Section 1: An overview which includes a broad characterisation of research activity in the sector and the key research challenges

Last Updated: 15 May 2009

Section 2: An assessment of UK capabilities in relation to wider international activities, in the context of market potential

Section 3: Major funding streams and providers of basic research along with a brief commentary

- _: Major funding streams and providers of applied research along with a brief commentary
- _: Major funding streams for demonstration activity along with major projects and a brief commentary
- : Research infrastructure and other major research assets (e.g. databases, models)
- _: Research networks, mainly in the UK, but also European networks not covered by the EU Framework Research and Technology Development (RTD) Programmes
- _: UK participation in energy-related EU Framework Research and Technology Development (RTD) Programmes
- _: UK participation in wider international initiatives, including those supported by the International Energy Agency

Prepared by Prof Gail Taylor, University of Southampton

Last Updated: 15 May 2009

This document is provided free of charge. While the UKERC will continue to make every effort to ensure accuracy of information, it cannot be held responsible for any errors; any risks associated with the use of the data remain entirely the responsibility of those downloading it. Users are reminded that they should acknowledge UKERC in all cases where the information is used.

UKERC retains copyright of all documents; your use of this information should conform to UK Copyright "Fair Dealing" (://www.copyrightservice.co.uk/copyright/p27_work_of_others)

1. Overview

to Top

Characterisation of the field

Bioenergy has an important role to play in meeting the UK aspirations in renewable energy supply for 2010 and 2020. Energy from biomass is complicated since several feedstocks (e.g. dedicated bioenergy crops such as willow, or food crops such as rape, sugar beet and wheat) may be utilised in different conversion processes (combustion, fermentation, gasification) resulting in several energy outputs including heat, power and liquid transport fuels (called here biofuels). It is important that this mixed portfolio of bioenergy supply is maintained at this time, ensuring the development of competitive and secure bioenergy and a firm research base for future large-scale deployments. Currently, including biogas from waste, bioenergy contributes more than 80 % of all UK Renewable Energy (BERR, 2007)¹ with several large-scale commercial deployments already in progress including bioethanol production and the use of biomass in co-firing and dedicated combustion.

Deployment is being encouraged by a large number of Government incentives including Renewable Obligation Certificates (ROCs) for co-firing, energy crop planting grants and capital programme incentives and these may extended further. Research to develop high yielding feedstocks and improvement of inefficient conversion processes and environmental sustainability is also developing, enabling us to identify clear short-term research priorities for the UK.

There are powerful, long-term environmental, political and economic drivers for the further development of the UK (and

international) bioenergy sector. Bioenergy development in the UK has been impeded in the past largely by the persistent low cost of crude oil and associated policy and development barriers. The economic situation has undoubtedly changed and at \$70 per barrel, many bioenergy operations begin to approach a commercial . We have entered a period of sustained high fossil oil prices, with a seemingly long-term upward trend and in the future a move towards a more 'bio-based' economy where bio-based products (including bioenergy) are seen to have a higher value. Much advanced research will be necessary to make this move to biofuels, bio- polymers and bio-oils as well as other products, over the next two , within the appropriate framework of environmental and economic sustainability.

Current emphasis on the use of food crops (first generation bioenergy crops) to generate bioethanol and biodiesel has highlighted the potential environmental costs and poor energy balance of these 1,14 and these must be addressed through a move towards second generation perennial lignocellulosic and other more efficient systems and a reconsideration of biomass use for heat and power compared to liquid biofuels.

Despite strong multilateral interests in bioenergy R&D within the UK, split broadly between the Government departments and the Research Councils (where EPSRC leads the energy portfolio), there are international investments across the full spectrum of research, and combined UK R&D activities must be considered to be lagging behind international leaders in this field. There is clear strategic vision in Europe through the and the United ¹⁹, which is being matched by considerable resource investments, not least

at the biology end of the R&D spectrum, for example from the BP Energy Bioscience Institute now up and running in the .

Land use will be a limiting factor for bioenergy in the UK. The Biomass Task in a recent review concluded that a reasonable assumption for the UK would be up to 1 million hectares of UK land dedicated to specialist bioenergy crops by 2020, although in response, the UK Biomass Strategy believes 350,000 ha is more , whilst a recent Europe wide study has suggested that the UK should move towards the use on 1.6 m hectares by , but a requirement of 740,000 hectares is estimated as necessary to fulfil 50 % of the RTFO current targets For liquid transportation fuel. These land-use scenarios should be viewed with caution they do not consider the large step-changes that may occur in biosciences and second generation crops over the coming decades. Although it is difficult to predict the prevailing socioeconomics conditions we would point to three clearly identifiable drivers, each of which will increase the attraction of bioenergy deployment in the future.

Most importantly, atmospheric concentrations will continue to rise well into this Century and the pressure for low-carbon energy solutions will grow as an aid to fulfil UK and EU targets of 60 % on CO2 emissions reduction. Alongside this there will be increasing global impact of climate change.

Secondly, declining fossil fuel reserves and concern over energy security and long-term high fossil fuel prices will drive R&D in renewable substitutes for petrochemical.

Finally, land use competition will grow, making dual- or multi-use crops increasingly appealing. For example, a single crop may be grown for grain, which is harvested for food and then the

remaining biomass is combusted for heat or fermented to bioethanol.

Last Updated: 15 May 2009

The research agenda must reflect this and currently is not well placed to develop integrated interdisciplinary research solutions. In this context the development of bio-refineries – based on the model of petrochemical refineries – where raw product (plantfeedstock) enters and more than one refined product is generated (including heat and power), is a logical ambition for biorenewable petrochemical . Even with this approach the UK will still require imports to fulfil even the current commitment to the Biofuels Directive (RTFO) for 5% by volume of liquid transportation fuels derived from biological sources by 2010, where progress towards these targets was reported recently by the .

A further factor that is likely to increase the economic favourability of bioenergy is the decentralisation of power generation through microgeneration (small combined heat and power units serving individual homes, businesses or communities). This will help to alleviate the need to transport biomass from point of production to large regional power stations. Microgeneration is currently a small contributor to the UK energy economy, but with careful development could become a very major one by 2030. No clear strategy currently exists in the UK to capture bioenergy from biomass 'waste' including municipal solid waste (MSW) and agricultural waste and this should be an important future priority and has been recently addressed in the UK Biomass '14.

