

UKERC ENERGY RESEARCH LANDSCAPE: ENERGY STORAGE

<u>Section 1</u>: An overview which includes a broad characterisation of research activity in the sector and the key research challenges

Section 2: An assessment of UK capabilities in relation to wider international activities, in the context of market potential

<u>Section 3</u>: Major funding streams and providers of *basic research* along with a brief commentary

Section 4: Major funding streams and providers of *applied research* along with a brief commentary

<u>Section 5</u>: Major funding streams for *demonstration activity* along with major projects and a brief commentary

Section 6: Research infrastructure and other major research assets (e.g. databases, models)

Section 7: Research networks, mainly in the UK, but also European networks not covered by the EU Framework Research and Technology Development (RTD) Programmes

Section 8: UK participation in energy-related EU Framework Research and Technology Development (RTD) Programmes

Section 9: UK participation in wider international initiatives, including those supported by the International Energy Agency

Prepared by Alan Ruddell, STFC Rutherford Appleton Laboratory Last Update: 29 July 2020

This document is provided free of charge. While the UKERC will continue to make every effort to ensure accuracy of information, it cannot be held responsible for any errors; any risks associated with the use of the data remain entirely the responsibility of those downloading it. Users are reminded that they should acknowledge UKERC in all cases where the information is used. UKERC retains copyright of all documents; your use of this information should conform to UK Copyright "Fair Dealing" (http://www.copyrightservice.co.uk/copyright/p27_work_of_others)

1. OVERVIEW RETURN TO TOP

Characterisation of the Field

Energy storage can be divided into several broad categories, electrical, thermal and fuel. Electrical energy and thermal energy are usually generated from energy fuel on demand by scheduling generators, however energy storage may be used to increase efficiency. The increasing use of renewable energy sources, where availability may not coincide with demand, increases the need for electrical and thermal storage.

The scope of this Landscape is the storage of electricity, where the storage input and output are electrical power. This Landscape does not include the storage of thermal energy for end use; the storage of fossil fuels including gas, coal and oil; or the storage of other commodities used in electrical power generation such as uranium. Carbon Capture and Storage (CCS) is covered in the UKERC CO₂ Capture and Storage Landscape. Hydrogen storage is included where this is part of an electrical energy storage and regeneration system such as Power-to-Gas, while hydrogen storage generally is described in the UKERC Hydrogen Landscape.

Technologies used in electrical energy storage are covered, within the broad categories of chemical, mechanical, electrical and thermal technologies.

Electrical energy storage is an enabling technology at various scales, with application to a) the management of intermittency and efficiency in large scale power generation; b) transportation using low-emission electric vehicles (EVs); and c) portable electronics.

Interest is increasing generally in grid-scale electrical energy storage technology and applications. Investigations and reports have been completed in the UK and Europe, for example:

- The Energy Research Partnership published a report describing how energy storage could help meet the challenges that the UK's energy system will face in the transition to low-carbon over the next twenty years¹.
- The Carbon Trust commissioned a study to address some of the key questions in relation to the future role of electricity storage in the UK².
- The Low Carbon Innovation Co-ordination Group produced a Technology Innovation needs Assessment (TINA) for electricity networks and storage³.
- The European Commission published a working paper on the future role and challenges of energy storage⁴, and in 2020 published a Study on energy storage – Contribution to the security of the electricity supply in Europe⁵
- UK researchers produced a comprehensive study of the technologies and research and development needs in grid scale energy storage⁶.
- The Renewable Energy Association (REA) published an overview of energy storage technologies and a list of installed energy storage systems in the UK⁷.

The UK Government's <u>Clean Growth Strategy</u> (updated April 2018) plans to cut greenhouse gas emissions by upgrading our energy system, and

announced an investment of £265m in smart systems to reduce the cost of electricity storage. In response, Ofgem produced a plan to upgrade our energy system and enable the transition to low carbon. Storage is seen to be an important part of a flexible energy system, and the plan includes discussion of actions to remove barriers to implementing effective storage and smart systems⁸.

The Industrial Strategy Challenge Fund (ISCF), announced in the 2018 Budget, is part of the UK Government's Industrial Strategy, a long-term plan to raise productivity and earning power in the UK. The fund is a core pillar in the Government's commitment to increase funding in research and development by £4.7 billion over 4 years to strengthen UK science and business, and will invest in the world-leading research base and highlyinnovative businesses to address the biggest industrial and societal challenges today. The ISCF Faraday Battery Challenge is one of the 15 Challenges funded, and will invest up to £246m to develop batteries that are cost-effective, high-quality, durable, safe, low-weight and recyclable, with a focus on the next generation of batteries for electrical vehicles and other applications. The ISCF and the Faraday Battery Challenge include funding for basic research, applied research, and demonstration activity, and are described where appropriate in Section 3, Section 4, and Section 5.

The All Party Parliamentary Group (APPG) on Energy Storage, considered the opportunity for battery storage in the UK, not only to provide energy security, but also to provide export potential⁹.

The <u>Engineering and Physical Sciences Research Council</u> (EPSRC) has identified storage as a priority area, in order to maintain and further develop energy storage research in the UK. Funding in the UK for basic and

applied research and development of storage systems has increased dramatically in recent years.

In January 2009 EPRSC's energy storage grant portfolio in the Energy Programme included 15 grants with total value £8m; while in 2013 EPSRC support for the energy storage topic included 23 grants, with total grant value £37m. In 2019 the EPSRC Energy Storage Research Area has 65 relevant grants with proportional value £106m, equivalent to 2.22% of the total EPSRC portfolio.

Research Challenges

A particular uncertainty and area for research and development is the cost and lifetime of candidate storage technologies when applied to real duty cycles within electricity networks.

The UK is well established as a centre for battery development, with the main focus on lithium batteries, an important technology for mobile and stationary applications alike. Cryogenic (liquid-air) energy storage is also a UK strength.

The main research and development challenges are to reduce cost, and improve storage performance particularly in terms of energy density and round-trip efficiency, and lifetime during charge and discharge cycling. Research needs for storage technologies have been comprehensively described in research reports^{4,6}, and generally include research into new materials and manufacturing methods.

References

- 1. Energy Research Partnership: <u>The Future Role of Energy Storage in the</u> <u>UK</u>, June 2011
- Report for the Carbon Trust: <u>Strategic Assessment of the Role and</u> <u>Value of Energy Storage Systems in the UK Low Carbon Energy Future</u>, Imperial College, June 2012
- 3. Low Carbon Innovation Co-ordination Group: <u>Electricity Networks and</u> <u>Storage Technology Innovation Needs Assessment</u>, August 2012
- 4. European Commission DG for Energy: <u>The future role and challenges</u> of Energy Storage, January 2013
- European Commission DG for Energy: <u>Study on energy storage –</u> <u>Contribution to the security of the electricity supply in Europe</u>, March 2020

- 6. Brandon et al., <u>UK Research Needs in Grid Scale Energy Storage</u> <u>Technologies</u>, April 2016
- Renewable Energy Association (REA): <u>Energy Storage in the UK, An</u> <u>Overview</u>, 2nd Edition Autumn 2016
- 8. Ofgem, Upgrading our Energy System, July 2017
- 9. All Party Parliamentary Group (APPG) on Energy Storage, and Renewable Energy Association (REA): <u>Batteries, Exports, and Energy</u> <u>Security</u>, December 2017

2. CAPABILITIES ASSESSMENT RETURN TO TOP

Research and development of energy storage technologies has a long history in the UK.

