." Technical Publication 183. 31. The 

American Institute of Mining and Metalurgical Engineers. 

Hirsch, R. L. (2008). "Mitigation of maximum world oil production: Shortage scenarios." 

Energy Policy, 36:2, pp. 881-89. 

Hirsch, R. L., R. Bezdek, and R. Wendling. (2005). "Peaking of world oil production: 

impacts, mitigation, & risk management." 91. US Department of Energy, National 

Energy Technologies Laboratory. 

Höök, M., B. Söderbergh, K. Jakobsson, and K. Aleklett. (2009). "The evolution of giant oil 

field production behaviour." Natural  Resources Research, 18:1, pp. 39-56. 

Houghton, J. C., G. L. Dolton, R. F. Mast, C. D. Masters, and D. H. Root. (1993). "US 

Geological Survey estimation procedure for accumulation size distributions by play." 

AAPG Bulletin, 77:454-486. 

Hubbert, M. K. (1956). "Nuclear energy and the fossil fuels." Meeting of the Southern 

Dsitrict, Division of production, American Petroleum Institute. Shell Development 

Company: San Antonio, Texas. 

Hubbert, M. K. (1959). "Techniques of prediction with application to the petroleum 

industry." 44th Annual meeting of the American Association of Petroleum Geologists: 

43. Shell Development Company: Dallas, TX. 



 

 

195 

195 

Hubbert, M. K. (1962). "Energy Resources: A Report to the Committee on Natural Resources 

of the National Academy of Sciences-National Research Council." 153p. United 

States. 

Hubbert, M. K. (1966). "Reply to J.M. Ryan." AAPG Bulletin, 18, pp. 284-86. 

Hubbert, M. K. (1967). "Degree of Advancement of Petroleum Exploration in United States." 

AAPG Bulletin, 51, pp. 2207-27. 

Hubbert, M. K. (1974). "U.S. Energy Resources: A Review as of 1972 " Background paper 

prepared for the U.S. Senate Committee on Interior and Insular Affairs, 93rd 

Congress, 2nd Session, Serial 93-40 (92-75). Washington: U.S. Government Printing 

Office. 

Hubbert, M. K. (1982). "Techniques of prediction as applied to the production of oil and gas; 

Oil and gas supply modeling; proceedings of a symposium." Oil and gas supply 

modeling, Washington, DC, United States, June 18-20, 1980:631, pp. 16-141. 

IEA. (2008). "World Energy Outlook 2008." International Energy Agency, OECD: Paris. 

Iledare, O. and A. G. Pulsipher. (1999). "Sources of change in productivity of petroleum 

exploration and development in the U.S. onshore Louisiana, 1977-1994." Energy 

Economics 21:3, pp. 261-72. 

Imam, A., R. A. Startzman, and M. A. Barrufet. (2004). "Multicyclic Hubbert model shows 

global conventional gas output peaking in 2019." Oil & Gas Journal, 102:31. 

IPCC. (2007). "Climate Change 2007: Synthesis Report." Fourth Assessment Report (AR4). 

Intergovernmental Panel on Climate Change. 

Ivanhoe, L. F. and G. G. Leckie. (1993). "Global oil, gas fields, sizes tallied, analyzed." Oil 

& Gas Journal, 1993:February 15, pp. 87-91. 

Jones, R. W. (1975). "A quantitative geologic approach to prediction of petroleum 

resources," in J.D.  Haun ed. Methods of Estimating the Volume of Undiscovered Oil 

and Gas Resources American Association of Petroleum Geologists, Studies in 

Geology No. 1. 

Kaufman, G. M. (1963). Statistical decision and related techniques in oil and gas 

exploration. Englewood Cliffs, New Jersey: Prentice-Hall. 

Kaufman, G. M. (1975a). "Models and methods for estimating undiscovered oil and gas: 

what they do when do not do." First IIASA conference on Energy Resources: 237-49. 

International Institute for Applied Systems Analysis: Laxenburg, Austria. 

Kaufman, G. M. (1975b). "A probabilistic model of oil and gas discovery," in J.D. Haun ed. 

Methods of Estimating the Volume of Undiscovered Oil and Gas Resources: AAPG 

Studies in Geology Series 1, pp. 113-42. 