Research Challenges

Considerable recent effort in the and has addressed the question of future research challenges within Bioenergy, with the

publication of the Department of Energy Roadmap for , recent roadmaps for lignocellulosic-to- and the EU Biomass Action and Biofuels in the European Union Vision for . In general, it seems likely that over a timescale of 10-20 years and beyond, there will be a move from an 'oil-based' to a 'bio-based' economy where natural resources, particularly those from green plants, can be used more effectively. Many of these bio-processing routes are inefficient and still remain costly, both in necessary energy inputs and for environmental impacts, including greenhouse gas mitigation potential and other negative effects. Bioenergy from biomass can be considered a 'low quality high volume' bioresource, whilst bio-polymers, oils and other products may be considered as 'high quality low volume'. The future long-term research challenge will be to optimise the biorefinery to ensure both types of output are possible, as appropriate.

In the longer-term, artificial photosynthetic systems, hydrogen from biomass and the use of microbial and other biological systems should be considered as having future potential. A report of UK R and D priorities for current funding agencies in the UK was made in April , although this was focussed mostly on short-to-medium term applied research requirements.

Short term Research Challenge (5 years)

- Quantify environmental impacts of bioenergy production systems using whole life cycle analysis tools
- Developing and assessing supply chains based on biorefining (bringing together biochemical and thermochemical processes)
- Improve the efficiency of bioethanol production at preprocessing, hydrolysis and fermentation steps, using biological research
- Improve deployment of CHP in the UK linked to microgeneration

• Identify optimum land-use strategies for the UK biomass resource and likely future use of arable, set-aside and marginal land in a changing climate with consequent impacts on ecosystem services

Last Updated: 15 May 2009

- Develop and deliver new cultivars from past and current research and breeding of dedicated energy crops.
- Develop a UK strategy to capture energy from waste
- Improve public engagement in bioenergy decision making and understand public perceptions on use of GM technologies for bioenergy
- Assess the impact of bioenergy imports, including life-cycle analysis for both co-firing in power production and as raw and finished material for liquid transportation fuels and commitments to RTFO.

Medium term Research Challenge (10 years)

- Improve total yield and develop new genotypes of a range of bioenergy crops, including oil seed crops, woody lignocellulose and grasses
- Improve understanding and manipulation of carbon partitioning in green plants
- Identify new and novel crops and microbes; identify new or improved products and new bacteria/yeasts from genomic research
- Develop technologies for second generation biofuels, including woody and grass lignocellulose as feedstock and aviation fuels
- Understand advanced conversion routes including gasification of lignocellulosic resources

Long-term Research Challenge (20 years)

- Develop systems for large-scale production of second generation biofuels, advanced conversion and deployment of biorefining complexes
- Develop novel artificial photosynthesis systems and other synthetic biology approaches for capturing solar energy
- Continue to improve feedstock quantity and quality, conversion efficiencies and environmental sustainability in a changing climate.

References

- ¹ UK Energy Statistics 2007
- ² Path Forward for Biofuels and Biomaterials -- Ragauskas et al. 311 (5760): 484 -- Science
- ³ Bioproducts from non-food crops
- ⁴ EU strategy for Biofuels
- ⁵ to Life: Systems Biology For Energy and Environment
- the biological barriers to cellulosic ethanol. A joint research agenda. A research roadmap resulting from the biomass to biofuels workshop, Dec 2005, published by DOE, June 2006.
- 8 strategy for England 2007
- 2. Capabilities assessment

to Top

- ⁹ Biomass Action plan
- ¹⁰ : Biofuels in the European Union A Vision for 2030 and Beyond on the ManagEnergy Website

- ¹¹ Task Force, October 2005, Report to UK Government
- ¹² Farrell AE, Plevin RJ, Turner BT, Jones AD, O'Hare M, Kammen DM. 2006. 311, 506-508, Science,
- ¹³ Rowe, R, Street NR and Taylor (2007). 'Identifying potential environmental impacts of large-scale deployment of dedicated bioenergy crops in the UK' Renewable and Sustainable Energy Reviews (in press)
- ¹⁴ Biomass Strategy, 2007
- ¹⁵ Bioenergy Funders Forum Research priorities 2007.
- ¹⁶ Biofuels Progress Report, 2007
- ¹⁷ much bioenergy can Europe produce without harming the environment? - English - EEA
- BP Energy Bioscience Institute
- ¹⁹ , USA Bioenergy Centres, 2007

Independent analysis suggests that the UK has research strength in basic bioscience and also in engineering, but these skills to date have not been fully applied to the bioenergy industry. They could provide valuable future capability to develop new engineering control systems linked to bioprocessing, but this still

represents an unknown market for the UK. High level computing and systems biology will also be necessary for the industry to develop from a strong research base. The global biomass and bioenergy market is expanding rapidly and UK expertise could be deployed to benefit from these developments.

Table 2.1 Capability Assessment

UK Capability	Area	Market potential
High	Basic bioscience	Global Potential
	Research in plant genomics, breeding and agronomy	Global Potential
	Engineering solutions for future technologies	Global Potential
	Environmental impact and life cycle analysis of new energy systems.	Global Potential
Medium	Demonstration and deployment of existing technologies	Global potential
	Development of co-firing technologies and clean coal solutions	Global potential
Low	Developing the 'whole-chain' for utilisation of biomass from diverse sources.	UK – relevant
	Improved technologies for utilisation of energy from waste.	Global Potential
	Development of the biorefinery concept for R and D and second generation biofuels.	Global Potential

3. Basic and applied strategic research

to Top

Here we summarise the organisations funding basic and strategic applied research (Table 3.1) and follow this with a summary of the main UK research providers – mostly university groups and research institutes (Table 3.2).

University based bioenergy research covers basic bioscience, crop science, bioenergy policy, engineering solutions and both wet and dry biomass conversion and processing as well as socioeconomic and environmental considerations for large-scale bioenergy deployment. An increased expertise in environmental impact is also apparent with emphasis on water resources and the GHG mitigation potential of different bioenergy chains and life cycle analysis (LCA), where they may be considerable overlap between several current projects and where UKERC is attempting to provide synthesis.