UK Universities have particular strengths in materials for clean energy applications and in catalysis. Many Universities are active in battery research and development, as described in Section 3. There is also significant commercial R&D activity and expertise in all storage technologies and particularly in materials for electrochemical batteries. Some of the emerging capabilities in the UK are described in this section.

Battery storage systems in the electricity distribution network are already at the commercial deployment stage in the UK. There are numerous startup companies, for example, Zenobe Energy deployed over 70MW at nine sites as of 2019. <u>Moixa</u> is a leading smart battery company, deploying residential batteries and solar systems since 2010, and offers integrated hardware and software for renewable energy management. <u>RNA Energy</u> has already over 200MW of operating renewable energy assets in the UK and in 2019 formed a joint venture with Nippon to construct two 50MW behind-the-meter storage projects in the UK. <u>Pivot Power</u> is developing the world's largest transmission-connected battery storage and electric vehicle charging network, and is the lead participant in the <u>Energy</u> <u>Superhub Oxford</u> project.

Statistics on <u>energy storage projects</u> published by RenewableUK in December 2019 shows that energy storage power capability is increasing rapidly in the UK, with 0.742GW of operational battery storage capacity and over 10GW of planning applications. Pumped storage is also increasing from 2.833GW operational, and 1.796GW planned. While lithium batteries make up the majority of planned projects, the next phase of growth will include a range of new technologies. Companies ranging from Siemens to Highview Power are developing hydrogen, ammonia, and compressed air and liquid air storage technologies, with 0.600GW in development.

Meanwhile research continues in many storage technologies.

Lithium batteries

Significant advances in lithium-ion (Li-ion) battery technology have been historically made in the UK. AEA Harwell, working with Dowty Battery Co. in the 1990's, developed solid-state lithium batteries with polymer electrolyte and composite cathode. There are established academic centres, and technology development and commercial exploitation continues with several companies in the field.

Johnson Matthey Battery Systems (formerly Axeon UK) is one of Europe's largest lithium-ion battery systems suppliers, processing over 70 million cells a year, and supplying volume production of batteries for global markets. In Poland, Johnson Matthey designs and manufactures high performance battery packs for the professional cordless power tools and electric bike markets. The UK-based automotive battery systems business was acquired by Cummins in January 2018.

Nexeon (Abingdon) is a world leader in engineered silicon materials for battery applications. Nexeon's technology uses silicon in several forms to enhance or replace the traditional graphite anode in a lithium ion battery. The technology has the potential to improve cycle life and significantly increase the capacity of Li-ion batteries used in electric vehicles and a wide range of consumer electronics.

OXIS Energy (Abingdon) has been at the forefront of building next generation batteries since 2004. The company has developed its unique Lithium-sulphur (Li-S) technology around a sulphur based cathode, Lithium metal anode, and a safe and highly stable electrolyte.

Flow batteries

There are two main classes of flow batteries – the redox (reductionoxidation) flow battery, and the hybrid flow battery where the electrodes are part of the chemical reaction (as in a battery).

The UK has been active in flow battery development. In the 1990's Regenesys (UK) developed polysulphide bromide technology to an advanced stage, and two demonstration plants of 15MW and 120MWh capacity were constructed but not commissioned. The technology rights were acquired by VRB Power Systems (Vancouver) in 2004 to complement its own technologies (vanadium), providing products for very large utility-scale applications from 10–100MW, with eight to ten hours' storage time. VRB ceased trading in 2008 and after several changes of ownership the technology is now marketed by <u>VRB Energy</u>.

redT Energy PLC (Renewable Energy Dynamics Technology) developed three generations of vanadium redox battery in the UK since 2016. In 2019,

redT flow batteries achieved pre-qualification status from National Grid to provide Dynamic Firm Frequency Response (dFFR) services to the UK electricity transmission grid. The company is supplying a 2.5 MW / 5 MWh vanadium redox flow cell as part of a 60MW flow/hybrid energy storage system to the <u>Energy SuperHub Oxford</u> project. In 2020 redT Energy and Avalon Battery merged to form <u>Invinity Energy Systems</u>, now a worldwide leader in vanadium flow batteries and a competitor to lithium-ion technology.

Research on zinc-cerium flow batteries continues at the Universities of Strathclyde and Southampton. The University of Southampton is also researching the soluble lead redox flow battery (SLFB).

Flywheels

Urenco Power Technologies (UPT) developed a 2kWh capacity flywheel with a high speed composite rotor, using expertise in high speed centrifuges developed at Capenhurst. Although the flywheel was successfully used in field trials in the traction application, and was used to demonstrate smoothing wind power fluctuations from a wind turbine in Japan, UPT ceased production in 2003.

Williams Hybrid Power developed flywheel technology for use in Formula 1 racing, and sold the technology to GKN where it is included in technologies for development of next-generation vehicles at the <u>GKN UK Innovation</u> <u>Centre</u> in Abingdon.

<u>Innovate UK</u> has funded several projects for development of flywheel application to vehicles. Developments for hybrid automotive drivetrain

applications could have power grid applications that require high power, low energy storage.

More than a decade of research at Cambridge University has resulted in development of <u>superconducting magnetic bearings for flywheels</u>, suitable for application to the power grid and industrial uninterruptible power supplies (UPS).

OXTO Energy has developed a flywheel with a steel rotor to work alongside intermittent renewable generation.

Cryogenic energy storage

<u>Highview Power Storage</u> is a developer of utility-scale energy storage and power systems. Its proprietary process uses cryogenic (liquefied) air or its principal component, liquid nitrogen, as the working fluid and the medium for storing energy. Highview storage systems can be built with power from 10MW to over 200MW, and with storage capacity of 40MWh to over 2000MWh. A prototype 350 kW / 2.5 MWh Liquid Air Energy Storage pilot plant has been installed at the University of Birmingham <u>Centre for Cryogenic Energy Storage</u>.

A report <u>Liquid Air on the Highway</u>, presenting the environmental and business case for liquid air commercial vehicles in the UK, was published in 2014 by the Liquid Air Energy Network.

Pumped-heat energy storage (PHES)

Isentropic developed an energy storage system based on a reversible gas cycle which stores electricity in the form of thermal energy. The system is comprised of a hot and cold thermal store which are charged" and "discharged" by a reversible heat engine / pump. A £15m investment by the <u>Energy Technologies Institute (ETI)</u> enabled a 150kW / 600kWh demonstration system to be constructed. The demonstration system was completed, commissioned and tested by a Newcastle University team. This pumped-heat technology potentially placed the UK as a leader in the R&D of low-cost and grid-scalable electrical and thermal energy storage.

Power to Gas

Power-to-gas includes electricity conversion, storage, and reconversion pathways that utilize gas for energy storage (hydrogen, ammonia, methane). This may be attractive where the stored energy has to be transported long distances before re-use, or where it may be flexibly integrated with other needs such as chemical feedstock or fuel for transportation or heating.

Siemens co-ordinated construction of an <u>ammonia synthesis and energy</u> <u>storage demonstration system</u>, at Rutherford Appleton Laboratory, and completed in 2018. The project was supported by Innovate UK and collaborators with Siemens included the University of Oxford, Cardiff University and the STFC.