Kaufman, G. M. (1993). "Statistical issues in the assessment of undiscovered oil and gas 

resources." Energy Journal, 14:1, pp. 183-213. 

Kaufman, G. M. (2005). "Where have we been?  Where are we going?" Natural Resources 

Research, 14:3, pp. 145-51. 

Kaufmann, R. K. (1991). "Oil production in the lower 48 states : Reconciling curve fitting 

and econometric models." Resources and Energy, 13:1, pp. 111-27. 



 

 

196 

196 

Kaufmann, R. K. and C. J. Cleveland. (1991). "Policies to Increase us Oil Production: Likely 

to Fail, Damage the Economy, and Damage the Environment." Annual Review of 

Energy and the Environment, 16, pp. 379-400. 

Kaufmann, R. K. and C. J. Cleveland. (2001). "Oil production in the lower 48 states: 

Economic, geological, and institutional determinants." Energy Journal, 22:1, pp. 27-

49. 

Kaufmann, R. K. and L. D. Shiers. (2008). "Alternatives to conventional crude oil: When, 

how quickly, and market driven." Ecological Economics, 67:3, pp. 405-11. 

Kemp, A. G. and A. S. Kasim. (2005). "Are decline rates really exponential?  Evidence from 

the UK continental shelf." The Energy Journal, 26:1, pp. 27-50. 

Kennedy, P. (2003). A Guide to Econometrics. Oxford: Blackwell. 

Klemme, H. D. (1984). "Field size distribution related to basin characteristics," in C.D. 

Masters ed. Petroleum resource Assessment International Union of Geological 

Sciences, pp. 95-121. 

Klett, T. R. (2004). "Oil and natural gas resource assessment: classifications and 

terminology," in C.J. Cleveland ed. Encyclopaedia of Energy Elsevier, pp. 595-605. 

Klett, T. R. (2005). "United States Geological Survey's reserve-growth models and their 

implementation." Natural Resources Research, 14:3, pp. 249-64. 

Klett, T. R. and D. L. Gautier. (2005). "Reserve growth in oil fields of the North Sea." 

Petroleum Geoscience, 11:2, pp. 179-90. 

Klett, T. R., D. L. Gautier, and T. S. Ahlbrandt. (2005a). "An evaluation of the U. S. 

Geological Survey world petroleum assessment 2000." AAPG Bulletin, 89:8, pp. 

1033-42. 

Klett, T. R., D. L. Gautier, and T. S. Ahlbrandt. (2005b). "An evaluation of the US 

Geological Survey World Petroleum Assessment 2000." AAPG Bulletin, 89:8, pp. 

1033-42. 

Klett, T. R., D. L. Gautier, and T. S. Ahlbrant. (2007). "An evaluation of the World 

Petroleum Assessment 2000: supporting data." USGS Open File a report 2007-1021. 

US Geological Survey. 

Klett, T. R. and J. W. Schmoker. (2003). "Reserve growth of the world's giant oil fields; 

Giant oil and gas fields of the decade, 1990-1999." AAPG Memoir, 78, pp. 107-22. 

Klett, T. R. and M. K. Verma. (2004). "Reserve growth in oil and gas fields of Mexico 

(abst.): Am." Assoc. Petroleum Geologists Intern. Conf. and Exhibition (Cancun, 

Mexico). 

La Pointe, P. R. (1995). "Estimation of undiscovered hydrocarbon potential through fractal 

geometry," in C. C. Barton and P.R. La Pointe eds. Fractals in Petroleum Geology 

and Earth Processes Springer. Springer. 

Laherrere, J. (2003). "Future of oil supplies." Energy exploration & exploitation., 21, pp. 

227-68. 

Laherrère, J. (1996). "Distributions de type “fractal parabolique” dans la Nature " Comptes 

Rendus de l’Académie des Sciences, 2a:7. 



 

 

197 

197 

Laherrère, J. (2000a). "Distribution of field sizes in a petroleum system; parabolic fractal, 

lognormal or stretched exponential?" Marine and Petroleum Geology, 17:4, pp. 539-

46. 

Laherrère, J. (2001a). "Estimates of Oil Reserves." Paper presented at the EMF/IEA/IEW 

meeting. 

Laherrère, J. (2001b). "Is the USGS 2000 Assessment Reliable?" published on the 

cyberconference of the WEC. 

