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T H E  U K  E N E R G Y  R E S E A R C H  C E N T R E  

 

The UK Energy Research Centre carries out world-class research into sustainable future 

energy systems. 

 

It is the hub of UK energy research and the gateway between the UK and the 

international energy research communities. Our interdisciplinary, whole systems 

research informs UK policy development and research strategy. 

 

www.ukerc.ac.uk 

 

 

The Meeting Place - hosting events for the whole of the UK energy research community - 

www.ukerc.ac.uk/support/TheMeetingPlace 

National Energy Research Network - a weekly newsletter containing news, jobs, event, 

opportunities and developments across the energy field - www.ukerc.ac.uk/support/NERN 

Research Atlas - the definitive information resource for current and past UK energy research and 

development activity -  http://ukerc.rl.ac.uk/ 

UKERC Publications Catalogue - all UKERC publications and articles available online, via 

www.ukerc.ac.uk 

  

Follow us on Twitter @UKERCHQ 

 

This document has been prepared to enable results of on-going work to be made 

available rapidly. It has not been subject to review and approval, and does not have the 

authority of a full Research Report. 

 

 

UKERC is undertaking two flagship projects to draw together research undertaken 

during Phase II of the programme. This working paper is an output of the Energy 

Strategy under Uncertainty flagship project which aims: 

 

 To generate, synthesise and communicate evidence about the range and nature of 

the risks and uncertainties facing UK energy policy and the achievement of its goals 

relating to climate change, energy security and affordability. 

 To identify, using rigorous methods, strategies for mitigating risks and managing 

uncertainties for both public policymakers and private sector strategists. 

 

The project includes five work streams: i) Conceptual framing, modelling and 

communication, ii) Energy supply and network infrastructure, iii) Energy demand,         

iv) Environment and resources and v) Empirical synthesis. This working paper is part of 

the output from the Environment and resources work stream. 

http://www.ukerc.ac.uk/
http://www.ukerc.ac.uk/support/TheMeetingPlace
http://www.ukerc.ac.uk/support/NERN
http://ukerc.rl.ac.uk/
file://icfs1/san/ukerc/UKERC%20Documents/Templates/Templates%202012/www.ukerc.ac.uk
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Introduction 
The ‘energy system’ can refer to both the physical assets (i.e. the physical grid that 

connects power plants, power-stations, distribution centres, residential homes and 

industrial plants together) and also non-physical lines of communication that exist 

between the system actors (e.g. operators, regulators, consultants, academics, policy 

makers and ministers).  The focus of this research is the latter and the development of a 

conceptual model to help practitioners transparently show, which techniques they use 

(and why) to assess risk and uncertainty in their decision-making. 

 

Due to the increasing demand for energy, national targets to reduce carbon emissions 

and the nature of the industry, actors within the energy system have to make complex 

decisions using risk-based techniques.  For strategic decisions, such as “What type of 

energy policy should the UK implement in 2014 to meet national targets set for 2030?”, 

there are various lines and levels of supporting evidence to support a defensible 

response, or set of responses.  The availability and interconnectedness of this evidence 

can make it a challenge for decision makers to arrive at a conclusion. Nonetheless, 

practitioners must make decisions about energy futures under conditions of uncertainty 

and so pragmatic decision frameworks that allow the assembly and analysis of the 

available evidence are required. 

 

Extensive work has been carried out on the characterisation of uncertainty to improve 

the transparency of decision processes.  For example, scholars have shown the use of 

hierarchical models such as decision trees to illustrate how decisions collectively string 

together. Others have used techniques such as evidence-support logic to allow decision 

makers to represent how sufficient and dependent responses(s) to a supporting 

decision(s) are given the evidence base to support these decisions.  Attempts have also 

been made to use agent-based simulations to represent the influence that personal and 
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organisational features have on these measures of sufficiency and dependency for 

evidence.  However, gaps still exist in the knowledge with regards to how practitioners 

account transparently for the techniques they use to assess risk and uncertainty when 

answering a decision.  The conceptual model presented in this working paper addresses 

this by: 1) showing transparently what type of knowledge practitioners believe they 

require to answer their decisions; and 2) justifying which technique(s) they might use 

given the type of knowledge they believe exists to support their decision. 

 

The remainder of this report: 1) describes the aim, objectives and methods used; 2) 

outlines a conceptual model, developed originally by Funtowicz and Ravetz (1990), to 

maps uncertainty techniques to an appropriate decision context; 3) provides a summary 

of the techniques used to assess uncertainty in the energy sector; 4) discusses the 

results from a workshop attended by policy-makers, industry experts and academics to 

assess and validate the model; and 5) explains why we believe this conceptual model 

could be used to promote decision makers’ understanding of the complexity of 

uncertainty and the limitations (and benefits) of techniques when applied to decisions 

across the energy sector. 

 

Research aim and objectives 
The aim of this research was to develop a conceptual model that classified techniques 

for managing uncertainty in the energy sector. To achieve this aim the research 

objectives were:  

1. to undertake a comprehensive review of approaches for assessing uncertainties 

(conceptual and methodological), relevant to the energy sector; 

2. to develop a conceptual model able to help decision makers understand which 

techniques are most appropriate for addressing uncertainty within the context of 

their decision; and  
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3. to validate, via expert workshop, the basis of the conceptual model and the 

positioning of the uncertainty techniques, as well as gather practitioners’ insight 

regarding the use of uncertainty techniques within the energy sector.  

 

The following section provides a critique of the existing literature to explain: 1) why 

practitioners must account for uncertainties when making decisions on risk; 2) how risk 

and uncertainty associated with a single decision are actually statements about a) the 

‘presence of’ and b) the ‘lack of’ the same type of knowledge, respectively.  Based on 

this, and building on the work of Funtowicz and Ravetz (1994), we assume that all 

decisions can be assigned a specific technique (or set of techniques) to assess the 

existence of a particular type of knowledge.  We also assume that ‘compound’ decisions 

comprise a number of ‘single’ decisions that must be addressed in succession before a 

final answer can be deduced.  Finally, we believe that these techniques are useful for 

determining the presence (or not) of knowledge that then allows a user to assign a 

measure of risk or make a statement about the type of uncertainty (i.e. lack of 

knowledge) associated with the decision.  

 

Accounting for uncertainties in decision-making 
At both the national and international levels, government bodies understand the 

importance of acknowledging and dealing with uncertainty (Fairman et al., 1998; USEPA, 

1998; Defra, 2011).  Decision makers are beginning to acknowledge this uncertainty, 

which is leading to a shift away from the conventional definition of risk (i.e. likelihood x 

consequence) to a more encompassing acceptance of uncertainty and the role it plays in 

the decision process (Andrews et al., 2004).  However, when confronted with uncertainty 

there is sometimes a tendency to take no action at all (inaction inertia: Tykocinski & 

Pittman, 1998) and this may become the preferred or default response for decision 

makers (Skinner et al., 2013).  Regardless of whether or not an action is taken, decisions 
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must be made and therefore, at the very least, assessment of the significance of risk and 

uncertainty should be completed to inform a response. 