Pumped Hydroelectric Energy Storage (PHS)

(Note that PHES is an alternative abbreviation that is sometimes used, however this may be confused with pumped-heat energy storage) Pumped hydro storage accounts for the majority of all types of energy storage worldwide with total power 104GW in 2008, around 3% of generation capacity. Although in some geographical areas PHS may have limited potential for further deployment, many storage systems are under

construction particularly in China, and a <u>study</u> published in 2018 identified pumped-hydro energy storage sites which have a global potential storage capacity of 22 million GWh.

Another possible application of gravitational energy storage is based on a simple principle: raising and lowering a heavy weight to store and regenerate energy. Like pumped hydro storage, the technology requires suitable geographic locations. Systems are being developed in the UK by Gravitricity and Escovale

Consultancy

Finally, there are several energy storage consultants in the UK, including <u>EA</u> <u>Technology</u> (who published a <u>Good Practice Guide on Electrical Energy</u> <u>Storage</u> and run the <u>Energy Storage Operators Forum ESOF</u>); <u>Swanbarton</u> <u>Ltd</u> (organiser of the <u>International Flow Battery Forum</u>); and <u>Escovale</u> <u>Consultancy Services</u> (publisher of a management report on <u>Energy storage</u>: <u>Technologies</u>, <u>Applications and Markets</u>).

Table 2.1 Capability Assessment

UK Capability	Area	Market potential
High	Battery energy storage.	Global scope – high potential
	World-class expertise in materials science, lithium battery technology,	
	including electrodes, liquid and solid-polymer electrolytes. Many UK	
	Universities and high technology companies are currently active and	
	collaborate in this field.	
High	Cryogenic energy storage	Global scope – high potential
High	Pumped heat energy storage	Global scope – high potential
High	Flow battery expertise and development capability.	Global scope – high potential
	Several UK Universities and a UK company are currently active in flow	
	battery technology development, including vanadium, zinc-cerium and	
	lead-acid flow battery technologies.	
	Flywheels with high-speed composite rotors, expertise and development.	Global scope – high potential
	Several Universities conducted research in low-loss and superconducting	
High	magnetic bearings and cryogenics. Kinetic energy storage technology,	
	developed by two UK companies and partners for the hybrid automotive	
	drivetrain application, could be applied to electrical energy storage.	

Return to Top

<u>UK Research and Innovation</u> (UKRI) brings together the seven UK Research Councils (including EPSRC and STFC), Innovate UK, and Research England, and works in partnership with universities, research organisations, businesses, charities, and government to create the best possible environment for research and innovation to flourish.

This landscape section mainly includes EPSRC funding, while Innovate UK funding is included in Section 4 Applied Research, and STFC funding is included in Section 7 Networks.

The UK Government's <u>Industrial Strategy Challenge Fund</u>, delivered by UKRI, covers 15 Challenges of which two include energy and energy storage:

Faraday Battery Challenge (funding up to £246m)

Partly in response to the plan for all new vehicles to be electric and zero emissions vehicles by 2040, the Faraday Battery Challenge will invest in research and innovation projects and new facilities to scale-up and advance the production, use and recycling of batteries. This will also help advance development of batteries for other applications.

Prospering from the energy revolution (up to £102.5m)

The aim is to link energy supply, storage and use, and to develop systems to support the move to renewable energy, and funding will be provided to industry and researchers. Energy storage is included in the scope.

<u>Grid-scale energy storage</u> was identified as one of the Eight Great Technologies to drive UK growth in the UK Government's Autumn Statement 2012. In response to EPSRC's Capital for Great Technologies Call, grid-scale energy storage received an EPSRC Capital Grant of £30m, with capital funding provided to 17 Universities for 5 projects. (See <u>Section 6</u>).

The <u>EPSRC Energy Programme</u> supports several areas of energy storage research, as well as SUPERGEN, Doctoral Training Centres, and the UK Energy Research Centre.

Large EPSRC funded projects, described in Tables 3.1 and 3.2 include: Energy Storage for Low Carbon Grids, (<u>EP/K002252/1</u>), Integrated, Market-fit and Affordable Grid-scale Energy Storage (IMAGES), (<u>EP/K002228/1</u>), Energy SuperStore SUPERGEN Hub (<u>EP/L019469/1</u>),

Energy Storage Research Network (EP/J021695/1).

EPSRC funding has provided a strong research base in Universities, that has led to projects such as <u>FLEXIS</u> (Flexible Integrated Energy Systems), a £24m research operation part-funded by the European Regional Development Fund and supported by the Welsh European Funding Office (WEFO). This project is developing an energy systems research capability, including storage within the Integrated Energy Supply Systems work package.

<u>SUPERGEN</u> is part of the EPSRC Energy Programme and is a key initiative in Sustainable Power Generation and Supply. It aims to contribute to the UK's environmental emissions targets through a radical improvement in the sustainability of the UK's power generation and supply. The first consortia were launched in 2003, and the SUPERGEN Phase 3 (2011-2017) supported

seven Supergen hubs with £150m of investment over a five year period (including challenge calls and Centres for Doctoral Training). The following Supergen Phase 4 (2017+) featured an enhanced management structure and wider multidisciplinary involvement of Universities. The seven SUPERGEN projects cover a wide spectrum of energy research and training and include the <u>Supergen Energy Storage Consortium</u>.

The 2013 Call for EPSRC Centres for Doctoral Training included energy storage within 14 priority areas. The <u>EPSRC Centre for Doctoral Training in</u> <u>Energy Storage and its Applications</u> started at the University of Sheffield and University of Southampton from 2014 onwards.

UKRI also provides funding for the <u>UK Energy Research Centre (UKERC)</u> and the <u>Energy Technologies Institute (ETI)</u>; both include energy storage within their scope. After 12 years of research into low carbon technologies, the ETI is now closed. Available data and findings from the ETI's programmes are available online through the Programme pages and Knowledge Zone until 2025, and the project results will also be available from the ETI Publications component of the <u>UKERC Energy Data Centre</u>.

Table 3.1: Research Funding

Programme	Funding	Description	Committed	Period	Representative
	Agency		Funds		Annual Spend
Supergen	<u>EPSRC</u>	EPSRC project EP/L019469/1 SUPERGEN Energy Storage Hub.	£3.91m	June 2014 to	£800k
(Sustainable Power		The SUPERGEN Energy Storage Hub (Energy SuperStore)		Dec 2019	
Generation and Supply)		includes 7 University partners (lead organisation University of			
		Oxford, Imperial College, Universities of Bath, Birmingham,			
		Cambridge, Southampton, and Warwick), and many			
		industrial partners. The project is formed of nine Work			
		Packages: one for each technology and three which address			
		cross-cutting issues in energy storage research. The Work			
		Packages are Redox Flow Batteries; Li-ion and Na-ion			
		batteries; Lithium-air batteries; Supercapacitors; Thermal			
		Energy Storage; Compressed Air Energy Storage; Whole			
		System Modelling and Economic Analysis; System			
		integration; Manufacturing and scale-up.			
EPSRC Research Funding	EPSRC	EPSRC issues block grants to particular universities via	No info	No info	No info
for students		Doctoral Training Partnerships (DTPs), Centres for Doctoral			
		Training (CDTs) or Industrial CASE (ICASE). The universities			
		then manage the recruitment and selection of students to			
		the projects that will be funded. Research grants awarded to			
		institutions, including studentships for PhDs and Masters.			