Laherrère, J. (2002a). "Forecasting future production from past discovery." International 

Journal of Global Energy Issues, 18:2-4, pp. 218-38. 

Laherrère, J. (2003). "Future of oil supplies." Energy Exploration and Exploitation, 21:3, pp. 

227-67. 

Laherrère, J. (2004). "Oil and natural gas resource assessment: production growth cycle 

models," in C.J. Cleveland ed. Encyclopaedia of Energy. Amsterdam Elsevier. 

Laherrère, J. H. (1997). "Production decline and peak reveal true reserve figures." World Oil, 

218:12, pp. 77. 

Laherrère, J. H. (1999a). "Reserve Growth:  Technological Progress, or Bad Reporting and 

Bad Arithmetic?" Geopolitics of Energy, 22, pp. 7-16. 

Laherrère, J. H. (1999b). "World oil supply - what goes up must come down, but when will it 

peak?" Oil and Gas Journal, 97:5, pp. 57-64. 

Laherrère, J. H. (2000b). "Learn strengths, weaknesses to understand Hubbert curve." Oil and 

Gas Journal, 98:16, pp. 63-64. 

Laherrère, J. H. (2002b). "Modelling future liquids production from extrapolation of the past 

and from ultimates." Energy Exploration & Exploitation, 20:6, pp. 457-79. 

Laherrère, J. H. (2005). "Forecasting production from discovery." ASPO IV International 

Workshop on Oil and Gas Depletion. Association for the Study of Peak Oil: Lisbon. 

Lee, P. J. (2008). Statistical Methods for Estimating Petroleum Resources: Oxford University 

Press. 

Lee, P. J. and P. C. C. Wang. (1983). "Probabilistic formulation of a method for the 

evaluation of petroleum resources." Journal of the International Association of 

Mathematical Geology, 15:1, pp. 163-82. 

Lee, P. J. and P. C. C. Wang. (1985). "Prediction of oil and gas pools sizes when the 

discovery record is available." Mathematical Geology, 17:2, pp. 95-113. 

Lee, P. J. and P. C. C. Wang. (1986). "Evaluation of petroleum resources from pool size 

distributions," in D.D. Rice ed. Oil and gas and assessment: methods and 

applications American Association of Petroleum Geologists, Studies in Geology, No. 

21, pp. 33-4 to. 

Li, K. and R. N. Horne. (2007). "Comparison and verification of production prediction 

models." Journal of Petroleum Science and Engineering, 55, pp. 213-20. 

Lotka, A. J. (1925). Elements of Physical Biology. Baltimore, MD, USA: Williams and 

Wilkins. 

Lynch, M. C. (1998). "Crying Wolf: Warnings about oil supply ". MIT: Boston. 



 

 

198 

198 

Lynch, M. C. (1999). "The wolf at the door or crying wolf: Fears about the next oil crisis." 

Advances in the Economics of Energy and Resources, 11, pp. 117-42. 

Lynch, M. C. (2002). "Forecasting oil supply: theory and practice." The Quarterly Review of 

Economics and Finance, 42:2, pp. 373-89. 

Magoon, L. B. and R. M. O. Sanchez. (1995). "Beyond the petroleum system." AAPG 

Bulletin, 79:12, pp. 1731-36. 

Managi, S. (2002). "Technological change, depletion and environmental policy in offshore oil 

and gas industry." University of Rhode Island. 

Managi, S., J. J. Opaluch, D. Jin, and T. A. Grigalunas. (2004). "Technological change and 

depletion in offshore oil and gas " Journal of Environmental Economics and 

Management,, 47, pp. 388-409. 

Managi, S., J. J. Opaluchb, D. Jinc, and T. A. Grigalunas. (2005). "Technological change and 

petroleum exploration in the Gulf of Mexico " Energy Policy, 33:5, pp. 619-32. 

Mandlebrot, B. B. (1962). "Statistics of natural resources and the law of Pareto." International 

Business Machines Research Note NC-146, June 29, reprinted in C.C Barton and P.R. 

La Pointe (eds) Fractals in Petroleum Geology and Earth Processes, Plenum Press, 

New York and London  

Mandlebrot, B. B. (1977). Fractals: form, chance and dimension. San Francisco: W.H. 

Freeman. 

Mast, R. F. e. a. (1989). "Estimates of undiscovered conventional oil and gas resources in the 

United States." US Geological Survey and US Minerals Management Service. 