 

For governments, the implementation of long-term strategic policies (e.g. climate 

change policy goals) presents a challenged due to the inherently uncertain nature of the 

subject (Beck et al., 2009:16).  Decisions makers must be conscious that their decisions 

(e.g. not to act or to adopt a precautionary approach) will have implications.  For 

example, implementing the precautionary principle may place a regulatory burden on 

industry, thus impairing their competitiveness, their ability to innovate, and their ability 

to attract foreign investors.  Precaution, as a response, needs to be informed by an 

assessment of risk, uncertainty and their significance, rather than being promoted as an 

alternative philosophy to risk-informed decision-making. As a result, governments have 

moved towards more decentralized regulation where risk-based decision-making 

informs the allocation of limited resources in a manner proportionate to the risks.  This 

shift has led to the desire (and need) to acknowledge risk and uncertainty comparatively. 

However decision-support tools for comparative risk assessment are not easily achieved 

because of the difficulty of finding a common scale on which to compare inherently 

incommensurate issues. Moreover, comparison is largely limited by the reduction of risk 

and it’s attending uncertainty to a single numeric value (e.g. a score or rank), rather 

than a description of different measures that reflect the full character of the risk.  

Participatory techniques, that include multiple stakeholders, have the potential to 

address these limitations by capturing the variability of subjective value judgements.  

However questions remain about the ability of these models to capture all of the 

complexity that a policy maker requires to inform their decisions. 

 

The challenge for risk-based decision-making is to make well-reasoned decisions whilst 

acknowledging uncertainties and avoiding false confidence and complacency (e.g. by 

ignoring unidentified risks, which left unmanaged could surface to cause serious harm, 
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Schneider, 1979).  Uncertainty typologies have been developed to help decision makers 

characterise uncertainty (e.g. Skinner 2013) and understand that which is resolvable 

through active management and that which is not.  These are useful for characterising 

system uncertainty and can be used alongside conventional techniques, such as 

statistical tests, to support understanding.  Uncertainty analysis should not become an 

end in itself.  Decision-makers must have in mind the level of confidence required to 

make their decision such that valuable resources are targeted towards those aspects 

that improve decision power and quality.  There is little to be gained by attempts to 

resolve intractable uncertainties or by relentless focus on minor features of a problem 

that, even if resolved, are likely to have little influence on decision outcome.  The 

character of the uncertainty is therefore critical.  By understanding the character of 

uncertainty, decision makers can apply the appropriate qualitative or quantitative 

techniques for its management.  Techniques for managing uncertainty depend upon the 

level of the organisation at which it is being applied.  Typologies are not always explicit 

in providing this type of organisational guidance and as a result decision makers may 

misunderstand or misinterpret their uncertainty and the outputs of an applied 

assessment technique.  

Definition of uncertainty 

In general terms uncertainty is defined as a ‘lack of knowledge’.  More specifically, 

uncertainty may be referred to as having “incomplete information about a particular 

subject” (Ascough et al. 2008) or of having a “lack of confidence in knowledge related to 

a specific question” (Sigel et al. 2010).  For the purpose of this research we have 

adopted the definition of Walker et al. (2003) who refer to uncertainty as “any deviation 

from the unachievable ideal of completely deterministic knowledge of the relevant 

system”.   We believe this definition captures the aspiration of uncertainty management 

at all levels of decision-making, which is to strive to obtain perfect deterministic 

knowledge about the system.  
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Typologies of uncertainty 

Obtaining deterministic knowledge requires an understanding of the character of the 

uncertainty.  To this end there has been a shift (in practice) from simply acknowledging 

and understanding uncertainty (Van der Sluijs et al, 2005; Ascough et al., 2008) to a 

desire for understanding the varying ‘types of uncertainty’ (e.g. Regan et al., 2002; 

Raman, 2003).  This shift is based on research by Knight, 1921; Kaplin & Garrick, 1981 

and Wynne, 1992 and can be observed across a number of different domains. 

Typologies are useful tools for “…providing comprehensive, relevant, and reliable 

categorisations (complete with definitions) of all potential types of uncertainty that may 

be encountered (van Asselt and Rotmans 2002; Knol et al. 2009).” As a result, typologies 

form the basis for informing uncertainty management (Morgan et al. 1990).  

 

Uncertainty management requires that specific techniques be applied to the most 

relevant types of uncertainty (van der Sluijs et al. 2004; Refsgaard et al. 2007).  An 

excellent example is reported by Stirling (1999; 2003) who assessed uncertainty 

according to different degrees of knowledge that one may have about the probability 

and consequence of a risk.  A high degree of knowledge about the probability and 

consequence of a risk may be referred to as ‘stochastic uncertainty’ and this can be 

addressed via conventional risk assessment techniques. A low degree of knowledge 

about the probability and consequence of a risk infers a state of ignorance where 

uncertainty needs to be managed using scenario development or expert elicitation. The 

value of this approach is that by characterising their uncertainty, decision makers can 

identify, with confidence, that the techniques they are using are appropriate to the 

decision at hand.  

 

Typologies are common in the environmental domain where they are used for qualifying 

risk and stating the significance of risk estimates (Skinner et al., 2013).  These 

typologies comprise different aspects or dimensions (Janssen et al. 2003; Walker et al. 
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2003; Knol et al. 2009) that relate to the nature, severity and location of the uncertainty. 

The nature of uncertainty describes the type of knowledge available. This information 

may be epistemic (limitations in our knowledge) or aleatory (the randomness of natural 

systems and their components).  The level of uncertainty describes the severity or 

degree of uncertainty and is measured on a scale that ranges between deterministic to 

indeterminate.  The location of the uncertainty describes where the uncertainty is 

manifest within the decision. Other typologies apply similar dimensions (Walker et al. 

2003).  

 

Typologies are largely overlapping, contradictory and subjective, based on small-scale 

literature reviews, or amalgamations of existing frameworks or researcher opinion 

(Skinner et al., 2013). These limitations may prevent transfer to other research domains 

and may impact the reliability of the content (Walker et al. 2003; Ascough II et al. 2008; 

Knol et al. 2009; Troldborg 2010).  These issues lead to methodological inconsistency 

and a lack of consensus on the terminology and typology of uncertainty (Walker et al. 

2010). Efforts to overcome these limitations have resulted in development of complex 

solutions that may not be appropriate for decision-makers (Skinner et al. 2013).  

 

The magnitude and diversity of uncertainty generally increases as we move toward less 

deterministic policy level decisions (e.g. Walker et al., 2003), making the task of 

assigning confidence to the likelihood that an event will occur and the severity of 

potential outcomes difficult (e.g. Wynne 1992; Stirling, 1999). The type and level of 

uncertainty characterising decisions made at the different levels will differ by the extent 

to which the uncertainty can be characterised as being aleatory (randomness) and 

epistemic (lack of knowledge about something that in principle is knowledge).  

 

Decisions about international policy, for example, are often characterised by deep 

uncertainty because of their complexity and the multitude of actors involved, and with a 
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stake in, the decision process.  These decisions are often characterised by a range of 

uncertainties that may encompass elements of ignorance as well as more deterministic 

aspects yet near always involve a “profound lack of understanding and predictability” 

(Kandlikar et al., 2005). Under these conditions, decision makers are challenged to 

identify and apply the appropriate uncertainty tools for the job. 

Application of typologies in the energy domain 

Decisions made within the energy sector are informed by lines of supporting evidence 

that stretch between the operational, tactical and strategic levels. Each level of the 

system is characterised by different types of uncertainty. Poorly defined uncertainty 

undermines the effectiveness of a decision or may delay the decision altogether. 