Programme	Funding	Description	Committed	Period	Representative
	Agency		Funds		Annual Spend
EPSRC Centre for Doctoral	EPSRC	EP/L016818/1 EPSRC Centre for Doctoral Training in Energy	£4,078k	Apr 2014 to	£500k
Training in Energy Storage		Storage and its Applications, at the Universities of Sheffield		Sept 2022	
and its Applications		and Southampton. The <u>Centre of Doctoral Training</u> trains			
		researchers in all aspects of energy but concentrating on the			
		core technologies of electrochemical storage (batteries and			
		supercapacitors), mechanical storage, thermal storage and			
		superconducting magnetic energy storage. Researchers have			
		the opportunity to interact with industrialists and gain			
		experience in running a grid connected Lithium-ion battery.			
		They will also undertake a major three-year research project			
		allowing them to specialise in the topic of their choice.			
Energy Research	<u>Innovate</u>	The Energy Research Accelerator (ERA) draws on the	£60m	April 2016	No info
<u>Accelerator</u>	<u>UK</u>	expertise and world-class facilities of many of the Midlands		onwards	
		Innovation group of universities – Aston, Birmingham,			
		Leicester, Loughborough, Nottingham and Warwick, plus the			
		British Geological Survey. The group undertakes projects			
		using a range of capabilities in energy generation, energy			
		storage, energy integration, and energy use. Energy Storage			
		projects include hydrogen, battery, thermo-mechanical,			
		mechanical energy (Compressed air), thermo-chemical, and			
		hybrid systems technologies			
		The ERA is funded by Innovate UK, with match funding and			
		support supplied by a range of industrial partners who are			
		working together on a range of projects across the Midlands.			

Programme	Funding	Description	Committed	Period	Representative
	Agency		Funds		Annual Spend
EPSRC Energy Storage	<u>EPSRC</u>	The Integrated, Market-fit and Affordable Grid-scale Energy	£3.019m	Sep 2012 -	£500k
Grand Challenge:		Storage (IMAGES) project (EPSRC <u>EP/K002228/1</u>).		Jun 2018	
Integrating Energy Storage		Lead organisation University of Warwick, with collaborators			
for Future Energy		Loughborough University, the University of Nottingham and			
<u>Networks</u>		the British Geological Survey, focussed on the technical and			
		economic issues when integrating large grid scale energy			
		storage with the energy network.			
EPSRC Energy Storage	EPSRC	EPSRC project <u>EP/K002252/1</u> : Energy storage for Low-Carbon	£5.6m	Oct 2012 to	No info
Grand challenge:		Grids.		June 2018	
Integrating Energy Storage		Consortium of 10 Universities, Imperial College (lead			
for Future Energy		organisation), Cardiff University, Durham University,			
<u>Networks</u>		Newcastle University, University of Cambridge, University			
		College London, University of Edinburgh, University of			
		Oxford, University of Sheffield, University of Warwick;			
		together with many industrial partners.			
		The research aims are (i) developing novel approaches for			
		evaluating a range of energy storage technologies; and (ii)			
		innovation around four storage technologies; Na-ion, redox			
		flow batteries (RFB), supercapacitors, and thermal energy			
		storage (TES), relevant to grid-scale storage applications.			
EPRC Supergen Energy	<u>EPSRC</u>	EP/N001877/1 Additive Manufacturing Next Generation	£509k	Nov 2015 to	No info
Storage Challenge		Supergen Energy Storage Devices		May 2019	

Programme	Funding	Description	Committed	Period	Representative
	Agency		Funds		Annual Spend
ISCF Faraday Battery	<u>UKRI</u>	The ISCF Faraday Battery Challenge, is one of 15 Challenges	up to £246m	2018-2022	£61m
<u>Challenge</u>		funded by the <u>Industrial Strategy Challenge Fund</u> , and will			
		develop batteries that are cost-effective, high-quality,			
		durable, safe, low-weight and recyclable. Funding is provided			
		for collaborative research and development projects, and			
		includes creating the £78m Faraday Institution at the Harwell			
		Science and Innovation campus to speed up research into			
		battery technologies.			
		Applied R&D projects led by Industry are described in Section			
		4 of this Landscape			
Faraday Institution	<u>UKRI</u>	EP/S003053/1 unites the expertise and insight from its 7	£55.7m	Jan 2018	£16m
		founding partner universities (University of Oxford, UCL,		to Jun 2021	
		University of Warwick, University of Cambridge, Imperial			
		College, Newcastle University, University of Southampton),			
		along with industry partners and other academic institutions,			
		to accelerate fundamental research to develop battery			
		technologies.			
ISCF Faraday Battery	<u>UKRI</u>	The Faraday Institution, opened in October 2017, awarded	£42m	2018	No info
<u>Challenge</u> – fast start		<u>£42 million</u> in January 2018 to four fast start <u>research</u>		onwards	
projects		projects:			
		Battery Degradation			
		 Recycling and Reuse (ReLiB) 			
		Next Generation Solid-State Batteries (SOLBAT)			
		Multiscale Modelling			

Programme	Funding	Description	Committed	Period	Representative
	Agency		Funds		Annual Spend
ISCF Faraday Battery	<u>UKRI</u>	(Call for Full Proposals closed on 04 April 2019)	£2m for up to	July 2019	£1m
Challenge: Faraday		The research topic is:	4 awards	onwards	
Institution - Battery		To develop battery related characterisation; analytical			
Characterisation Call		techniques; and capabilities			
ISCF Faraday Battery	<u>UKRI</u>	(Multiple Stage Call closed on 1 March 2019, Invitation for	Up to £55m	September	£12m
Challenge: Faraday		Full Proposals closed 30-May 2019, projects announced	for five	2019	
Institution - Round 2		September 2019)	Consortia	onwards	
		The five research projects are:			
		Electrode manufacturing			
		 Li-ion cathode materials (2 projects) 			
		Na-ion batteries			
		Lithium-sulphur batteries			
ISCF Prospering from the	UKRI	Prospering from the Energy Revolution is one of 15	up to	2018-2022	£25m
Energy Revolution		Challenges funded by the Industrial Strategy Challenge Fund	£102.5m		
		and aims to create more efficient smart energy systems to			
		intelligently link energy supply, storage and use and support			
		the move to renewable energy.			

Programme	Funding	Description	Committed	Period	Representative
	Agency		Funds		Annual Spend
Low Carbon Vehicle	EPSRC	<u>EP/M009394/1</u>	£3,266k	Jan 2015 -	£800k
<u>Technologies</u>		ELEVATE (ELEctrochemical Vehicle Advanced TEchnology).		July 2019	
		Lead organisation Loughborough University, with			
		collaborators UCL, Warwick, Coventry, Oxford, Southampton			
		and 9 industrial partners. The project will develop better			
		materials for energy storage devices such as fuel cells and			
		batteries and improve integration between devices, vehicles			
		and power grids. The project has five interconnected work			
		packages to identify, optimise and scale-up new materials			
		into devices, develop novel diagnostic techniques in the lab			
		and for on-board monitoring and control, and validate the			
		technologies in a hybrid vehicle.			
Low Carbon Vehicle	<u>EPSRC</u>	<u>EP/M009424/1</u>	£2,999k	Feb 2015 -	£1m
<u>Technologies</u>		Ultra Efficient Engines and Fuels.		July 2018	
		Lead organisation University of Brighton, with collaborators			
		Brunel University, University of Oxford, UCL, University of			
		Nottingham. The project considered methods for reducing			
		fuel consumption of the internal combustion engine.			