McKelvey, V. E. (1972). "Mineral resource estimates and public policy." American Scientist, 

60, pp. 32-40. 

Mcrossan, R. G. (1969). "An analysis of size frequency distribution of oil and gas reserves of 

Western Canada." Canadian Journal of Earth Sciences, 6:201, pp. 201-11. 

Meade, N. M. (1984). "The use of growth curves in forecasting market development - a 

review and appraisal." Journal of Forecasting, 3, pp. 49-451. 

Meisner, J. and F. Demirmen. (1981). "The creaming method: a procedure to forecast future 

oil and gas discoveries in mature exploration provinces." Journal of the Royal 

Statistical Society A, 144:1, pp. 1-31. 

Menard, H. W. and G. Sharman. (1975). "Scientific uses of random drilling models." Science, 

190, pp. 337. 

Merriam, D. F., L. J. Drew, and J. H. Schuenemeyer. (2004). "Zipf's law: a viable geological 

paradigm?" Natural Resources Research, 13:4. 

Meyer, P. S. (1994). "Bi-logistic growth." Technological Forecasting and Social Change, 47, 

pp. 89-102. 

Meyer, P. S., J. W. Yung, and J. H. Ausbel. (1999). "A primer on logistic growth and 

substitution: the mathematics of the loglet lab software." Technological Forecasting 

Social Change, 61, pp. 247-71. 

Meynerd, H. W. and G. Shaman. (1975). "Scientific Uses of Random Drilling Models." 

Science, 190, pp. 337–43. 



 

 

199 

199 

Miller, R. G. (1992). "The global oil system: the relationship between all generation, loss, 

half life and the world crude oil resource." AAPG Bulletin, 76:4, pp. 489-500. 

Miller, R. G., S. Sorrell, and J. Speirs. (2009). "Decline rates and depletion rates." UKERC 

Review of evidence on Global Oil Depletion: Technical Report 4. UK Energy 

Research Centre: London. 

Mills, R. M. (2008). The myth of the oil crisis. Westport, CT, USA: Praeger Publishers. 

Minerals Management Service. (1996). "An assessment of the undiscovered hydrocarbon 

potential of the nation's outer continental shelf." Report MMS 96-0034. 

Mohr, S. and G. Evans. (2008). "Peak Oil: Testing Hubbert‟s Curve via Theoretical 

Modeling." Natural Resources Research, 17:1, pp. 1-11. 

Mohr, S. H. and G. M. Evans. (2007). "Mathematical model forecasts year conventional oil 

will peak." Oil and Gas Journal, 105:17, pp. 45-46. 

Moore, C. L. (1962). "Method for evaluating US crude oil resources and projecting domestic 

crude oil availability." US Department of the Interior. 

Morehouse, D. F. (1997). "The intricate puzzle of oil and gas “reserve growth”: Natural Gas 

Monthly, July 1997." Energy Information Administration, 20. 

Motulsky, H. and A. Christopoulos. (2004a). Fitting models to biological data using linear 

and nonlinear regression : a practical guide to curve fitting. Oxford; New York: 

Oxford University Press. 

Motulsky, H. and A. Christopoulos. (2004b). Fitting models to biological data using linear 

and nonlinear regression: a practical guide to curve fitting. New York: Oxford 

University Press. 

Muller, K. and A. Sturm. (2000). "Standardised eco-efficiency indicators." Ellipson AG: 

Basel. 

Myers, R. H., D. C. Montgomery, and G. G. Vining. (2002). Generalised Linear Models: 

with Applications in Engineering and the Sciences. New York: John Wiley & Sons. 

Nehring, R. (2006a). "How Hubbert method fails to predict oil production in the Permian 

Basin." Oil and Gas Journal, 104:15, pp. 30-35. 

Nehring, R. (2006b). "Post-Hubbert challenge is to find new methods to predict production, 

EUR." Oil and Gas Journal, 104:16, pp. 43-46. 

Nehring, R. (2006c). "Post Hubbert challenge is to find new ways to predict production, 

EUR." Oil and Gas Journal, 104:April 24, pp. 43-51. 

Nehring, R. (2006d). "Two basins show Hubbert's method underestimates future oil 

production." Oil and Gas Journal, 104:13, pp. 37-42. 