Possessing an understanding of the character of uncertainty and where it may become 

manifest within the operational levels of the organisation is integral for identifying the 

appropriate techniques for managing uncertainty.  

 

Uncertainty characterisation requires the decision maker to distinguish between the 

different locations that the uncertainty may manifest and the nature/level of the 

uncertainty. To do so, requires decision makers to acknowledge that uncertainty is 

much richer than simply an assessment of a lack of knowledge. Funtowicz and Ravetz 

(1990) state: “uncertainty is not simply the absence of knowledge; uncertainty has 

quantifiable and non-quantifiable components; components of uncertainty include ‘fact‘ 

and ‘linguistic’ components”. In other words, uncertainties are also associated with the 

robustness of the data and facts on which knowledge is constructed and the way in 

which knowledge is formulated (i.e., the terms used to express knowledge, results, and 

assumptions).  

 

Uncertainty is value-laden and sensitive to differences in subjective interpretations. The 

more interpretations (or stakes) involved in the decision process the greater the 
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uncertainty. The value of Funtowicz and Ravetz’s framework is that it explicitly includes 

uncertainty alongside the definition of risk, vulnerability and resilience (Aven, 2013). 

Funtowicz and Ravetz (1990) account for the influence of values into decision 

uncertainty by integrating technical uncertainty and assessment reliability using scales 

relating to decision stakes and system uncertainties.  

 

Characterising uncertainty with respect to knowledge  
This section charts the evolution of our decision support tool, which has been adapted 

from Funtowicz and Ravetz’s (1990) model. This model characterises decisions with 

respect to criteria that describe ‘decision stakes’ and ‘system uncertainties’. Within this 

characterisation the authors describe three areas, or classes, of problems: applied 

science, professional consultancy and post-normal science problems.  Figure 1 

illustrates how changes to the level of knowledge (system uncertainty) and complexity of 

values (decision stakes) relate to different classes of problems. The Funtowicz and 

Ravetz model refer to uncertainties as “the complexity of the system within which the 

decision is made, including aspects that are technical, scientific, administrative and 

managerial while the uncertainties relate to a range of possible outcomes corresponding 

to each set of plausible inputs and decisions (ibid.)”.  Decision stakes are referred to as 

“the costs and benefits to the parties with an interest in the outcome of the decision, 

including regulators and representatives of various interests corresponding to each 

decision.”  
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Figure 1. Taken from Funtowicz and Ravetz (1990). This schematic illustrates their 

conceptual model that classifies knowledge relative to the level of decision stakes and 

systems uncertainties inherent to the problem.  

 

Differentiating between types of knowledge  

Funtowicz and Ravetz categorise the knowledge used to make a decision into three 

distinct classes. Applied science typifies knowledge characterised by low levels of 

decision stakes and system uncertainties. Decisions within this class are curiosity driven 

where research outcomes provide a straightforward and focussed function. At this level 

there is minimal concern with how results may be used by the larger enterprise and 

most problems can be addressed by means of routines and procedures (Funtowicz & 

Ravetz, 1990). In most instances it is the decision maker’s task to work out what the 

optimal strategy is by searching for maximum utility among a number of options 

(Maintzberg, 1994). Results are often not made public and instead form the ‘corporate 

know-how’ of intellectual property of private business or agencies that sponsor the 
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research.  (Hence not contested and considered to be characterized by low decision 

stakes) An example in the energy sector is the design and implementation of solar 

panels on a residential home, which represents a decision process that involves few 

stakeholders, a limited number of values and minimal system uncertainty.  

 

Professional consultancy represents those decisions characterised by knowledge that 

has medium levels of decision stakes and system uncertainties. Decisions within this 

class require a greater measure of expert judgement or subject specialism in order to 

interpret, synthesise or assess the sufficiency or validity of evidence. At this level, both 

natural systems and stakeholder values are considered to be raising overall decision 

complexity. The extended stakeholder community may include investigative journalists, 

lawyers, pressure groups, which requires more complex problem-solving strategies and 

techniques for managing uncertainties (Funtowicz & Ravetz, 1990).  The benefit of 

professional consultancy is the ability for it to manage system uncertainties that are not 

fully testable or reproducible through the use of techniques such as expert judgment.  

 

Post-normal science represents decisions characterised by knowledge with high levels 

of system uncertainty, characterised by conditions of ambiguity, uncertainty and 

ignorance and high decision stakes (Rayner, 2012).  At the extreme end of the scale 

decision makers need to manage irreducible uncertainty of knowledge and ethics, 

consider a plurality of different legislative perspectives and integrate all those with 

stakes in the issue.  Problems like these can no longer be managed through a single 

perspective, instead needing to accommodate an increasing number of non-equivalent 

observers and observations (Giuseppe, 2008). Under these conditions decision-makers 

must appreciate the limits of uncertainty management and resign to the fact that a 

decision will be made under conditions of unresolved uncertainty.  
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Table 1. Description of the difference between low, medium and high levels of decision 

stakes and system uncertainties. 

 Decision stakes System uncertainties 

Low Low decision stakes describes 

knowledge that is usually only directly 

applicable to a single stakeholder.  No 

obvious external interests are at stake 

so there is little concern about how the 

outcome will affect the wider 

community.  Knowledge is not usually 

public knowledge but corporate 

knowhow, the intellectual property of 

private business or agency sponsoring 

the decision.   

Low system uncertainties describe a 

situation where quality assurance is 

sought through the process used to 

collect and analyse data.  Problems 

are puzzle-solving exercises dealing 

with objective knowledge, 

independent of values and 

perceptions.  The task in had is to 

maximise the utility of the decision 

outcome because the existence of 

best solution is assumed.   

Medium Medium decision stakes describes e.g. 

knowledge required by a regulator or 

chief engineer acting as a consultant to 

an internal or external client.  

Controversial evidence may result in 

high decision stakes by extension of 

the peer community to investigative 

journalists, lawyers, pressure groups 

etc.   

Medium system uncertainties, 

decision makers carry a heavier 

burden of proof and must be willing 

to grapple with new and unexpected 

situations.  System uncertainty is 

commonly assessed using 

probabilistic methods potentially 

allowing the decision maker to 

predict the behaviour of the system 

under different future conditions. 

High High decision stakes are characterised 

by multiple non-equivalent observers 

and observations increasing the 

reflexivity and complexity of the 

decision. Power is shared between 

conventional decision makers and the 

breadth of the extended peer 

community (typically politicians, press, 

client, operators, public, investigative 

journalists, lawyers, and pressure 

groups) 

High system uncertainties describe 

knowledge characterised by human 

commitment and values; value 

judgements in the form of extended 

facts and lived experiences (e.g. 

expert/local knowledge) offered by 

the extended peer community. The 

existing knowledge is characterised 

by ignorance and incompatible value 

commitments and the need to cope 

with irreducible uncertainty. 

 

 

The following section is a presentation of the conceptual model we are proposing 

energy system practitioners use to help them choose a suitable technique and justify the 

techniques they may currently be using.  We argue that this will provide a helpful tool to 
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increase the transparency between different actors in the energy system and the reasons 

why they are choosing to focus on the use of different techniques to help them know 

how to make their decisions.   