The dedicated UK bioenergy research community is small compared to the USA and other EU members and in general, in the past, bioenergy research was funded largely from DEFRA and DTI and focussed on crop science, feedstock supply, and technological innovations for combustion and conversion and whole-chain developments with some consideration of the environmental impacts of deployment. In contrast to many other nations, the UK has not previously developed a firm single-focus strategy for bioenergy - identifying preferred feedstocks, landuse options, conversion pathways and end products, but rather has used directed strategic science to provide consistent support for Government Policy for maximised GHG mitigation and has thus focussed on heat and power bioenergy, rather than liquid transportation fuels research. As a consequence, the liquid

biofuels research area was until recently quite diffuse but in the long-term, this may be seen as advantageous, providing a flexible base from which to develop appropriate solutions. But for now, few university departments have large groups working together to address this interdisciplinary problem, however this is changing with major new funding initiatives being used to develop critical mass.

Last Updated: 15 May 2009

The Crop Improvement Networks funded by DEFRA are internationally competitive with involvement of BBSRC Institutes in partnership with universities including Southampton. Similarly research at Aston University on Pyrolysis and more recently in leading the SUPERGEN Biomass and Bioenery partnership and several other European activities is also central to UK expertise. The RELU projects on bioenergy and sustainability (coordinated by Rothamsted Research) and anaerobic digestion (coordinated by Southampton) and the TSEC-BIOSYS project (coordinated by Imperial College), add to UK critical mass. SUPERGEN II on Bioenergy and recent calls from BBSRC in Bioenergy (April 2007) and EPSRC on improving the efficiency of solar energy conversion (August 2007), add momentum in this area. The BBSRC call alone is valued at £20 million over 10 years providing a reasonable injection of funds for feedstock research. Glamorgan has a long-term interest and capability in biohydrogen production and in general the UK has extensive expertise in plant science but this has not been applied to bioenergy problems. Research on greenhouse gas mitigation potential at Aberdeen University forms part of several international projects. CEH has extensive experience of likely water use by bioenergy crops. Many groups may be working on

bioenergy topics but if these are not core to their activity it may be difficult to identify all expertise and so care should be taken when

interpreting

the int

information

below.

Table 3.1: Research Funding

Programme	Funding Agency	Description	Committed Funds	Period	Representative Annual Spend
Towards A Sustainable Energy Economy	NERC/ EPSRC	A whole-systems approach to analysing bioenergy demand and supply: mobilising the long-term potential of bioenergy. A multidisciplinary consortium to address gaps in the whole system. The project uses a whole systems approach bringing together a an interdisciplinary group to analyse the policy, environmental and crop science (feedstock) issues determining the supply and demand for bioenergy in the UK and identifying optimal chains for future development.	£2.2M	2005- 2009	£500,000
- Rural Economy and Land Use, Research Councils UK	BBSRC/ES RC/NERC	- Lander	£859,000	2006- 2008	£285,000
		Integrated systems for farm diversification into energy production by anaerobic digestion: implications for rural development, land use & environment. This project examines the potential for development of anaerobic digestion (AD) on farms, and the contribution that this could make to rural development and diversification of agricultural practice by		2007- 2010	

Table 3.2: Key Research Providers

Name	Description	Sub-topics covered	No of staff	Field
of Biological Sciences - University of Aberdeen	School of Biological Sciences is actively engaged in research on the GHG mitigation potential of bioenergy crop systems	 GHG mitigation and carbon balance of bioenergy crop systems. Member of TSEC-BIOSYS. Environmental sustainability. 	2 Faculty	Biology
University, Institute of Energy Technologies	Long-term interest in SRC forestry	SRC forestry – practical application	1 Faculty	Biology/forestry
Forest Research, Forestry Commission, Edinburgh and Alice Holt, Surrey	orest Research, Forestry commission, Edinburgh and Research on modelling yield in SRC bioenergy trees, biofuel as a source of		4 Principal Investigators	Forestry
University, Energy and	Expertise in the improved efficiency of	Pyrolysis products and		

Name	Description	Sub-topics covered	No of staff	Field
Resources Research Institute	biomass combustion and characterisation of emissions.	their characterisation. • Gasification of biomass • Emissions	2 Faculty	Environmental Engineering
University, Waste Incineration Centre	SUWIC is one of the leading international research centres for the thermal treatment of wastes. The centre has a worldwide reputation for innovative investigations into combustion, gasification and pyrolysis of biomass/waste and the associated electrical power generation systems.	Member of SUE – Waste management Member of the SUPERGEN Bioenergy consortium Dioxin Research NEtowrk for emissions. Environmental Sustainability. Expertise in Energy from waste streams and use of both MSW and SS.	13 Faculty	Chemical and Process Engineering
University, CEH, NERC	CEH – UK-leading on the Sustainable economies research programme with central UK funding to NERC. Director of UKERC, with overall responsibility for the horizontal theme 'Environmental Sustainability	Director or UKERC. Core funding for Sustainable economies.	3 Principal Investigators	Environmental Science
, Wallingford, NERC	Hydrological expertise to assess the current and future impacts of large-scale bioenergy cropping systems on water resources.	Member of TSEC-BIOSYS. Expert in environmental assessment. Expert in land-use.	1 Principal Researcher 5 Researchers	Environmental/E cological Science
University, Chemical Engineering and Applied	Professor Bridgwater established the Bio-Energy Research Group in 1986,	•Expert in fast pyrolysis, - at R and D level.	6 Faculty	

Name	Description	Sub-topics covered	No of staff	Field
		for crop solutions to anaerobic digestion of wet biomass • Extensive expertise in waste to energy technologies • Coordinator of RELU Biogas		
campus of Cranfield University, Institute of water and Environment	Expertise on understanding the hydrological implications of bioenergy cropping systems. Use of bioenergy trees on landfill and other strategic applied research.	Modelling expertise	1 Faculty	Environmental Engineering
Research, BBSRC Institute	UK focus for SRC willow research on breeding and improvement and also on underpinning research on pest and disease resistance. Crop science expertise including in grasses and holder of National willow collection and several long-term trials of bioenergy crop species.	 Member of TSEC-BIOSYS. Coordinator of DEFRA Crop Improvement Network on SRC. Coordinator of RELU project on bioenergy crops. Member of the SUPERGEN Biomass consortium. 	4 Faculty	Biology
Research Group, ICCEPT, Imperial College, University of London	Research focus on techno-economic, environmental and policy issues related to biomass energy systems applied to the heat, electricity and transport sectors. The group is composed of an inter-disciplinary team of experienced researchers. Work is carried out for a range of government research councils,	 Expertise in policy analysis and authors of several authoritative documents contributing to policy. Coordinator of TSEC-BIOSYS. Expertise in all aspects of liquid bioethanol 	3 Faculty	Environmental Technology Environmental Policy