Nehring, R. (2006e). "Two basins shows Hubbert's method underestimates future oil 

production." Oil and Gas Journal, 104:April 3, pp. 37-44. 

Nelder, J. A. (1971). "The fitting of a generalisation of the logistics curve." Biometrics, 17, 

pp. 89-110. 

Nickerson, D. M. and B. C. Madsen. (2004). "Nonlinear regression and ARIMA models for 

precipitation chemistry in East Central Florida from 1978 to 1997." Environmental 

Pollution, 135:3, pp. 371-79. 



 

 

200 

200 

NPC. (1995). "Research development and demonstration needs of the oil and gas industry." 

National Petroleum Council: Washington, DC. 

NPC. (2007). "Topic paper #10:  Geologic Endowment:." Working document of the NPC 

Global Oil and Gas Study. National Petroleum Council: Washington, DC. 

Odell, P. R. (1973a). "The future of oil: a rejoinder." The Geographical Journal, 139:3, pp. 

436-54. 

Odell, P. R. (1973b). "The future of oil: a rejoinder." Geographical Journal, 139:3, pp. 436-

54. 

Odell, P. R. (1973c). "The Future of Oil: A Rejoinder." The Geographical Journal, 139:3, pp. 

436-54. 

Odell, P. R. (2004). Why carbon fuels will dominate the 21st century's global energy 

economy. Brentwood, England: Multi-Science Pub. Co. 

Odell, P. R. and K. E. Rosing. (1980a). The future of oil : a simulation study of the inter-

relationships of resources, reserves, and use, 1980-2080. London; New York: Kogan 

Page ; Nichols Pub. Co. 

Odell, P. R. and K. E. Rosing. (1980b). The future of oil : a simulation study of the 

interrelationships of resources, reserves, and use, 1980-2080. New York: Nichols 

Publishing Co. 

Pareto, V. (1987). Cours d'Economie Politique. paris: Roque and Cie. 

Patzek, T. W. (2008). "Exponential growth, energetic Hubbert cycles and the advancement of 

technology." Archives of mining sciences of the Polish Academy of Sciences, 

22:Accepted for publication May 3, 2008. 

Perron, P. (1997). "Further evidence on breaking trend functions in macroeconomic 

variables." Journal of Econometrics, 80, pp. 355-85. 

Pesaran, M. H. and H. Samiei. (1995). "Forecasting ultimate resource recovery." 

International Journal of Forecasting, 11:4, pp. 543-55. 

Pike, R. (2006). "Have we underestimated the environmental challenge?" Petroleum Review, 

June, pp. 26-27. 

Pindyck, R. S. and D. L. Rubinfeld. (1998). Econometric models and economic forecasts. 

Boston, MA: McGraw-Hill  

Power, M. (1992). "Lognormality in the observed size distribution of oil and gas pools as a 

consequence of sampling bias." Mathematical Geology, 24:8. 

Power, M. and J. D. Fuller. (1992). "A comparison of models for forecasting the discovery of 

hydrocarbon deposits." Journal of Forecasting, 11, pp. 183-93. 

Pratt, W. E. (1942). Oil in the earth: Lawrence, University of Kansas Press. 

Rabinowitz, D. (1991). "Using exploration history to estimate undiscovered resources." 

Mathematical Geology, 23:2, pp. 257-74. 

Ramanathan, R. (2002). Introductory econometrics with applications. Manson, Ohio, USA: 

Southwestern. 

Reynolds, D. B. (2002). "Using non-time-series to determine supply elasticity: how far do 

prices change the Hubbert curve?" OPEC Review, 26:2, pp. 147-67. 



 

 

201 

201 

Robelius, F. (2007). "Giant Oil Fields and Their Importance for Peak Oil." Licentiate thesis 

from Uppsala University. 

Rogner, H. H. (1997). "An assessment of world hydrocarbon resources." Annual Review of 

Energy and the Environment, 22, pp. 217-62. 

Root, D. H. and E. D. Attanasi. (1993). "Small fields in the national oil and gas assessment." 

AAPG Bulletin, 77:3, pp. 485-90. 

Root, D. H. and R. F. Mast. (1993). "Future growth in know oil and gas fields." AAPG 

Bulletin, 77:3, pp. 479-84. 