Developing the conceptual model 
The Funtowicz and Ravetz model (1990) is a useful tool for understanding different 

types of knowledge that characterise complex problems; where decisions are urgent and 

values disputed. The model provides a rough guide whereby decision makers can make 

distinctions about the type of knowledge needing to be accounted for to manage 

different levels (and dimensions) of uncertainty. The model and distinctions can be 

applied to any complex problem, and therefore provides a generic basis for informing 

management of system uncertainty. Users benefit from the consistency of language and 

visual comparability (by plotting all techniques on a single diagram), which helps 

support the communication and assessment of uncertainty.  

 

The character of complex problems will differ and so too will the response needed to 

manage system uncertainties. To accommodate this issue, the framework is flexible, or 

sensitive to the scale and context of a decision. The changing character of complex 

problems is a reflection of the different types of knowledge contained within a decision. 

In reclassifying the categories, or knowledge classes, set out by Funtowicz and Ravetz 

(1990), we refer to different types of knowledge: objective (applied science), semi-

objective (professional consultancy) and subjective (post-normal science) knowledge. 

These classifications more clearly reflect the type of knowledge available within each 

decision landscape and enable a smooth transition to an energy context.  
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Objective knowledge  
Decisions characterised by objective knowledge are analogous to problems in the 

applied science domain due to their character of being ‘pure’ or ‘basic’ research driven 

by curiosity and fact. Problems that are objective state existing information 

independently of external values and perceptions where the existence of one best 

solution is assumed and the task of the analyst is to identify the strategy that provides 

optimal utility among a number of options (Mintzberg, 1994).  Processes used for 

quality assurance are similar to those applied in the core science (Funtowicz & Ravetz, 

1990).  In general, objective knowledge is used to inform decisions by means of 

standard routines and procedures, for example through risk analysis, which is a highly 

objective technique.  

 

Semi-objective knowledge  
Decisions characterised by semi-objective knowledge are analogous to the knowledge 

used in the professional consultancy domain and require techniques that have some 

capacity to draw on theory and experience. These decisions often require input from 

questions characterised by objective knowledge given the relatively new and unexpected 

nature of the problems. As a result, techniques designed to process semi-objective 

knowledge can be informed, but cannot be solved, by the result of techniques designed 

to process objective knowledge. Decisions characterised by semi-objective knowledge 

are similar to professional consultancy decisions in that they explore the impacts of 

unique situations and require input and validation from experts’ opinion.   

 

Expert opinion is an important element of the decision process characterised by semi-

objective knowledge because techniques only designed to process objective knowledge 

are unable to address the complexity of uncertainty. As decision stakes increase the 

decision-makers must consider the clients’ interests alongside technical expertise.  

Hence, decisions processes become an aggregation of information from multiple 
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stakeholder and natural systems inputs. An example of a decision characterised by 

semi-objective knowledge may be agreeing upon the finite number of wind turbines on 

a particular wind farm. This decision involves multiple values (e.g. investment portfolio, 

number of wind turbines, regulation) and a variety of uncertainties (e.g. future profit 

margins, availability of wind, presence of subsidies). However, the issue can be 

addressed through techniques designed to process semi-objective knowledge that one 

would typically find within the professional community. 

 

Subjective knowledge  
Decisions characterised by subjective knowledge exist where facts and value-based 

arguments are discussed alongside an extended peer review process. These decisions 

are characterised by a lack of quantitative data, multi-causality, unknown impacts, long 

timescales, uncertain facts and disrupted values. Outcomes are the result of complex 

cause-effect relationships that lead to multi-directional impacts (Fredrichs, 2011), 

which often go beyond the “given state of affairs” (Ariza-Montobbio and Farrell, 2012). 

Decision makers have to accept that political power is shared between conventional 

decision making agents and extended peer communities (DeMarchi and Ravetz, 1999; 

Healy, 1999). 

 

The complexity of decisions characterised by subjective knowledge is also a catalyst for 

promoting democratic thinking in long-term energy planning. The ability to consider 

different stakeholder inputs is valuable when exploring policy level trade-offs. For 

example, decisions about where to build a wind farm may require input from local 

authorities, regulators, environmentalists, representatives of institutions of energy, 

environmental consultants, members of parliament, industry and the public.  

 

At this level decisions are made with the aim of reaching a desirable future. The 

knowledge behind these decisions are characterised by ignorance and there exists 
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conflict between values and knowledge (Pielke, 2012).  These conflicts arise between 

different views in the social, economic, technological and political domains. For action 

to be taken ignorance must be managed and practitioners will apply participatory 

methods to engage stakeholders and explore uncertainty.  

 

Proposed decision classifications 

We propose that subjective, semi-objective and objective knowledge map directly across 

onto Funtowicz and Ravetz’s categories of post-normal science, professional 

consultancy and applied science respectively. We can take this reclassification a step 

further by adopting terminology from the management sciences. Categories describing 

strategic, tactical and operational decisions have been defined previously (Ackoff, 1974) 

and may be used to replace the categories described by Funtowicz and Ravetz. In the 

context of management, strategic decisions are made at the highest level, set the 

objectives of the organisation as a whole and set direction over longer periods. Tactical 

decisions are more localised focussing on a part of the organisation, have shorter-term 

objectives and focus on efficiency gains or improvements. Operational decisions deal 

with day–to-day decisions and are concerned with the immediate, or very short term.  

 

The divisions between decision categories are not explicit but rather vague, or ‘grey’ 

and therefore one must acknowledge that the schematic offers only guidance. We must 

also note that the decision categories may be applied to decisions at all levels, for 

example, Government, industry or consumers. By way of example: 

 

 Government: Considering the evolution of energy feed in tariffs, let’s assume 

that Governmental decision makers begin the decision process at a high-level; 

the strategic level. Here decision makers consider what objective they intend to 

pursue, for example, how to meet renewable targets. Gathering knowledge at 

this stage would have required considerable stakeholder input and would 
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involve exploratory techniques to test a range of hypothetical options. Once a 

decision has been made (assuming this decision was to achieve renewable 

targets) a direction is set, and the next step would consider how Government 

may achieve these targets over the shorter-term. Here Government focuses on 

tactical measures that could be taken to deliver on an objective (e.g. 

investigation of price incentives such as feed-in tariffs). These tasks will often 

be left to small teams and the outcome of their work is unlikely to impact the 

strategic direction of the Government. The final phase of this decision process 

puts into operation, the previously developed plan. Or more specifically, what 

type of feed-in tariff is appropriate for incentivising different technologies. 

Knowledge for these decisions is highly objective and quantifiable, leaving little 

in the way of expert input and subjectivity, and the impact of decisions will be 

realised over the short-term.   

 Industry: Similar to the above, the decisions that are made by industry may be 

classified as being strategic (e.g. does an energy company pursue natural gas or 

oil?), tactical (e.g. if we pursue gas, do we enter a joint agreement with a 

government to ensure a market?) and operational (e.g. can we technically 

produce the gas to make this venture economically feasible?). 

 Individual: Finally, the decisions of the individual may also be categorised using 

our classification. For example, determining an individual’s best mode of 

transport (e.g. car, public transit, walk) is a strategic decision that requires one 

to consult a range of friends and expert to assess options. Assuming one 

chooses to drive a car, tactical decisions must be made as to whether or not the 

individual purchases, rents, or joins a car share. Finally, at the operational level 

the individual must assess whether or not their chosen option matches their 

expectations or fits within the requirements of practical day-to-day use.  