4. Applied research (inc RDA support)

Return to Top

This section gives details of the Applied Research Funders (Table 4.1) and those engaged in providing Applied Research (Table 4.2). Applied research on bioenergy in the UK is largely funded by DTI, DEFRA, The Carbon Trust with some input from other agencies including Forestry Commission

The DTI as part of the New and Renewables Energy Programme supported bioenergy research in the past through grants to business and research organisations with 50 % matched funding

projects. This focussed on equipment and feedstocks to ensure increased yield and efficiency in bioenergy production. Recently this scheme has been followed by the Technology Programme where the emphasis will be on low carbon technologies, particularly the biorefinery concept. In recent years The Carbon Trust has increased the funding to bioenergy projects through a mixture of smaller research grants and large directed initiatives, particularly the 'Biomass Heat Accelerator' programme to overcome barriers associated with bioenergy chains in the UK

and to improve efficiency and is planning to fund a large Bioenergy project in the near future (2007). Applied bioenergy research is undertaken in the UK by a mixture of Government-funded departments and research organisations, particularly Forestry Commission, Forest Research, Rothamsted and IGER, with some additional input from a selected number of universities including partners in the Tyndall Centre. This is complemented by some industrial partners who through

necessity in an emerging industry have committed resources to research. Several small companies are focussed on feedstock supply and management, such as TV Energy in the south of England. Engineering companies such as Talbott's and other involved in large scale deployment are listed in section five, below.

Table 4.1: Research Funding

Programme	Funding Agency	Description	Committed Funds	Period	Typical Annual Spend
and Renewables Energy Programme	DTI	Past research on fuel supply systems for energy crops, and agricultural and forestry residues, including - Target of doubling energy crop yields (based on SRC willow) from current yields of 8 oven dry tonnes (ODT) per hectare Equipment development for reduced costs and increased efficiency. Energy crop production work supported by DTI is coming to a conclusion. Future projects to be funded on a responsive basis through the Technology Programme, and taking account of the Innovations Review, but energy crops unlikely to be a priority. The New and Renewable Energy R&D Programme is now being delivered through the Collaborative R&D Business Support Product. Open competitions for funding under this product happen twice a year.		-2006	
Technology Programme	DTI	A new DTI Technology Innovation Programme was announced in April 2006. Technology priority areas include emerging Energy Technologies (Low Carbon Energy Technologies, including development of the biorefinery concept); Sustainable Production & Consumption (Energy Efficiency Technologies); Bioscience & Healthcare (Exploitation of Plant and Microbial Bioscience for Industry, Safety Biomarkers for Pharmaceutical Development); Advanced Materials (Materials for Extended First Use and Re-use); Information & Communication Technology (Data,	£80 M in total	2006-	Unknown

Programme	Funding Agency	Description	Committed Funds	Period	Typical Annual Spend
		Scientific and Medical Visualisation for innovative products and services).			
Research, Carbon Trust	The Carbon Trust	The Carbon Trust is an independent company funded by Government. Their role is to help the UK move to a low carbon economy by helping business and the public sector reduce carbon emissions now and capture the commercial opportunities of low carbon technologies. It supports the development of low carbon technologies through R&D grants, with several of these placed within the Bioenergy sector in recent years. Other activities of the trust with specific relevance to Bioenergy are given below.	£672,000	2003-2007	£150,000
Vision	The Carbon Trust	The overall aim of this Carbon Trust project is to develop a pragmatic life cycle methodology that will allow a systematic estimation of carbon inventories in different industrial sectors that supports the incorporation of the carbon intensity of the full supply chain. This will involve both environmental and economic aspects of carbon footprints and embodied carbon, enabling estimation of "carbon added" and "valued added" at each stage in the supply chain.	£1.05M	2005- 2008	£330,000
Heat Accelerator	The Carbon Trust	The broad aim of BHAP is to help make the UK biomass heat market self-sustaining by reducing costs and addressing supply chain risks. The project aims to work with existing and new sites to develop benchmarks from robust case studies, identify and demonstrate cost reductions, and raise awareness amongst end users and other stakeholders.	£5.0 M	2006- 2011	£1.0M
Centre	NERC/EPSR C/ESRC	Trans -disciplinary research related to climate change, with some limited desk-studies on low carbon economy related to bioenergy.	~£200,000	2001- 2006	£40,000
SEERAD	Scottish	Currently reviewing priorities in the area, and reviewing	NA	2006-	NA

developers in bioenergy.

Table 4.2: Key Research Providers & Developers

Name	Description	Sub-topics covered	No of staff	Sector
International Ltd	Leading supplier of low carbon fuels, particularly biodiesel. R and D into low carbon fuels and analysis of market opportunities. Work with growers to provide contract for rape and SRC for bioenergy sector.	 Biodiesel supply Fiscal incentives for biofuels Carbon certification 	30 with a turn-over of £250 M	Chemical Engineering Agriculture
Energy Associates	North Energy has been pioneering the use of agricultural and forestry-derived woodfuel for heating systems in the UK. We see woodfuel production as a way to strengthen the rural economy by creating and safeguarding jobs. Forestry wastes, slabwood from sawmills and specially grown energy crops are a potential source of income, as is industrially derived clean wood waste.	 Woodfuel supply chain Heating systems Non-technical problems Integrated renewable energy systems 	10	Advice and consultancy Project management
Energy Solutions	Future Energy Solutions, as part of Technology, is Europe's leading sustainable energy consultancy, helping public and private sector organisations across the world find answers to the growing challenges of sustainable energy, climate change and related environmental issues.	 Biomass co-firing expertise Technology assessments Low carbon management Feasibility studies 	15	Advice and consultancy Project management
Research, Forestry Commission	Provide Yield models of SRC poplar and willow. Management of the new 'Biomass energy Centre'. Research on boilers and technologies for	Forestry		Applied research Engineering

Name	Description	Sub-topics covered	No of staff	Sector
		 Grower and farmer 		
		representation		