Programme	Funding	Description	Committed	Period	Representative
	Agency		Funds		Annual Spend
UK-India virtual joint clean	EPSRC	<u>EP/P003605/1</u>	£5,094k	Oct 2016 to	£1,250k
energy centre (JUICE)		The Joint UK-India Clean Energy Centre (JUICE).		Sept 2020	
		Lead organisation Loughborough University, with			
		collaborators and 10 industrial partners.			
		The virtual centre brings together internationally leading			
		experts in PV technology, applied PV systems, power			
		electronics, electricity networks, energy storage and			
		demand-side response; and will develop integrated solutions			
		to ensure that the value of PV generation is optimised in both			
		India and the UK.			

Table 3.2: Key Research Providers

Name	Description	Sub-topics Covered	No of staff	Field
University of Cambridge	Faraday Institution fast-start <u>research project</u> : <u>Battery Degradation</u> Led by the University of Cambridge with eight other university and 10 industry partners, this project is examining how environmental and internal battery stresses (such as high temperatures, charging and discharging rates) damage electric vehicle (EV) batteries over time. Results will include the optimisation of battery materials and cells to extend battery life (and hence EV range), reduce battery costs, and enhance battery safety. With Cambridge, university partners include University College London, Newcastle University, Imperial College London, University of Manchester, University of Sheffield, University of Southampton, University of Liverpool and University of Warwick.	 Battery materials Battery life extension 	No info	ENGINEERING AND TECHNOLOGY
Imperial College London	Faraday Institution fast-start <u>research project</u> : <u>Multi-scale Modelling</u> Imperial College London is leading a consortium of seven other university and 17 industry partners to equip industry and academia with new software tools to understand and predict battery performance, by connecting understanding of battery materials at the atomic level all the way up to an assembled battery pack. The goal is to create accurate models for use by the automotive industry to extend lifetime and performance, especially at low temperatures. University collaborators include Imperial College, University of Southampton, University of Warwick, University of Oxford, Lancaster University, University of Bath, and University College London.	 Modelling and prediction of battery performance 	No info	ENGINEERING AND TECHNOLOGY

Name	Description	Su	b-topics Covered	No of staff	Field
University of	Faraday Institution fast-start research project:	•	Lithium battery	No info	ENGINEERING
Birmingham	Recycling and Reuse		recycling		AND
	A project led by the University of Birmingham, including seven other academic				TECHNOLOGY
	institutions and 14 industrial partners, is determining the ways in which spent				
	lithium batteries can be recycled. With the aim to recycle 100% of the battery, the				
	project is looking how to reuse the batteries and their materials, to make better use				
	of global resources, and ultimately increase the impact of batteries in improving air				
	quality and decarbonisation. With Birmingham, university partners include the				
	University of Leicester, Newcastle University, Cardiff University, University of				
	Liverpool, Oxford Brookes University, University of Edinburgh, and the Science and				
	Technology Facilities Council.				
University of	Faraday Institution fast-start research project:	•	Solid-state	No info	ENGINEERING
Oxford	Solid-state Batteries		batteries		AND
	The University of Oxford is leading an effort with five other university partners and				TECHNOLOGY
	nine industrial partners to break down the barriers that are preventing the				
	progression to market of solid-state batteries, that should be lighter and safer,				
	meaning cost savings and less reliance on cooling systems. The ambition of this				
	project is to understand the key chemical and fabrication challenges that would be				
	inherent in the integration of batteries with a chemistry beyond Li-ion. With Oxford,				
	university partners include the University of Liverpool, University of Cambridge,				
	University College London, University of Sheffield and the University of St. Andrews.				
Aston	School of Engineering and Applied Science	•	power flows in	No info	Engineering and
University	EPSRC projects:		the distribution		Technology
	• <u>EP/S001778/1</u> Street2Grid - An Electricity Blockchain Platform for P2P Energy		network		
	Trading				

Name	Description	Sub-topics Covered	No of staff	Field
Cranfield University	 <u>Advanced Vehicle Engineering Centre</u> <u>EP/L505286/1</u> Revolutionary Electric Vehicle Battery (REVB) - design and integration of novel state estimation/control algorithms & system optimisation techniques 	Electric vehiclesBattery	No info	ENGINEERING AND TECHNOLOGY (Electrical and Electronic Engineering)
Heriot-Watt University	Heriot-Watt University Energy Academy is a centre of excellence and a gateway to Heriot-Watt's energy research and training activities. Research in the School of Engineering and Physical Sciences includes the theme electrochemical energy storage and conversion. Heriot-Watt is the sole academic partner in the ReFLEX (Responsive Flexibility) Orkney project, providing expertise in Whole System design and modelling (see Section 5.2). EPSRC project: • EP/S000933/1 Smart Microfluidics Towards Low-Cost High-Performance Li-Ion Batteries	 Li-ion Battery Microfluidics Whole system design and modelling 	No info	PHYSICAL SCIENCES AND MATHEMATICS (Chemistry) ENGINEERING AND TECHNOLOGY (Electrical and Electronic Engineering)

Name	Description	Sub-topics Covered	No of staff	Field
Imperial College London	 The Energy Futures Lab at Imperial College is a multidiscipline institute and focal point for a broad range of energy challenges in the five themes of Policy and Innovation, Energy Infrastructure, Sustainable Power, Low Carbon Cities and Transport and Clean Fossil Fuels. It operated the Energy Storage Research Network from 2012 to 2016. Research Centres and Groups include: The Control and Power Group in the Department of Electrical and Electronic Engineering The Energy Group in the Department of Chemistry Energy Storage Technologies within the Grantham Institute that includes research modelling how storage technologies could become part of a future energy system that integrates low-carbon power from intermittent, renewable sources. The Engineering and Physical Sciences Research Council (EPSRC) awarded f18.3m in 2013 to a consortium of 10 Universities, led by Imperial College, to develop new technologies for Energy storage for Low-Carbon Grids. 	 Integration of energy supply and storage Nanostructured matrix material for structural energy storage Grid-scale energy storage Batteries and supercapacitors Multifunctional structural carbon fibre composite supercapacitors Energy storage network 	staff No info	ENGINEERING AND TECHNOLOGY (Electrical and Electronic Engineering, Chemistry)