As these examples demonstrate, our classification can be applied to decisions across 

vastly different contexts within the energy sector and though the decision scale may 
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change (e.g. government, industry, individual) the classifications and the type of 

knowledge required remains similar. The examples also show that decision processes or 

classifications are rarely clear and therefore, decision makers must maintain flexibility 

and remain open to using multiple techniques for gathering knowledge to address 

uncertainty.  

 

 

Figure 2. Illustrating the use of the Funtowicz and Ravetz (1990) model to classify 

techniques used to measure uncertainty (or lack of knowledge) of decisions across the 

energy system characterised by objective, semi-objective and subjective knowledge and 

labelled using management science terminology.  

 

Positioning the techniques  
Lacking a meaningful scale on either axis, positioning uncertainty techniques on the 

Funtowicz and Ravetz model poses some challenge. Most importantly, without a 

common metric or scale, reproducibility of any positioning would come into question, 

regardless of the fact that the nature of the assessment is largely subjective. Therefore, 

to provide structure and consistency to the assessment we adopted the metrics of 

uncertainty as described in the uncertainty typology of Skinner et al. (2013). Table 2 
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describes the level (or severity), the location of and the nature of the knowledge that the 

techniques assess.  

 

Table 2. Summary of the different characteristics of uncertainty adapted from insights 

contained in Skinner et al., 2013. 

L
e
v
e
l 

Deterministic Confidence about the likelihood and outcomes. 

Statistical 
Confident in assigning probabilities to an event but little 

understanding of the ramifications. 

Scenario 
Confident about the outcomes but not confident about the 

likelihood of the event.  

Recognised 

ignorance 

Not possible to define the probabilities or a complete set of 

outcomes. 

Total ignorance 
Inverse of determinism; when nothing is known about the 

uncertainty. 

L
o
c
a
ti

o
n
 

Data (Availability) The incomplete, scarcity or absence of data. 

Data (Precision) The lack of accuracy. 

Data (Reliability) 
The trustworthiness, stemming from errors in processing, 

statistical analysis or presentation of data. 

Language 

(Ambiguity) 
Present in the face of multiple meanings. 

Language 

(Underspecificity) 
When meaning are not clear. 

Language 

(Vagueness) 
When meanings are not clear or understandable. 

System 

Tallies with the scientific understanding of a system – 

particularly pertinent to a field such as nanotechnology that 

experienced rapid growth, raising questions about unknown 

effects.  Uncertainty of a system can be characterised by 

focusing on the existence of sources, pathways and the 

receptors in a system.  

Variability 

The inherent unpredictability of a human or natural system. 

Human variability can stem from intentional bias and 

subjective action e.g. because there is something to gain or 

the importance of evidence is weighed differently. Natural 

variability forms the characteristic traits of a system 

primarily associated with extrapolation when faced with 

limited data or process understanding. 

Extrapolation 

(Intraspecies) 

When members of a species are used to represent members 

of the same species. 

Extrapolation When members of a species are used to represent the 
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(Interspecies) members of a different species. 

Extrapolation 

(Laboratory) 

When data from the laboratory are used to represent real-

world phenomena.  

Extrapolation 

(Quantity) 

When information specific to one quantity is used to 

represent a different quantity. 

Extrapolation 

(Temporal) 

When information specific to one timescale is used to 

represent a different timescale.  

Model (Structural) The structure chosen to represent the real world. 

Model (Output) Reflects the level of confidence assigned to results. 

Decision 
Doubts about the optimal course of action in the face of 

differing stakeholder perspectives and objectives. 

N
a
tu

re
 

Epistemic 

Refers to the imperfect knowledge of a system that with 

understanding can be quantified, reduced and potentially 

eliminated. However, additional research can reveal the true 

depths of ignorance increasing the level of uncertainty. 

Aleatory 

The inherent randomness characterising the natural and 

human system. By definition aleatory uncertainty cannot be 

reduced but additional research can reveal that a system 

thought of as random is instead found to be chaotic and 

therefore in principal resolvable.  

 

The uncertainty typology described in Skinner et al. (2013) provides a list of 

fundamental characteristics to help understand and thus assess uncertainty. We believe 

these characteristics of uncertainty can be used as surrogate measures for assessing 

decision stakes and system uncertainty. For example, under high decision stakes 

Funtowicz and Ravetz (1990) state “decisions are characterised by multiple non-

equivalent observers and observations increasing the reflexivity and complexity of the 

decision.” This maps well with Skinner et al. (2013)’s reference to the location of 

uncertainty, whereby there are “doubts about the optimal course of action in the face of 

differing stakeholder perspectives and objectives”. We can see that both descriptions 

represent high complexity, multiple stakeholders’ objectives and a plurality of values.  

 

Similarly, system uncertainty can be described using Skinner et al. (2013) metrics for 

level of uncertainty. Other studies that aim to assess the severity of uncertainty also 

apply a continuum similar that used by Skinner (i.e. ignorance through to determinacy) 
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though few works afford the specificity that Skinner’s scale and divisions provide. The 

nature of uncertainty is a unique classification that, on this schematic (Figure 3) 

becomes an expression of location and level and provides insight about the character of 

the uncertainty. Using this logic we can classify uncertainty techniques taken from the 

literature. 

 

Figure 3. Schematic showing the metrics used for analysing uncertainty techniques. The 

metrics were taken from Skinner et al, 2013 and describe location (x-axis), level (y-axis) 

and nature (z-axis) of uncertainty. These metrics are implied in Figure 2 and used to 

categorise techniques in Table 3. 

 
 

Positioning uncertainty management techniques  
To gain an understanding for the range of techniques that have been used to assess 

uncertainty across the energy sector, search terms ‘uncertainty’ & ‘energy system’ (or 

‘energy sector’) were used to gather articles and reports using Scopus, Web of Science 

and Google Scholar. After creating a list of techniques, a search was carried out for 

papers that included the use of the ‘name’ of each technique in the abstract and the 

words ‘energy system’ (or ‘energy sector/domain) and ‘uncertainty’ anywhere in the 

paper. This allowed us to answer the following questions: 
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 What techniques are currently being used to assess uncertainty in the 

energy system? 

 What is the nature, location and level of uncertainty characterising the 

type of knowledge that each is used to assess? 

 

The assessment was guided by the characterisation of uncertainty (Table 2) and the 

results were captured in Table 3. This data was then used to position the techniques 

within the model (Figure 4), guided by the characterisation scales and an assessment of 

the type of decision being addressed. A workshop hosting 40 energy experts was used 

to validate the conceptual positioning of the techniques. During the workshop experts 

were asked to comment on the general position of the techniques, identify missing 

techniques and provide insight with respect to the applicability of the model to their 

sector. 

 

Assessment of the techniques used for investigating 

uncertainty 
The results of the assessment are shown in Table 3 and provide a comprehensive list of 

techniques and relevant examples from literature. The techniques were mapped on to 

our model (Figure 4), illustrating our initial, conceptual effort. Few techniques were 

identified as strictly belonging to the operational decision category (i.e. low location of 

uncertainty and low level of system uncertainty) and this may be due to the multi-use 

appeal of these tools or may suggest a genuine lack of appropriate techniques within 

this domain.  In either case, this suggests that multiple mitigation techniques may be 

required to address and manage uncertainty.  
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Table 3 - Uncertainty assessment 

 

Uncertainty 

technique 

 

Nature of 

uncertainty 

Location of 

uncertainty 

Level of 

uncertainty 

Example in literature 

Social surveys 

investigating 

public 

perception 

Epistemic Data Ignorance Reise et al., 2012; Laes 

et al., 2011; Gram-

Hanssen et al., 2012; 

Sirin, 2011 

Social surveys 

willingness to 

pay 

Epistemic Data Recognised 

ignorance 

Hanemann et al., 2011; 

Kraeusel and Most, 2012) 

UK MARKAL Epistemic Model Statistical Strachan and Usher, 

2011; Usher and 

Strachan, 2012 

Bayesian 

Methods 

Epistemic Decision Recognised 

ignorance 

Armstrong et al.  