5. Development and Demonstration Funding to Top

DTI supplies the largest source of development and demonstration funding. A new 'Technology Programme' was announced in April 2006 (see 4 above) and this should provide considerable funds for developments in bioenergy, subject to restrictions imposed by the responsive mode of funding. The 'New Opportunities' lottery fund has also funded several bioenergy projects within the Renewable Energy theme, within environment. Few demonstration projects in bioenergy are currently funded although those that are, tend to be from EU and pan-European programmes. Some DTI projects are listed here. Several commercial large-scale bioenergy projects are currently in development for deployment and these have been

summarised here. This is a fast-moving area and new projects are likely to be forthcoming over the next few months and these tables should be interpreted with this in mind. They cover a range of end uses including liquid biodiesel and bioethanol as well as large scale biomass combustion facilities for heat and power. One of the largest uses of biomass currently in the UK is in the co-firing market where biomass is co-combusted with coal at power stations such as Drax and Didcot, providing ROCs to the company. It is estimated that approximately 1 million tonnes of dry biomass is utilised in this way each year currently and this amount is set to increase. Up to half of co-fired biomass imported.

Table 5.1 Development and Demonstration Funding

Name	Funding Agency	Description	Number of projects	Committed Funds	Period	Representative Annual Spend
Grants Scheme	DTI	The DTI's Capital Grants Scheme funds demonstration projects that help reduce the costs and risks involved in such developments, Biomass: approximately £66 million has been provided to help encourage the efficient use of biomass, particularly energy crops, for energy production by stimulating the early deployment of biomass-fuelled heat and electricity-generation projects. Of this, the New Opportunities Fund provided approximately £33 million for energy crops power generation and around £3 million for small-scale biomass/combined heat and power projects	5 projects announced in April 2006	£66 M of which £18.74 M committed to bioenergy projects in 2006	2006-	~£4M
Crops Scheme	DEFRA	Energy Crops Scheme (ECS) provides establishment grants for SRC & miscanthus, and aid to help SRC growers set up producer groups. It closed in June 2006 but it is	Large number of grants between 2002- 2006	Programme £29M	2002- 2006	

Name	Funding Agency	Description	Number of projects	Committed Funds	Period	Representative Annual Spend
		anticipated as part of the new rural development plan, the scheme will be extended.				
Carbon Buildings Programme	DTI	Funding available as a replacement to the DTI Blue Skies fund for household, communities or business projects for microgeneration technologies including biomass	Initiated April 2006	NA	2006-	NA
Energy Deployment	New Opportunities Lottery Fund	Project support in renewable energy deployment projects	7	£21 M	2003- 2005	~£7M

Table 5.2: Major Demonstration Projects

Name	Description	Sub-topic	Total Project Cost	Public Sector Funder	Public Sector Funding	Period
Sugar	55,00 tonnes per annuum (70 million litres of bioethanol) plant being constructed in Wissington, Norfolk.	Bioethanol production at commercial scale			£20 M capital cost of plant	Construction initiated in January 2006
International Ltd	Biodiesel plant at Immingham on the east coast of England. The plant will initially process 100,000 tonnes/114 million litres of biodiesel per year and is expected to begin by the end of 2006. Preliminary planning and design work for a second phase to double our biodiesel production capacity at Immingham to 200,000 tonnes/228 million litres per year.	Biodiesel production at commercial scale			unknown	Construction completed by end of 2006
Power Resources	38 MW straw burning power plant in Ely, Cambridgeshire. Largest straw burning power station in the world generating over 270GWh from 200,000 tonnes of biomass each year.	Straw burning bioenergy plant			£60 M	Commissioned in 2000
Biomass	Co-firing project for Didcot with 30,000 tonnes per year of dedicated bioenergy crops required for co-firing	 Co-firing with biomass Bioenergy projects including technical 			unknown	Deliveries of biomass to Didcot estimated for 2009

as a

Name	Description	Sub-topic	Total Project Cost	Public Sector Funder	Public Sector Funding	Period
		• CHP				
Energy Ltd	CHP for 7 MW heat and & MW power plant in Somerset, supplied by SRC and woody biomass in a pyrolysis plant.	Pyrolysis plant – first commercial plant in the UK			£2M	Construction completed in 2007
Bronzeoak	Bronzeoak in Castle Cary, Somerset to build a 7MWe and 1.5MWth CHP plant to fuel a wood products facility with electricity and heat as well as supplying heat for curing feedstock	Biomass combustionCHP			£3.8M	Complete in 2007
Roves Farm	Roves Energy in Sevenhampton, Wiltshire - to build a 2.5Mwe and 5MWth combined heat and power plant (CHP) fuelled by up to 5000 hectares of locally grown energy crops	Biomass combustionCHP			£0.96M	Complete in 2007
Peninsula Power	23 MW combustion plant supplied by energy crops grown in Devon.	Biomass combustion			£11.5	Complete in 2007
Waste-to- energy plants	DTI figures suggest that 24 watse-to energy plants were operational in 2005	Waste-to-energy			unknown	On-going
BP and Associated British Food	420 M litres of bioethanol at Saltend, Hull, providing potentially the largest bioethanol plant in Europe.	Bioethanol from low-grade wheat feedstocks			£200 M partnership	2009 commission

6. Research Facilities and Other Assets

to Top

Many facilities exists at laboratory-level across the UK, for example, plant biology and microbiology facilities, CFD testing, pyrolysis, combustion, fermentation and other test facilities. Those are not listed here. Below is given a summary of UK-

national resources that should have the highest priority for funding and maintenance since without them, UK research may in future be hindered and because these resources are utilised by many members of the research community.

Table 6.1: Research Facilities

Name	Description	Type of Asset	Turnover	No of staff
Research Trials	Several long-term experimental trials of miscanthus, willow and poplar and some other potential bioenergy crops exist in the UK. No central register or ability to fund these trials is currently available but a recent DEFRA project is addressing this question using NIAB as a contractor. Since they provide unique insight into long-term ecological adaptation, this should be seen as an urgent priority for future funding.		NA	10 from four research providers
Breeding Programmes and germplasm collections	Genetic improvement of feedstock requires a continual supply of new germplasm in which to identify genetic variation. Currently, collections in willow, poplar, miscanthus, oil seed and wheat are available in the UK.		NA	6
Genomic and other resources	Some plant genomic resources exists that are relevant to bioenergy crops including spotted microarrays for gene expression, proteomic and metabolomic databases.		NA	6 from several sources
Woodfuel and Yield Modelling tools	Forest Research have developed an extensive dataset of yield from two rotations of SRC poplar and willow. By 2006 these will become available as GIS and tools part of output from TSEC.		NA	3

7. Networks and co-ordination activity:

Return to Top

Numerous networks in bioenergy extant to the UK have developed in recent years and future effort should be focussed to ensure clear purpose for UK networks, avoiding unnecessary overlap and providing better integration.