Imperial College London (EPSRC projects)	 EP/P007465/1 Beyond structural; multifunctional composites that store electrical energy £836k EP/L014386/1 Business, Economics, Planning and Policy for Energy Storage in Low-Carbon Futures EP/P033555/1 Towards a Parameter-Free Theory for Electrochemical Phenomena at the Nanoscale (NanoEC) EP/K03619X/1 Reliable and Efficient System for Community Energy Solution-RESCUES EP/L014343/1Stability and Control of Power Networks with Energy Storage (STABLE-NET) EP/N034570/1 RHYTHM: Resilient Hybrid Technology for High-Value Microgrids EP/S025324/1 Discovering twisted bilayer materials with strong electron correlations EP/N508585/1 Vanadium-Hydrogen flow battery for energy storage applications - a feasibility study EP/L014289/1 Lower Cost and Longer Life Flow Batteries for Grid Scale Energy Storage EP/R020973/1 ISCF Wave 1: Translational Energy Storage Diagnostics (TRENDs) EP/R020970/1 Reduced Energy Recycling of Lead Acid Batteries (RELAB) EP/P026478/1 Solid Oxide Interfaces for Faster Ion Transport (SOIFIT) EP/R0202010/1 Understanding the critical role of interfaces and surfaces in energy materials EP/R020210/1 Prosperity Partnerships EP/R024756/1 UK Energy Research Centre Phase 3 £13.5m 	 Integration of energy supply and storage Nanostructured matrix material for structural energy storage Grid-scale energy storage Batteries and supercapacitors Multifunctional structural carbon fibre composite supercapacitors Energy storage network 	No info	ENGINEERING AND TECHNOLOGY (Electrical and Electronic Engineering, Chemistry)
--	---	---	---------	---

Name	Description	Sub-topics Covered	No of staff	Field
Loughborough University	Research activities at the <u>Centre for Alternative Energy Systems Technology (CREST)</u> cover wind power, solar PV, energy in buildings, grid connection and integration, and energy storage (including hydrogen).	 Grid integration Thermal storage Structuring of 	No info	ENGINEERING AND TECHNOLOGY (Mechanical,
	 Loughborough University is the lead organisation in the EPSRC EP/M009394/1 ELEVATE (ELEctrochemical Vehicle Advanced Technology) project. (see Table 3.1). Loughborough is the lead organisation in the EP/003605/1 The Joint UK-India Clean Energy Centre (JUICE) project (see Table 3.1). Loughborough is a collaborator in the EPSRC EP/K002228/1 Integrated, Market-fit and Affordable Grid-scale Energy Storage (IMAGES) project, led by University of Warwick. (see Table 3.1) 	 Li-ion battery materials Diagnostics and metrology of battery operation Vehicle to grid interface 		Aeronautical and Manufacturing Engineering; Electrical & Electronic Engineering; Chemistry)
Manchester Metropolitan University	 The Manchester Fuel Cell Innovation Centre (MFCIC) is a £4.1m facility for fuel cell development, partly funded by the European Regional Development Fund. EPSRC Supergen Energy Storage Challenge project: <u>EP/N001877/1</u> Additive Manufacturing Next Generation Supergen Energy Storage Devices. The project will develop unique 3D printed structures for supercapacitors and batteries which will give rise to significant improvements in energy storage characteristics. 	 Fuel cell 3D printing for fabrication of electrochemical platforms 	No info	ENGINEERING AND TECHNOLOGY (Chemistry; Chemical Engineering)
Newcastle University	 The <u>Sir Joseph Swan Centre</u> for energy research includes the theme Grid systems and Energy Storage. <u>EP/R021503/1</u> ISCF Wave 1: North East Centre for Energy Materials. Newcastle University is the lead organisation in the North East Centre for Energy Materials (NECEM), together with the universities Durham and Northumbria, and 5 industrial partners. 	 Pumped thermal storage Fuel cells Electro- chemistry Li-Ion, redox- flow batteries 	No info	ENGINEERING AND TECHNOLOGY

Name	Description	Sub-topics Covered	No of staff	Field
Queen Mary, University of London	 The <u>Division of Chemical Engineering and Renewable Energy</u> is engaged in research in nanostructured functional materials and Metal Organic Framework (MOF) materials for energy conversion and storage. EPSRC projects: <u>EP/R021554/1</u> ISCF Wave 1:Designing Electrodes for Na Ion Batteries via Structure Electrochemical Performance Correlations. Queen Mary is the lead organisation, collaborating with University of Surrey, and 4 partners. <u>EP/N509899/1</u> Low-Cost Na-Ion Batteries 	 Na-Ion battery Battery electrodes 	No info	ENGINEERING AND TECHNOLOGY (Engineering and Material Science)
Queen's University Belfast	 Research in the <u>School of Chemistry and Chemical Engineering</u> includes <u>EP/M021785/1</u> Design of a Novel Apparatus for the in-situ Formulation and Characterization of Safer Electrolytes <u>EP/L505262/1</u> Practical Lithium Air Batteries 	 Battery Electrodes Li-Air battery 	No info	ENGINEERING AND TECHNOLOGY (Chemistry)
Swansea University	 The <u>College of Engineering</u> includes the <u>Energy Safety Research Institute (ESRI)</u> which is focussed on the security of supply, long-term sustainability and operational safety of energy systems. EPSRC project: <u>EP/N013727/1</u> A new concept for advanced large-scale energy storage: secondary batteries with seawater as open self-replenishing cathode. The aim is to explore a novel technology for large-scale energy storage. This involves the use of sea-water as a positive electrode (cathode) in a hybrid system which is intermediate between a secondary sodium-ion battery and a fuel cell. 	 Sodium-ion battery Fuel cell 	No info	ENGINEERING AND TECHNOLOGY (Chemistry)

Name	Description	Sub-topics Covered	No of staff	Field
University College London (UCL)	 UCL Bartlett (Faculty of the Built environment) <u>School of Environment, Energy &</u> <u>Resources</u> <u>EP/N001893/1</u> Realising Energy Storage Technologies in Low-carbon Energy Systems (RESTLESS) 	Scenarios	No info	ENVIRONMENTAL SCIENCES
University of Aberdeen	 <u>The School of Natural and Computing Sciences</u> <u>EP/M029794/1</u> A first principles study of electric double layer capacitors 	Supercapacitors	No info	ENGINEERING AND TECHNOLOGY (Chemistry)
University of Bath	 <u>Department of Chemistry</u> <u>EP/K016288/1</u> Energy Materials: Computational Solutions <u>EP/N004302/1</u> Lattice-matched electrode-electrolyte interfaces for high-performance Li-batteries 	MaterialsLi batteries	No info	ENGINEERING AND TECHNOLOGY (Chemistry)
University of Birmingham	 <u>School of Chemical Engineering</u> <u>EP/N032888/1</u> Multi-scale ANalysis for Facilities for Energy STorage (Manifest) 	 Batteries Grid ancillary service 	No info	ENGINEERING AND TECHNOLOGY (Electrical and Electronic Engineering)
University of Bristol	School of Physics <u>EP/K016709/1</u> Fermi Surface Reconstruction in Cuprate High Temperature Superconductors	Superconductor	No info	Physical Sciences and Mathematics (Physics)