Scenario 

analysis 

Epistemic Model Scenario Morlet and Keirstead, 

2013; Amiri et al., 2013; 

Karvetski and Lambert, 

2011 

Sensitivity 

analysis 

Aleatory Data Statistical Jain et al., 2012 

Discourse 

analysis 

Epistemic Decision Recognised 

ignorance 

Ariza-Momtobobbio and 

Farrell, 2012; Mander, 

2008 

Real options Epistemic Data/model/ 

variability 

Recognised 

ignorance/ 

statistical/ 

scenario 

Fernandes et al., 2011; 

Zavodov, 2012; Bredin et 

al., 2011; Chronopoulos 

et al., 2013 

Tree method Aleatory Availability Scenario Xu and Guan, 2012 

MCDA  Aleatory Variability Scenario Loken et al., 2006; Wang 

et al., 2009 

Case study Epistemic Data/ 

language 

Recognised 

ignorance 

Luo et al., 2009; Trygg 

and Amiri, 2007; 

Laurikka and Koljonen, 

2006 

Monte Carlo 

simulation 

Aleatory Model Statistical Chaudry et al., 2013 

Mixed integer 

multi-

objective 

optimisation 

Aleatory Model Recognised 

ignorance 

Abedi et al., 2012 

Discourse 

analysis 

Epistemic Decision Ignorance Ariza-Montobbio and 

Farrell, 2012 

Discrete event Aleatory Model Scenario Azcarate et al., 2012 
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simulation 

Logic 

programming 

Epistemic Language/ 

ambiguity 

Recognised 

ignorance 

Baldwin, 1987 

Optimisation 

methods 

Aleatory Model/ output Scenario Bano et al., 2011 

Interviews Epistemic  Decision Recognised 

ignorance 

Beers et al., 2003 

Combined 

qualitative/qu

antitative 

models 

Epistemic Decision Recognised 

ignorance  

Stephens et al., 2008 

Agent based 

models 

Epistemic Decision Recognised 

ignorance 

Berger et al., 2010; 

Downing et al., 2001 

Delphi method Epistemic Decision Recognised 

ignorance 

Cam et al., 2002 

Analytical 

hierarchy 

process 

Epistemic Decision Recognised 

ignorance 

Chinese et al., 2011; 

Ascough et al., 2008; 

Awudu and Zhang, 2012; 

Li et al., 2007; Wang et 

al., 2009 

Fuzzy logic Aleatory Data Statistical Eltamalay and Farh, 2013 

Heuristic 

models 

Epistemic Decision  Banos et al., 2011; 

Berger et al., 2010 

Linear 

programming 

Epistemic Data Statistical Garcia and Weisser, 

2006; Amiri et al., 2013 

Zhang and Rong, 2008 

Non-linear 

programming 

Epistemic Data Statistical Perez-Diaz et al., 2010 

Swarm 

intelligence 

Aleatory Variability Scenario Kiran et al., 2012; Mitra 

et al., 2006 

Stochastic 

modelling 

Epistemic Data Statistical Sun et al., 2006; Falcao, 

2004; Huijbregts et al 

(2001) 

 

Portfolio 

theory 

Aleatory  model Recognised 

ignorance 

Favre-Perrod et al., 

2009; Tisigkas, 2011; 

Wilson and Grubler, 2011 

 

The results from the positioning exercise are shown in Figure 4, which presents a 

relative comparison for a range of uncertainty management techniques.  
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Figure 4. Initial positioning of techniques for assessing uncertainty.  

 

In presenting these results we stress that this conceptual model is not a tool for 

measuring or assessing uncertainty per se.  This approach provides a means for 

characterising the uncertainty within a decision and to identify suitable techniques for 

its investigation.  

 

The following questions are intended to guide decision makers through the process of 

understanding their uncertainty and selecting the appropriate assessment techniques:  

 Step 1: How extensive is the uncertainty associated with my decision – or what 

level of understanding do I have to support my decision? 

 Step 2: What knowledge is required to address the uncertainty and where might I 

find it – or where is in the decision process it is required?  

 Step 3: Given the above, which technique(s) are best suited to the handling of 

uncertainty?  
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Uncertainty workshops (23rd May 2013) 
The workshop provided an opportunity for practitioners to engage with the concept and 

to comment upon the positioning of the techniques. The workshop consisted of a 

presentation of the concept followed by a breakout session whereby experts were 

divided into three groups and asked to: query the positioning of techniques, add or 

subtract techniques, and comment on the applicability of the concept. The workshop 

concluded with a group discussion to discuss how best the conceptual model may 

progress. Comments made during the group discussion by participants were 

summarised and are presented below.  

 

General points and comments about the concept 
 

o A useful way of thinking about dealing with uncertainty is to think of it as a 

funnel. When decision processes are initiated the boundaries are broad however, 

as a decision begins to form the process moves down into the funnel where the 

boundaries begin to tighten. At this point the decisions become increasingly 

tactical and then operational where the problem becomes quite well bounded.  

o A point to consider when using this approach: 1) what answers are we looking 

for? i.e. what is it we are trying to maximise? 2) How do we want to get our 

answer? i.e. what are the techniques we will use to get this answer? 3) How do we 

combine our answers with other people’s answers? Then once we have answered 

these questions, which essentially determine the direction we think we should go 

in, we could consider how do we design the framework so that when people go 

off and do their own thing they do it in the right way? 

o Important to frame the question so it’s clear if it’s about a decision already made 

or about the process of decision making i.e. whether we are intending to use the 

techniques to understand the state of the world or take a specific decision.  
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o Framing the decision correctly will be key to selecting the appropriate 

combination of techniques to address an issue. 

o Important to first make sure that the correct diversity of questions have been 

identified before focusing on the correct diversity of techniques.  

o For ease of use it was generally agreed that it would make sense to cluster 

techniques that are closely related. 

Choosing appropriate techniques 

o It was clear that there was a diversity of perspectives with regards to the 

usefulness of different techniques and what was understood by the different 

techniques, which seemed to stem from the diversity of participant backgrounds.  

It was acknowledged, therefore, that participants’ background will have biased 

their perspective of the value techniques had.  

o There are two ways of thinking about what techniques should be used: 1) what 

quantities are targeted or 2) what prices should be set so people do the right 

thing.  

o It was suggested that it might be possible to identify a cluster of techniques that 

are commonly used across the energy system (e.g. referring to Monte-Carlo 

Analysis, Cost Benefit Analysis, Decision Trees, Scenario Analysis, Optimisation 

Techniques and Simulation Methods).   

o The variety of techniques that are used is very important to bring in the 

unexpected and the unintended consequences. 