The various public funders of bioenergy R&D work together through the Bioenergy Funders' Forum to co-ordinate their research investments. The Forum was initiated by MAFF in 1999 and has been led by MAFF/Defra since. It conducted an analysis of requirements in 2001, and this has formed the foundation of co-ordination since, particularly in relation to burden sharing between Defra, DTI and the Forestry Commission. This exercise has been repeated and published on the web in 2007. As such the BFF provides a very useful network for funders. UK Bioenergy networks to integrate findings have been limited and this could be considered a weakness, particularly given new consortium-based projects in Bioenergy within RELU, SUPERGEN and TSEC. SUPREGEN was the first consortium project to kick-off

and as such has lead the way in developing a Bioenergy Forum British Bioenergy News which in future will be co-edited by TSEC and UKERC researchers. Within the BEGIN Genetics Improvement Programme, there is a stakeholder group that meets once each year, providing a forum for discussion between growers and researchers and in 2007, UKERC hosted the first Bioenergy UK Network meeting, which will hopefully be an annual event with wide participation. UK participation within European networks has been present but with only a very limited number of groups appearing in several networks. Current EU networks are shown below. EPOBIO represents an exciting new approach for an EU network with partnership with the USA. The focus of EPOBIO is on harnessing the economic potential of green plants for non-food crops. UK contributed to several sessions at the May 2006 EPOBIO workshop and this network is lead by the UK. The Renewable Energy Association (REA) acts as a network for industrial interests and organises an annual Bioenergy meeting for the industry.

Table 7.1: Bioenergy networks in the UK and EU

Network	Established	Description	Membership	Activities
Funders Forum	1998	A cross- department group of funders from the UK. Produced a research priority document in 2000 and are currently working alongside UKERC to produce an updated version in 2006	DEFRA (leading), DTI, NERC, BBSRC, Environment Agency, English Nature, EPSRC	 Meetings and report on funding priorities. Identification of cross-cutting areas
NoE	2005	EU Network of Excellence for Integrating activities to achieve new synergies in research to build a Virtual Bioenergy R&D Centre that will spearhead the development of a competitive bioenergy market in Europe.	Eight EU partners	 Collaborative projects and synergies identified in bioenergy Networking including meetings and joint activities Virtual Centre for Bioenergy in the EU
Net	2005	ThermalNet consists of three technologies: pyrolysis (), gasification (GasNet) and combustion (CombNet) and is funded through Altener in the Intelligent Energy for Europe Programme operated by DG TREN.	Many EU members	 Develop collaborative projects Act as an information point for three technologies
-BIO	2005	EPOBIO brings together world-class scientific and industrial expertise to identify areas for further investment in plant science research in order to realise the economic potential of plant-derived raw materials with long-term benefits to society	12 European and 2 USA partners	 Three flagship areas identified as cell walls (biomass and bioethanol), plant oils (biodiesel) and plant polymers Desk studies and

Network	Established	Description	Membership	Activities
		specialists and research experts to focus entirely on renewable micro-CHP technology. It will co-ordinate and steer research in this field and highlight the most promising technologies with the highest potential for market penetration in existing and future market conditions	with one UK member	coordination of research in micro CHP Develop state of the art review of micro CHP Provide database of on-going research in micro CHP
Energy Association	2001	The Renewable Energy Association was established in 2001 to represent British renewable energy producers and promote the use of sustainable energy in the UK. The REA's main objective is to secure the best legislative and regulatory framework for expanding renewable energy production in the UK. The biomass trade association – British Biogen was incorporated into REA after its inception.	In excess of 100 members, mostly from industry	 Resource group to consider primary biomass Resource group to consider Renewable transport fuels Resource group for bioenergy
Renewables Bioenergy Network	2006	A network of individuals and organisations established by Scottish Renewables to coordinate activities and share information.	200 members for the whole renewables sector	 Advice and consultancy Project development Project register

8. UK participation in EU Framework Programmes (main programmes) - CORDIS

Return to Top

UK participation in the EU Fourth, Fifth and Six Framework Programmes has been extensive with projects funded from Energy, Environment, Agriculture work programmes and encompassing coordinated actions, standard research projects, networks of excellence and human exchanges. Dry biomass rather than wet biomass has been the focus most projects in the past but recently there has been an increased interest in biomass

for liquid biofuels within Framework Six. Within Framework seven, there is considerable emphasis on the biorefinery concept and on developing research to support liquid biofuels, particularly through biological conversion routes.

The -NET provides an extensive database of all FP V, VI, and VII bioenergy projects

Table 8.1 Participation in EU Framework Programmes

Name	Objectives	Action line	Type of action	Uk Participant	Co-Ordinator And Partners	Total FundingFu	EU Duration unding	nAnnual Spend
Bioenergy NoE	EU Network of	FP6	DG research	Aston University	, Finland	€8.05m €	€8.05m <mark>2004 -</mark>	
	Excellence for						2009	€1.61m
	Integrating activities				7 Partners			
	to achieve new							
	synergies in							
	research to build a							
	Virtual Bioenergy							
	R&D Centre that will							
	spearhead the							
	development of a							
	competitive							
	bioenergy market in							
	Europe. The NoE							
	comprises							
	approximately 150							
	researchers and							
	over 40 doctoral							
	students from all							
	eight partner							

Name	Objectives	Action line	Type of action	Uk Participant	Co-Ordinator And Partners	Total EU FundingFunding	Duration Annual Spend
	potential of plant- derived raw materials with long- term benefits to society. Three flagship areas were identified: cell walls (biomass and bioethanol), plant oils (biodiesel) and plant polymers. Activities include desk studies and workshops and input	t		Peterborough, Uk			Sporta -
ERA-Net	and 2 USA partners. A network of national government agencies and ministries responsible for coordinating and funding national research efforts into bioenergy. The goal of this network is to strengthen national bioenergy research programmes through enhancing cooperation and coordination			Dti		Maximum €3m for an ERA- NET	2002 - 2006