Name	Description	Sub-topics Covered	No of staff	Field
University of	Energy Storage Research at University of Cambridge includes batteries and	Battery	No info	ENGINEERING
Cambridge	supercapacitors.	materials		AND
	EP/N001583/1 AMorphous Silicon Alloy Anodes for Multiple Battery Systems -	Batteries		TECHNOLOGY
	"AMorpheuS"	Supercapacitors		(Chemistry,
	EP/P007767/1 Centre for Advanced Materials for Integrated Energy Systems (CAM-			Engineering)
	IES)			
	EP/P003532/1 Next Generation Solid-State Batteries			
	EP/P510142/1 Graphene coatings on Steel for large scale battery applications			
University of	Durham Energy Institute has research projects in energy storage within smart energy	Smart grids and	No info	ENGINEERING
Durham	systems, and energy materials.	energy storage		AND
		Polymers for		TECHNOLOGY
	EP/P007546/1 Beyond structural; multifunctional composites that store electrical	energy storage		
	energy.			
	The University of Durham is a collaborator in the North East Centre for Energy Materials (NECEM), led by Newcastle University.			
	EP/R021503/1 ISCF Wave 1: North East Centre for Energy Materials.			
University of	School of Engineering	Materials	No info	ENGINEERING
Edinburgh	EP/P007805/1 Centre for Advanced Materials for Renewable Energy Generation	Expansion and		AND
-	EP/N508573/1 Two-Phase Polytropic Energy Storage	compression		TECHNOLOGY
		processes		(Engineering and
				Electronics)
University of	College of Engineering, Mathematics and Physical Sciences	Redox flow	No info	ENGINEERING
Exeter	EP/P003494/1 Zinc-Nickel Redox Flow Battery for Energy Storage			AND
				TECHNOLOGY

Name	Description	Sub-topics Covered	No of staff	Field
University of Glasgow	School of EngineeringEP/R020892/1ISCF Wave 1: High Energy Density Capacitors Manufactured withOptoelectronic Tweezers (CapOET)EP/K022156/1Scalable Solar Thermoelectrics and Photovaltaics. (SUNTRAP)EP/P00315X/1(Iso)alloxazine incorporating electrodes as high-performance organicenergy storage materialsEP/N001982/1Design and high throughput microwave synthesis of Li-ion batterymaterialsEP/N001082/2Design and high throughput microwave synthesis of Li-ion battery	 Capacitors Battery electrode materials Li-ion battery materials 	No info	ENGINEERING AND TECHNOLOGY (Engineering, Chemistry)
	<u>EP/N001982/2</u> Design and high throughput microwave synthesis of Li-ion battery materials <u>EP/K029290/1</u> Microwave processing for fast, green preparation of insertion electrodes			
University of Kent	School of Engineering and Digital Arts <u>EP/R02331X/1</u> Formulating and Manufacturing Low Profile Integrated Batteries for Wireless Sensing Labels	 Integrated battery 	No info	ENGINEERING AND TECHNOLOGY (Engineering)
University of Leeds	School of Chemical and Process Engineering <u>EP/N001745/1</u> Consortium for Modelling and Analysis of Decentralised Energy Storage (C-MADEnS)	 Energy system modelling and analysis 	No info	ENGINEERING AND TECHNOLOGY (Process, Environmental and Material Eng)

Name	Description	Sub-topics Covered	No of staff	Field
University of Liverpool University of Manchester	Department of Chemistry EP/R020744/1 ISCF Wave 1: Earth-Abundant Metal-Air Batteries EP/L505274/1 Practical Lithium Air Batteries EP/K006835/1 Role of Electrocatalysts in the Electrochemistry of Oxygen in Non-Aqueous Electrolytes EP/R000441/1 The Calcium-Air Battery School of Chemistry EP/K016954/1 Electrochemical Energy Storage with Graphene-Enabled Materials EP/M507714/1 Graphene enabled next generation battery technology	 Electrodes Lithium-air battery Calcium-air battery Graphene enabled battery Energy system 	No info	ENGINEERING AND TECHNOLOGY (Chemical Engineering) ENGINEERING AND TECHNOLOGY
	EP/R023034/1 ISCF Wave 1: 3D electrodes from 2D materials EP/S004335/1 Understanding N-doped graphene electrocatalysts through in-situ characterisation EP/N001974/1 MY-STORE: Multi-energY storage-Social, TechnO-economic, Regulatory and Environmental assessment under uncertainty EP/L014351/1 Role of energy storage in enhancing operation and stability performance of sustainable power systems (RESTORES)	modelling		(Chemical Engineering, Electrical and Electronic Engineering)
University of Nottingham	School of Chemistry EP/S001611/1 Unlocking Na-ion systems through interphase design EP/P023320/1 Generation Integrated Energy Storage - A Paradigm Shift EP/K036297/1 Intelligent MicroGrids with Appropriate Storage for Energy (IMASE) EP/R001251/1 Serial Hybrid Kinetic Energy Storage Systems - SHyKESS Collaborator in the IMAGES project (see Table 3.1)	 Na-ion battery Integrated energy storage Kinetic energy storage 	No info	ENGINEERING AND TECHNOLOGY (Chemical Engineering, Mechanical Engineering)

Name	Description	Sub-topics Covered	No of staff	Field
University of Oxford	Department of MaterialsEP/R023581/1ISCF Wave 1: Materials research hub for energy conversion, capture, and storageEP/R030111/1Robust Extra Low Cost Nano-grids (RELCON)EP/S001239/1Novel Manufacturing Approaches to Next Generation BatteriesEP/P005411/1Structured electrodes for improved energy storage	 Battery materials Battery electrodes 	No info	ENGINEERING AND TECHNOLOGY (Materials)
University of Sheffield	Department of Automatic Control and Systems EngineeringEP/S001107/1Affordable and clean energy via resilient and autonomous micro-gridsEP/L016818/1EPSRC Centre for Doctoral Training in Energy Storage and itsApplicationsEP/L505900/1Grid integration of multiple energy-storage flywheelsEP/P002935/1Higher Power Density Lead Acid BatteriesEP/N022289/1TransEnergy - Road to Rail Energy Exchange (R2REE)	 Micro-grids Kinetic energy storage Lead-acid battery 	No info	ENGINEERING AND TECHNOLOGY (Chemical Engineering, Electrical and Electronic Engineering)
University of Southampton	Faculty of EngineeringEP/L001004/1Battery Characterisation and Management - the key to Smart Gridsand the Integration of Electric VehiclesEP/M02041X/1Enhancing the specific energy of lithium-oxygen batteries by usingredox mediatorsEP/N024303/1Fundamental developments of lithium-oxygen and lithium-sulphurbatteries by using redox mediatorsEP/P019099/1Microgrid Energy Storage using Lithum-Sulfur BatteriesEP/R021295/1ISCF Wave 1: Improved lifetime performance and safety ofelectrochemical energy stores through functionalization of passive materials andcomponents	 Battery characterisation and management Li-oxygen battery Li-sulphur battery Passivation of materials 	No info	ENGINEERING AND TECHNOLOGY (Chemical Engineering)