Issues to be aware of when choosing techniques 

o Some techniques that are commonly used are often pushed to the limits of their 

capacity because those are the techniques that practitioners are most familiar 

with and are therefore more inclined to refer to. 
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o Some techniques will straddle between levels of decision making and as such 

how techniques might be used and their outputs interpreted may vary, e.g. 

Multi-Criteria Decision Analysis could be used to reach a specific answer or it 

could be used to map out different perspectives to help in a discursive decision-

making process. 

o Must not expect too much from these tools and techniques given the rapid rate 

of change we are seeing happen across Government. 

o Need to look carefully at the uncertainty in the relationship between the model 

and the real system, which it is intended to represent.  For example, in an 

extreme case if the relationship between the model and the real system is poor 

then the danger is that the practitioner will be using the output from the model 

thinking they are taking systematic decisions when in actual fact they will be 

taking arbitrary decisions. 

Issues to be aware of when applying these techniques to the 

energy system  

o Are the techniques appropriate? Are they being pushed beyond their limits? Are 

policy makers simply not listening, or are academics/R&D misinterpreting senior 

level requests? 

o Policy makers tend to think a model is a perfect representation of reality until 

they know what is in it and at which point they think it’s a ludicrous 

representation of reality. 

o Techniques should not just be good for assessing uncertainty. They must also be 

able to provide a pragmatic way of moving forward within the context of the 

organisation. 

o There is a political challenge caused by the fundamentally changing policy 

background. 
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o Choosing the correct techniques is as much about good governance and about 

establishing an evidence base that adheres to principles such as transparency to 

facilitate public and private sector engagement, otherwise we run the risk of 

developing policy-based evidence making as opposed to evidence-based policy 

making.   

o In government departments the focus is more on taking one step forward each 

day.  Rather than starting with a clean sheet and letting the process of analysis 

determine the direction – results from different studies are used to make any 

progress in any direction at all.  

o Many tools exist but only a few are every used.  Often these are unsophisticated 

techniques including rules of thumb, so there is a need to ask not just what the 

best technique is but what technique is realistic given the organisations 

constraints.  

o Many sophisticated mathematical techniques could in principle make a valuable 

contribution, but how can we move from their use in academia and R&D to being 

applied in the field, given the relatively small number of people who currently 

have the necessary high level modelling skills. Further, given the rate at which 

the energy policy landscape is changing, it is sometimes not possible to perform 

the R+D which would be necessary to take a decision in an ideal way - one must 

therefore consider the best pragmatic way of taking decisions in these 

circumstances. As a consequence it may be that in some cases verbal reasoning 

may be more appropriate than sophisticated mathematical modelling techniques 

if that latter cannot adequately represent the real system, or the relationship 

between the model and the real system cannot be assessed. 

o It was suggested the quadrants of the graph could be separated out into regions 

of ‘guess’, ‘procrastinate’ and ‘copy what others are doing’, where the tendency 

to procrastinate was suggested to be what people do intuitively when they are 



 

UK Energy Research Centre                                            UKERC/WP/FG/2014/001 

30 

worrying about optionality.  It was also said that there is a need to develop a 

systematic process that could help people think through this process. 

o One participant suggested that the correct approach in making a decision under 

uncertainty is to specify the problem at hand and then decide on appropriate 

modelling techniques without any preconceptions as to what approach is 

required for a given type of decision. 

 

Validating the positioning of uncertainty techniques 

Participants had few comments regarding the relative positioning of the techniques and, 

in general, were comfortable with the categorisation. Participants noted that the number 

of techniques mapped was too great and that many of the techniques were too specific 

or unknown (outside academia) to provide practical benefit to decision makers. Instead, 

participants suggested that similar techniques be clustered, particularly those 

commonly used across the energy sector (e.g. referring to Monte-Carlo analysis, cost 

benefit analysis, decision trees, scenario analysis, optimisation techniques and 

simulation methods).  The resulting schematic (Figure 5) was developed in response to 

this comment and provides a more accessible description of general techniques. A brief 

description of the technique clusters is provided below. 
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Figure 5. Final positioning of uncertainty management techniques after input from 

stakeholder workshop. 

 

 

Exploratory subjective approaches 
Exploratory subjective approaches refer to techniques such as: scenario analysis, 

participatory multi-criteria methods, discourse analysis, Delphi methods and social 

surveys. These have been used to assess uncertainty characterised by the subjective 

knowledge. The uncertainty is located in the decision (Cam et al., 2002) and the 

integrity of the structure of supporting models (e.g. Amiri et al., 2013). The severity of 

uncertainty typically ranges between scenario (e.g. Amiri et al., 2013; Morlet and 

Keirstead, 2013), recognised ignorance (e.g. Kraeusel and Most, 2012; Gram-Hanssen et 

al., 2012; Reise et al., 2012; Sirin, 2011; Laes et al., 2011; Hanemann et al., 2011) and 

total ignorance. Specifically, social surveys, scenario analysis and discourse analysis are 

useful techniques for assessing uncertainty with an epistemic nature (e.g. Morlet and 

Keirstead, 2013), whilst techniques such as participatory methods are useful for 
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assessing uncertainties that are also aleatory in nature (e.g. Burger et al., 2010; Bryant 

and Lempert, 2010). 

 

Simulation modelling 
Simulation modelling refers to techniques such as: agent-based modelling, simulation 

models and swarm intelligence. These have been used to characterise semi-objective 

knowledge. The severity of uncertainty typically ranges between scenario (e.g. Amiri et 

al., 2013; Morlet and Keirstead, 2013), recognised ignorance (e.g. Kraeusel and Most, 

2012; Gram-Hanssen et al., 2012; Reise et al., 2012; Sirin, 2011; Laes et al., 2011; 

Hanemann et al., 2011) and total ignorance. This uncertainty is located in the variability 

of the human system (Kiran et al., 2012); the decision (Berger et al., 2010; Dowing et al., 

2001) and the supporting model output (Azcarate et al., 2012).  Specifically, agent-

based modelling can help account for the aleatory and the epistemic nature of 

uncertainty (Berger et al., 2010; Dowing et al., 2001), whereas techniques such as 

discrete event simulation (Azcarate et al., 2012) and swarm intelligence (Kiran et al., 

2012) are better suited to help practitioners assess aleatory uncertainty. 

 

Probabilistic approaches 
Probabilistic approaches refer to techniques such as: fuzzy logic and Bayesian methods. 

These have been used to assess uncertainty characterising both subjective and semi-

objective knowledge in the energy system. The level of uncertainty typically ranges 

between recognised ignorance (e.g. Armstrong et al.) and statistical (Eltamalay and Farh, 

2013) uncertainty. The uncertainty is generally located in the data (Eltamalay and Farh, 

2013) and the decision (Armstrong et al.). Specifically, Bayesian methods are useful 

techniques for assessing uncertainty with an epistemic nature (Armstrong et al.), whilst 

techniques such as fuzzy logic are useful for assessing uncertainties that are aleatory in 

nature (Eltamalay and Farh, 2013). 
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Option appraisal methods  
Option appraisal methods refer to techniques such as: portfolio theory, real options; 

pathway analysis; and risk analyses. These have been used to assess semi-objective 

knowledge in the energy system. The severity of uncertainty typically ranges between 

recognised ignorance, statistical and scenario level uncertainty (Fernandes et al., 2011; 

Zavodov, 2012; Bredin et al., 2011; Chronopoulos et al., 2013).  The uncertainty is 

located in the variability of the data and model of the system (Favre-Perrod et al., 2009; 

Fernandes et al., 2011; Zavodov, 2012; Bredin et al., 2011; Chronopoulos et al., 2013). 