Rosing, K. E. and P. R. Odell. (1984). "Estimating the ultimate economically recoverable 

hydrocarbon reserves of the North Sea province: phase 1, the theory." The 

Statistician, 33, pp. 75-90. 

Ryan, J. M. (1965). "National Academy report on energy resources: discussion of limitations 

of logistic projections." Bulletin of the Association of Petroleum Geologists, 49, pp. 

1713-27. 

Ryan, J. M. (1966). "Limitations of statistical methods for predicting petroleum and natural 

gas reserves and availability." Journal of Petroleum Technology, pp. 231–37. 

Ryan, J. T. (1973). "An analysis of crude oil discovery rates in Alberta." AAPG Bulletin, 

21:219-235. 

Salvador, A. (2005). "Energy: A Historical Perspective and 21st Century Forecast. ." AAPG 

Studies 54 American Association of Petroleum Geologists. 

Schuenemeyer, J. H. and L. J. Drew. (1983). "A procedure to estimate the parent population 

of the size of oil and gas fields as revealed by a study of economic truncation." 

Journal of mathematical Geology, 15:1, pp. 145–61. 

Schuenemeyer, J. H. and L. J. Drew. (1994). "Description of a discovery process modelling 

procedure to forecast future oil and gas incorporating field growth." ARDS v 5.01. 

98-111. US Geological Survey, Open File Report. 

Schuenemeyer, J. H. and L. J. Drew. (2004). "Uncovering Influences on the Form of Oil and 

Gas Field Size Distributions." Natural Resources Research, 8:1, pp. 37-47. 

Sem, T. and D. Ellerman. (1999). "North Sea reserve appreciation, production and depletion." 

MIT-CEEPR 99-011. Centre for Energy Environmental Policy Research, 

Massachusetts Institute of Technology: Cambridge. 

Simmons, M. R. (2002). "The world's giant oil fields:." Simmons and Company International: 

Houston, Texas, USA. 

Slade, M. (1982). "Trends in natural resource commodity prices: an analysis of the time 

domain." Journal of Environmental Economics and Management,, 9:2, pp. 132-37. 

Smith, F. E. (1963). "Population dynamics in Daphnia magna and a new model for 

population growth." Ecology, 44, pp. 651-63. 

Smith, J. L. (1980). "A probabilistic model of oil discovery." Review of Economics and 

Statistics, 62, pp. 587–94. 

Smith, J. L. and J. L. Paddock. (1984). "Regional modelling of oil discovery and production." 

Energy Economics, 6:1, pp. 5-13. 



 

 

202 

202 

Smith, J. L. and G. L. Ward. (1981). "Maximum likelihood estimates of the size distribution 

of North Sea oil fields " Journal Mathematical Geology, 13:5, pp. 399-413. 

Sneddon, J. W., F. Sarg, and X. Ying. (2003). "Exploration play analysis from a sequence 

stratigraphic perspective." Search and Discovery:Article 40079. 

Speirs, J. and S. Sorrell. (2009). "Data Sources and Issues." UKERC review on Global Oil 

Depletion: Technical Report 1. UK Energy Research Centre: London. 

Stark, P. H. and K. Chew. (2005). "Global oil resources: issues and implications." The 

Journal of Energy Development, 30:2, pp. 159-70. 

Stitt, W. (1982). "Current problems in oil and gas modelling," in S.I. Gass ed. Oil and gas 

supply modelling. Maryland National Bureau of Standard Special Publication 631, pp. 

142-70. 

Strahan, D. (2007a). "In praise of the USGS." Petroleum Review, 61:723, pp. 18-19. 

Strahan, D. (2007b). "The Last Oil Shock; a survival guide to the imminent extinction of 

petroleum man." John Murray: London. 

Thompson, E. (2008). "Reserve Definitions." Report for the UKERC review of Global Oil 

Depletion. UK Energy Research Centre: London. 

Thompson, E., S. Sorrell, and J. Speirs. (2009a). "Definition and interpretation of reserve 

estimates." UKERC review on Global Oil Depletion: Technical Report 2. UK Energy 

Research Centre: London. 

Thompson, E., S. Sorrell, and J. Speirs. (2009b). "The nature and importance of reserve 

growth." UKERC review of evidence on Global Oil Depletion: Technical Report 3 

UK Energy Research Centre: London. 