Name	Objectives	Action line	Type of action	Uk Participant	Co-Ordinator And Partners	Total EU FundingFunding	Duration Annual Spend
	between national agencies. Through collaboration, the individual national programmes will produce higher quality results, while through coordination they will seek to complement each other, avoiding duplication. Activities include issuing of draft call in biomass for combustion.		action		rai triers	runaingranaing	эрени
EUBIONETII	The EUBIONET II - European bioenergy network will analyse current and future biomass fuel market trends and biomass fuel prices. It will also collect feedback on the suitability of CEN 335 solid biofuel standard for trading of biofuels. Estimation on techno-economic potential of the biomass will be		Intelligent Energy - Europe	16 European Partners With Jiri Klemes Manchester University For The UK		Supported by the European Commission under the Baltic Sea Region INTERREG III B Neighbourhood Programme	2005 - 2006

very high calorific value, and is due to

30

fuel cell

biodiesel fuel

Systems,

Name	Objectives	Action line		Uk Participant	Co-Ordinator And		JDuration Annual
			action		Partners	Funding Funding	g Spend
	hermetic Stirling						
	engine & to erect a						
	pilot plant where						
	comprehensive test						
	runs will be						
	performed with solid						
	biomass fuels. This						
	new development						
	will be based on the						
	experiences already						
	obtained with a 30						
	kWel Stirling engine						
	that has been in						
	operation for more						
	than 700 hours. The						
	further technological						
	development is						
	essential in order to						
	extend the area of						
	application & cover						
	the large market						
	potential of biomass						
	CHP plants. The aim						
	of the project is to						
	develop a						
	technology with high						
	overall & electric						
	(>20%) efficiency &						
	low operating &						
	maintenance						
	requirements to						
	achieve production						

Name	Objectives	Action line	Type of action	•	Co-Ordinator And Partners	Total Funding	Duration	Annual Spend
	the project is to demonstrate 3 innovative features. The first innovation is the supply and handling systems for Miscanthus, the short rotational crop, which will be used as a biofuel for the first time in UK. The second innovation is an upgraded biomass firing system to burn the combination of Miscanthus, poultry litter, sludge and natural gas.							
BIOSOD: Development of an autonomous Biomass-Solar Thermally Driven Distillation System		FP5: Biomass (including waste) conversion systems	No contract type	Thermomax (Gb) Ltd.	Austro Control Keg 7 Partners	€1.71m	2003-01- 01 to 2004-12- 31 24 months	€0.43m
BIOGAS BY BIOAUGMENT: Optimised	The project aims to demonstrate the use of bio-augmentation to improve energy	Biomass	No contract type	Biotechnology Limited	Centro Para A Conservaçao De Energia	€1.60m	2000-01- 01 to 2002-12- 31	€0.17m

Name

Objectives

between EU and the member states in the area of bio energy RTD policies and programmes; and to identify opportunities for short-term actions leading to the ERA for bio energy RTD. The project consists of these tasks: A "Country survey": Survey of national and EU RTD policies and programmes and B "Bio energy

have properties such components

for biomass

that based on the

promote coordination Action line Type of

action

ļ		policies and	ļ						, ,	, ,
ļ		programmes	ļ						, ,	, ,
		mapping".							, ,	1
Ī	INTCON:	In this proposed	FP5:	Cost sharing	Cinar Ltd	Tps Termiska	€1.36m	€0.74m	2001-12-	€0.25m
	Intelligent	project a	Economic	contracts		Processer Ab		ĺ	01 to	, ,
	process control	combination of	and Efficient						2004-11-	, ,
ļ	system for	neural network and	Energy for a			4 Partners			30	, ,
	biomass fuelled	fuzzy logic methods	Competitive						, ,	
	industrial	will be used to	Europe,						36	İ
	power plants	develop a control	Cost					ſ	months	İ
ļ	(INTCON)	system which will	effective						, ,	i

Uk Participant

Partners

Name	Objectives	Action line	Type of	Uk Participant	Co-Ordinator And	Total	EU	Duration	Annual
			action		Partners	Funding	Funding		Spend
	informed technical								
	and economic								
	position on waste								
	recovery in general,								
	and on the								
	production and use								
	of solid Recovered								
	Fuels in particular.								
	Debate in the Forum								
	will be informed								
	through the								
	compilation of a								
	database of existing								
	plant performance								
	and emissions data,								
	collected from								
	operational projects								
TUEDMONET	across the EU.	EDE 0 .				01.17	00.00	0004.07	00.07
THERMONET:			No contract	Aston University	Aston University	€1.1/m		2001-06-	€0.2/m
Network	establish a cluster of		type					01 to	
Cluster on		components			2 Partners			2004-05-	
Thermal		for biomass						31	
Biomass	and electricity. One	and waste						36	
Conversion	network will address							o months	
Implementatio n	gasification and the							1110111115	
11	other pyrolysis. Each								
	network will have its								
	own work								
	programme, but								
	both will have a								
	common focus of								

Name	Objectives	Action line	Type of	Uk Participant	Co-Ordinator And	Total		Duration	Annual
			action		Partners	Funding	Funding		Spend
	volume, proportion and rate of methane production from anaerobic digestion of organic waste, containing varying amounts of straw, by using various pre-treatments of the material.								
acidic shape- selective mineral catalyst added pelletised fuel	development of an innovative acidic shape-selective	Cleaner Energy Systems, including Renewable	Cooperative research contracts	Pyromex PLC	Teccon Innovation Gmbh 7 Partners	€1.06m		2003-01-1 01 to 2004-12- 31 24 months	€0.27m

Name	Objectives	Action line		Uk Participant	Co-Ordinator And	Total	EUDuration	
			action		Partners	FundingFu	nding	Spend
	The main							
	achievements of							
	FERMATEC project							
	will have an impact							
	on environmental,							
	social and economic							
	fields:							
	applying							
	biotechnolog							
	y to the							
	production of							
	renewable							
	fuels will							
	directly							
	improve the							
	quality of the							
	environment							
	enhancing							
	sustainable							
	development							
	by using							
	waste							
	products and							
	valorisation							
	of sub							
	products							
	 increasing 							
	ethanol							
	production							
	plants and							
	updating the							
	large number	·						

by EC Waste Directives:

Name

Objectives

Action line Type of

action

			action		i di tilci 3	i dilaling	unding		эрспа
	Turkey and Uzbekistan. Specifically, the scope of the proposal is the promotion of combustion technologies developed by small and medium European manufactures for the exploitation of process waste from cotton and rice and residues from wheat cultivation.								
BIOTOX: An Assessment of Bio-Oil Toxicity for Safe Handling and Transportation - Target Action H			type	Aston University	Centre De Coopération Internationale En Recherche Agronomique Pour Le Développement 3 Partners	€0.52m		2003-01- 01 to 2005-06- 30 30 months	
Accompanying measure on critical technology selection and	measure proposes as 2 year techno- economic study leading to the main aim of a Conference	Cleaner Energy Systems, including	accompanying	BLC Leather Technology Center Ltd.	BLC Leather Technology Center Ltd. 4 Partners	€0.44m		2002-12- 01 to 2004-11- 30 24 months	€0.11m

Uk Participant

Partners

an initiative started

Name

Objectives

Action line Type of

action

			action		i di tiloro	. anang			opena
	To organise a study								
	tour of successful								
	systems; To make								
	recommendations								
	on public								
	consultation to								
	improve								
	acceptability of								
	energy from waste								
	and biomass								
	residues; To identify								
	local authorities								
	interested in such								
	schemes and willing								
	to be monitored								
	through public								
	consultation.								
Development of	The objective of this	FP5:	Exploratory	Pyromex PLC	Teccon Innovation	€0.03m	€0.023m	2001-10-	€0.023m
an innovative	project is the	Cleaner	awards		Gmbh			11 to	
acidic shape-	development of an	Energy						2002-04-	
selective	innovative acidic	Systems,			2 Partners			10	
mineral	shape-selective	including							
		renewables						6 months	
	added palletised fuel	Energies							
	from organic wastes	· ·							
wastes	and to develop a								
	prototype process								
	for binding harmful								
	materials in the								
	production of								
	briquettes from								
	waste products by								

Uk Participant

Partners

agricultural wastes) and from selected

9. International Initiatives (including IEA operating agreements and UK contacts) to Top

IEA acts as a focus for international collaboration in the complex area of bioenergy and consequently, 10 IEA tasks are in place for bioenergy, within the IEA Bioenergy implementing agreement. The UK has a good representation from several organisations including universities, private companies and DTI. The IEA networks provide a mechanism for the exchange of expert information and advice and have been of value to the UK in developing improved technical expertise in short rotation crops for bioenergy. The UK has current active participation in most of

the IEA tasks. In addition to IEA, the International Poplar Genome Consortium has acted as a focus for developing genomic resources in poplar, including the full genome sequence and its relevance to both poplar and willow as bioenergy crops. The UK is part of the leadership of PYNE, the Biomass pyrolysis network. A new international network has been proposed by FAO, May 2006,

(http://www.fao.org/sd/dim_en2/en2_060501_en.htm) and the Global Bioenergy Partnership was launched in 2007.

Name	Туре	Description	UK Contact Point
IEA Task 29. Socio- economic drivers for implementing bioenergy	An international collaboration within the IEA Implementing Agreement on Bioenergy.	Task 29 is an ongoing initiative from 1 January 2000 with the aim to: i) to determine the economic contribution (financial, local industry creation, infrastructure developments, etc.) resulting from the deployment of bioenergy systems ii) to determine the social impact (employment, education, health, etc.) resulting from the deployment of bioenergy systems iii) to encourage the exchange of information and Task results between participants and also with countries in transition (Objective 5 of the Strategic Plan). The participating countries in the 2003-2005 period were Austria, Canada, Croatia, Ireland, Japan, Norway, Sweden and United Kingdom.	Keith Richards, TV Energy
IEA Task 30 Short rotation crops for bioenergy systems	An international collaboration within the IEA implementing agreement on bioenergy	The objective of the Task is to acquire, synthesise and transfer theoretical and practical knowledge of sustainable short rotation biomass production systems and thereby to enhance market development and large-scale implementation in collaboration with the various sectors involved.	Keith Richards TV Energy
IEA Task 32 Biomass production for energy from sustainable forestry	An international collaboration within the IEA Implementing Agreement on Bioenergy.	Biomass Combustion and Co-firing works on further expansion of the use of biomass combustion for heat and power generation, with special emphasis on small and medium scale CHP plants and co-firing biomass with coal in traditional coal-fired boilers. This is done by generating and disseminating information on technical and on non-technical barriers and anticipated solutions. Task 32 is a continuation of Task 19.	William Livingstone, Mitsui Babcock Energy Limited
IEA Task 33 Thermal gasification of biomass	An international collaboration within the IEA Implementing Agreement on	The objectives of this Task 33 are to review and exchange information on biomass gasification (BMG) research, development, demonstration, and commercialization, seek involvement with bioenergy industries and to promote cooperation among the participating countries to	Nick Barker, Future Energy Solutions

Name	Туре	Description	UK Contact Point
BMT-CES:	collaborative projects		Prof Y Ding, N J
Biofuel Micro-		The Research Councils' Energy Programme wishes to develop	Hewitt, A P Riskilly
Trigeneration		collaborative projects in the fields of energy technologies, hydrogen	
with		and fuel cells as a key component of its strategy to foster closer	University of Leeds,
Cryogenic		scientific, technological and engineering links with China.	Ulster, Newcastle
Energy			
Storage			
(EPSRC			
funded UK-			
China Energy			
Awards)			
Impact of DMF	collaborative projects		http://gow.epsrc.ac.u
on Engine		The Research Councils' Energy Programme wishes to develop	k/ViewGrant.aspx?Gr
Performance		collaborative projects in the fields of energy technologies, hydrogen	antRef=EP/F061692/
and Emissions		and fuel cells as a key component of its strategy to foster closer	1Dr HM Xu,
as a New		scientific, technological and engineering links with China.	University of
Generation of			Birmingham
Sustainable			Birriirigriairi
Biofuel			
(EPSRC			
funded UK-			
China Energy			
Awards)			