Specifically, portfolio theory and real options theory are useful techniques for assessing 

uncertainty with an aleatory nature (e.g. Gracevva, 2002), whilst techniques such as 

pathway analysis and risk analyses are better suited for assessing the epistemic nature 

of uncertainty. 

 

Mathematical modelling  
Mathematical modelling refers to techniques such as: life cycle analyses, mathematical 

reasoning, mixed linear programming, and linear programing. These have been used to 

assess objective and semi-objective knowledge in the energy system. The level of 

uncertainty typically exists at the statistical level (e.g. Venkatesh et al., 2013). The 

uncertainty is located in the knowledge of the system (Garcia and Weisser, 2006; Amiri 

et al., 2013 Zhang and Rong, 2008; Perez-Diaz et al., 2010) and extrapolation of data 

(Elia et al 2001; El-Shimy, 2009; Whittaker et al., 2009; Venkatesh et al., 2013). All of 

these techniques are designed to account for the epistemic nature of uncertainty. 

 

Hierarchical quantitative and semi-quantitative methods 
Hierarchical quantitative and semi-quantitative methods refer to techniques such as: 

multi-criteria decision-making, decision tree methods, and analytical hierarchical 

process.  These techniques have been used to assess semi-objective knowledge in the 

energy system, where the decision is characterised by relatively low decision-stakes and 
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high system uncertainties. The severity of uncertainty typically ranges between scenario 

(e.g. Loken et al., 2006; Xu and Guan, 2012) and recognised ignorance (e.g. Chinese et 

al., 2011; Ascough et al., 2008; Awudu and Zhang, 2012) levels of uncertainty.  The 

uncertainty is located in the variability (Loken et al., 2006) and availability of data (Xu 

and Guan, 2012). Specifically, multi-criteria decision analyses and tree methods are 

useful for assessing uncertainty with an aleatory nature (e.g. Loken et al., 2006; Xu and 

Guan, 2012), whilst techniques such as analytical hierarchy process is more useful for 

assessing uncertainties that are epistemic in nature. 

 

Statistical modelling methods  
Statistical modelling refers to techniques such as: Monte-Carlo analysis, optimisation 

methods, probabilistic methods and sensitivity analysis.  These have been used to 

assess semi-objective knowledge in the energy system. The level of uncertainty is 

typically statistical (Jain et al., 2012; Chaudry et al., 2013). The uncertainty is located in 

the data (Jain et al., 2012) and the structure and output of the model (Chaudry et al., 

2013). Specifically, sensitivity analysis and Monte Carlo simulation are useful techniques 

for assessing uncertainty with an aleatory nature (e.g. Jain et al., 2012; Chaudry et al., 

2013). 

 

Discussion 
The purpose of this research was to develop a conceptual model capable of categorising 

techniques used to assess uncertainty in the energy sector.  Conventionally, this 

includes techniques ranging from scenario analysis, which explicitly acknowledges the 

presence of uncertainty, to techniques such as statistical analysis, which are designed to 

provide the user with information about the strength of relationships between variables 

in a system. In this research we considered all techniques used to assess uncertainty 

irrespective of its explicit reference to uncertainty because: 1) regardless of whether a 
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technique refers explicitly (or not) to uncertainty, if the tool assesses a user’s knowledge 

of a system then implicitly it assesses the user’s lack of knowledge (i.e. uncertainty), and 

2) our goal was not to suggest new techniques for assessing uncertainty but instead to 

reveal what techniques currently exist and are being applied to different types of 

decisions (e.g. operational, tactical or strategic decisions).  

 

Decision processes can be divided into different categories depending upon their 

complexity and degree of uncertainty (Funtowicz and Ravetz, 1990). Complexity may 

refer to the quantity of values or variety of stakeholders involved in a decision process. 

Uncertainty relates to the level (or severity) of uncertainty in the process. Decisions can 

be further analysed by applying uncertainty typologies (Skinner et al., 2013), which are 

useful for characterising the level, location and nature of uncertainty. By using our 

framework it is possible to map uncertainty management techniques against decision 

categories, thus providing guidance on the use of the most appropriate techniques for 

different decision context. Though admittedly coarse, our approach is useful in guiding 

decision makers to select the most appropriate technique for their given problem.  

  

Decision processes and the techniques used to manage them will differ greatly and it is 

important for users to ensure that their approach is commensurate with the context in 

which it is being applied. To this end, three types of knowledge were identified (Figure 

1) – objective, semi-objective and subjective. These represent distinctly different 

problems (or decisions) and are characterised by varying levels and types of knowledge, 

stakeholders and values.  

 

Our framework assumes that as decisions traverse the subjective (or post-normal 

science) domain, into the semi-objective, and then finally the objective (or analytical 

science) domain the decision becomes increasingly tractable. The decision boundaries 

become more clear, values begin to form, data begins to build and the number of 
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involved stakeholders decreases. This implies that the location and level of uncertainty 

is also changing and therefore the tools required to assess the uncertainty must change 

as well. The decision environment is dynamic and as a decision evolves, so to must the 

techniques used to address uncertainty. For example, the uncertainty in highly complex 

decisions characterised by subjective knowledge requires methods able to account for 

multiple perspectives and values and do not require complete or robust data sets. These 

techniques include scenario analysis, surveys and multi-criteria decision analysis – 

techniques that help users to explore, frame and characterise issues. As the decision 

boundaries begin to substantiate and data emerges, users can apply techniques such as 

agent based simulation or Bayesian methods – techniques that combine quantitative and 

qualitative information. Finally, as the decision becomes focussed on to a single, 

tractable problem, likely supported by a high degree of data, quantitative methods, for 

example, statistical methods, can be applied. The challenge for decision makers is to 

understand the character of their uncertainty and the limitation or appropriateness of 

the tools and techniques being applied. 

 

This framework is not without limitation and we acknowledge that the categories of 

knowledge types are not mutually exclusive. Similarly, we acknowledge (and 

recommend) that uncertainty techniques not be applied in isolation. Instead, uncertainty 

management requires that decision makers operate within a framework of multiple 

techniques combing complimentary techniques that are fit for purpose. As the decision 

context changes so will the techniques used, and decision makers may find themselves 

applying a series of techniques over time. Though some techniques for managing 

uncertainty will be better suited for a specific decision type than another this is not to 

say that some techniques are wrong for a given decision type, but simply that some 

techniques may provide a more useful answer than others. 
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It may seem intuitive that different decision categories (or types) require different 

uncertainty tools. However, our workshop revealed that most decision makers do not 

take the time to characterise their decisions and therefore may lack an appreciation for 

the level, location and nature of uncertainty they encounter. It is likely that decision 

makers will apply tools and techniques that are not well suited for the problem at hand. 

In fact, multiple attendees said that decision makers would use whatever techniques are 

available to them, rather than identify the most appropriate tool for the job. Moreover, 

under conditions of uncertainty, decision makers will often rely on doing what others 

have done before them, revert to guessing or, under considerable uncertainty, 

procrastinate and wait for more information to become available. Finally, the techniques 

used to assess uncertainty are all too often abstract and therefore, presentation of a 

family of suitable techniques (i.e. multiple options) may increase the end users comfort 

level for dealing with uncertainty.  
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