Towler, B. F. and S. Bansal. (1993). "Hyperbolic decline-curve analysis using linear 

regression." Journal of Petroleum Science and Engineering, 8:4, pp. 257-68. 

Tsoularis, A. and J. Wallace. (2002). "Analysis of logistic growth models." Mathematical 

Biosciences, 179:1, pp. 21-55. 

USGS. (1995). "National oil and gas assessment." United States Geological Survey Reston, 

VA, USA. 

USGS. (2000a). "U.S. Geological Survey World Petroleum Assessment 2000; description 

and results." U. S. Geological Survey Reston, VA, USA. 

USGS. (2000b). "USGS World Petroleum Assessment 2000: description and results by 

USGS World Energy Assessment Team." USGS Digital Data Series DDS-60 (four 

CD-ROM set). U.S. Geological Survey: Reston, VA, USA. 

USGS. (2007). "Assessment of undiscovered oil and gas resources of the East Greenland Rift 

Basins Province." United States Geological Survey: Reston, VA, USA. 

USGS. (2008). "Circum-Artic resource appraisal: estimates of undiscovered oil and gas north 

of the Artic Circle." Factor Sheet 2008-3049. United StatesGeological Survey. 

Verma, M. K. (2005). "A new reserve growth model for United States oil and gas fields." 

Natural Resources Research (New York, N.Y.), 14:2, pp. 77-89. 

Verma, M. K. and G. F. Ulmishek. (2003). "Reserve growth in oil fields of West Siberian 

Basin, Russia." Natural Resources Research (International Association for 

Mathematical Geology), 12:2, pp. 105-19. 



 

 

203 

203 

Walls, M. A. (1992). "Modeling and forecasting the supply of oil and gas: A survey of 

existing approaches." Resources and Energy, 14:3, pp. 287-309. 

Walls, M. A. (1994). "Using a 'hybrid' approach to model oil and gas supply: a case study of 

the Gulf of Mexico outer continental shelf." Land Economics, 70:1, pp. 1-19. 

Watkins, G. C. (2002). "Characteristics of North Sea oil reserve appreciation." The Quarterly 

Review of Economics and Finance, 42:2, pp. 335-72. 

Weeks, L. G. (1952). "Factors of sedimentary basin development that control oil occurence." 

AAPG Bulletin, 36, pp. 2017-124. 

Weeks, L. G. (1975). "Potential petroleum resources - classification, estimation and status," 

in J.D.  Haun ed. Methods of Estimating the Volume of Undiscovered Oil and Gas 

Resources American Association of Petroleum Geologists, Studies in Geology No. 1. 

Wendebourg, J. and C. Lamiraux. (2002). "Estimating the ultimate recoverable reserves of 

the Paris Basin, France." Oil and Gas Science and Technology, 57:6, pp. 621-29. 

White, D. (1920). "The petroleum resources of the world." Annals of the American Academy 

of Political and Social Science, 89, pp. 111-34. 

White, D. A. and H. M. Gehman. (1979). "Methods of estimating oil and gas resources." 

AAPG Bulletin, 63, pp. 2183-92. 

Wiorkowski, J. J. (1981). "Estimating volumes of remaining fossil fuel resources: a critical 

review " Journal of the American Statistical Association, 76:375, pp. 534-47. 

Wood, J. H., G. R. Long, and D. F. Morehouse. (2003). "World conventional oil supply 

expected to peak in 21st century." Offshore, 63:4, pp. 90, 92, 94, 150. 

Woods, T. J. (1985). "Long-term trends in oil and gas discovery rates in lower 48 United 

States." The American Association of Petroleum Geologists Bulletin, 69:9, pp. 1321-

26. 

Wooldridge, J. M. (2003). Introductory Econometrics: a modern approach. Manson, Ohio: 

Thompson: Southwestern. 

WPC. (2007). "Petroleum Resources Management System." World Petroleum Council. 

Zapp, A. D. (1961). "World petroleum resources." Domestic and world resources of fossil 

fuels, radioactive minerals and geothermal energy:. 

Zapp, A. D. (1962). "Future petroleum producing capacity of the United States." 1142-H. 36. 

United States Geological Survey: Washington, D.C. 

Zipf, G. K. (1949). Human Behavior and the Principle of Least-Effort: Addison-Wesley. 

 

 