Name	Description	Sub-topics Covered	No of staff	Field
University of St Andrews	School of ChemistryEP/I022570/2Crossing Boundaries in Energy Storage (Oxford)EP/R023522/1Emergent Nanomaterials (Critical Mass Proposal)EP/M009521/1Enabling next generation lithium batteriesEP/R030472/1Enhancing Performance in Polyanionic Cathode MaterialsEP/P007821/1Multiscale tuning of interfaces and surfaces for energy applicationsEP/I029273/2Platform Grant Renewal - Materials for Lithium Batteries	 Nanomaterials Lithium battery Electrode materials Lithium-sulphur battery 	No info	ENGINEERING AND TECHNOLOGY (Chemistry)
University of Strathclyde	EP/P510282/1Protected Anodes for Lithium Sulphur Batteries (PALIS)EP/L019469/1SUPERGEN Energy Storage HubEP/N508639/1Scaled Electricity Storage Using Lithium-Sulfur BatteriesCivil and Environmental EngineeringEP/R041822/1Bioinspired green manufacturing of next generation energy storagematerials (Sheffield)EP/T004681/1Distributed pumped hydro for transforming energy and water access	 Materials Pumped hydro 	No info	ENGINEERING AND TECHNOLOGY (Chemical Engineering, Civil Engineering)
University of Surrey	Department of Chemical and Process EngineeringEP/M027066/1Designing Nanoporous Carbons as Anode Materials for Sodium IonBatteriesEP/R022852/1ISCF Wave 1: High Power Material Hybridised Battery (HiPoBat)EP/K035002/1Advanced fibre-based energy storage for wearable applicationsEP/K031562/1Carbon Nanotube Based Textiles for Energy Storage Applications	 Electrode materials Wearable energy storage 	No info	ENGINEERING AND TECHNOLOGY

Name	Description	Sub-topics Covered	No of staff	Field
University of Warwick	School of EngineeringEP/S001905/1 Data-driven Intelligent Energy Management System for a Micro GridEP/P012620/1 Surrogate Assisted Approaches for Fuel Cell and Battery ModelsEP/P026818/1 Energy Storage Electrode Manufacturing (ELEMENT)EP/N509863/1 Low cost storage of renewable energyEP/P510397/1 PALIS - Protected Anodes for Lithium Sulphur BatteriesWarwick is the lead investigator in the Integrated, Market-fit and Affordable Grid- scale Energy Storage (IMAGES) project EP/K002228/1, (see Table 3.1)	 Energy management Battery modelling Na-ion battery Li-sulphur battery 	No info	ENGINEERING AND TECHNOLOGY

4. Applied research

Return to Top

Applied Research is funded by the UK Government primarily via Innovate UK, within the UK Research & Innovation (UKRI). Innovate UK was formerly known as the Technology Strategy Board (TSB) prior to 2014. Its role is to promote and support research, development and exploitation of technology and innovation for the benefit of UK business, in order to increase economic growth and improve the quality of life.

The UK Government's <u>Industrial Strategy Challenge Fund</u>, delivered by Innovate UK and UKRI, covers 15 Challenges which include energy and energy storage:

Faraday Battery Challenge (funding up to £246m)

Partly in response to the plan for all new vehicles to be electric and zero emissions vehicles by 2040, the Faraday Battery Challenge will invest in research and innovation projects and new facilities to scale-up and advance the production, use and recycling of batteries. This will also help advance development for other applications.

Prospering from the energy revolution (up to £102.5m)

The aim is to link energy supply, storage and use, and funding will be in industry and research to develop systems to support the move to renewable energy.

33

Table 4.1: Research Funding

Programme	Funding Agency	Description	Committed Funds (as of Sept 2019)	Period	Representative Annual Spend
Energy Research Accelerator	Innovate UK	The Energy Research Accelerator (ERA) is made up of eight internationally-renowned Midlands universities, part of the Midlands Innovation partnership, together with the British Geological Survey, and a large number of private sector collaborators. It is a high profile programme consisting of £60m capital investment from Innovate UK and £120m of match funding, from a large number of stakeholders. Partner universities are Aston, Birmingham, Cranfield, Keele, Leicester, Loughborough, Nottingham, and Warwick (Warwick Manufacturing Group). The ERA is addressing challenges in energy generation, energy storage, energy integration, and end use technologies. Key priorities within the <u>ERA Energy Storage</u> challenge are hydrogen storage (Birmingham, Nottingham), battery storage (Warwick, Leicester), thermo-mechanical storage (Birmingham, Loughborough, Nottingham and Warwick, and the British Geological Survey), mechanical energy (compressed air) storage (Nottingham). thermo-chemical storage, and hybrid systems (Birmingham). Members of the ERA are working <u>with the Faraday Institution</u> to help develop battery technologies, with topics including recycling and reuse, extending battery life and battery system modelling.	£60m	April 2016 onwards	No info

Programme	Funding Agency	Description	Committed	Period	Representative
			Funds		Annual Spend
			(as of Sept 2019)		
ISCF Faraday	<u>UKRI</u>	The ISCF Faraday Battery Challenge, is one of 15 Challenges	up to £246m	2018-	£61m
<u>Battery</u>		funded by the Industrial Strategy Challenge Fund, and will		2022	
<u>Challenge</u>		develop batteries that are cost-effective, high-quality, durable,			
		safe, low-weight and recyclable. Funding is provided for			
		collaborative research and development projects, and includes			
		creating the £78m <u>Faraday Institution</u> at the Harwell Science			
		and Innovation campus to speed up research into battery			
		technologies.			
		Research projects led by Universities are described in Section 3.			
ISCF Faraday	<u>UKRI</u>	Funding for development of technology for electric car batteries	£23m	June	£5m
Battery		was announced on 11 June 2019, to support innovative work of		2019	
Challenge		UK companies.			
		Three awards were made to industry for development of a UK			
		supply of lithium, maximising battery performance, and using			
		artificial intelligence in battery manufacture.			

35

Programme	Funding Agency	Description	Committed Funds (as of Sept 2019)	Period	Representative Annual Spend
ISCF Prospering from the Energy Revolution	UKRI	 Prospering from the Energy Revolution is one of 15 Challenges funded by the Industrial Strategy Challenge Fund and aims to create more efficient smart energy systems to intelligently link energy supply, storage and use and support the move to renewable energy. A Call for Detailed designs of smart, local energy systems (Close date 7 August 2019) invited proposals for designs for local energy systems, to deliver cleaner, cheaper energy services across a variety of technologies, markets, technological maturities and research categories. To bring forward novel research in local energy systems and accelerate uptake, value and impact, £8 million will go to setting up EnergyREV, an energy revolution research consortium. 	up to £102.5m	2018- 2022	£25m

Programme	Funding Agency	Description	Committed	Period	Representative
			Funds		Annual Spend
			(as of Sept 2019)		
Energy Systems	Innovate UK	Innovate UK established Catapult Centres as a new addition to	£270.9m	2018	£20m
<u>Catapult</u>	<u>UKRI</u>	its range of programmes to stimulate innovation. In addition to	(total for the	onwards	
		funding received from Innovate UK, direct contracts with UK	High Value		
		business, as well as external funding form a significant part of	Manufacturing		
		the overall funding for the Catapults.	Centre and the		
		The Energy Systems Catapult has developed a range of unique	Energy Systems		
		Capabilities and Assets to help innovators, SMEs, industry,	Catapult)		
		academia, regulators and Government to transform the UK			
		energy system to meet carbon reduction targets and achieve			
		our clean growth ambitions, and includes capabilities in			
		Networks and Energy Storage.			

Energy	EPSRC	EP/S031863/1 Energy Revolution Research Consortium - Core –	£7,966,339	Dec 18 -	£2m
Revolution	UKRI	EnergyREV	·	Mar 22	
Research		EP/S031898/1 Energy Revolution Research Consortium - Plus -			
<u>Consortium</u>		EnergyREV - Next Wave of Local Energy Systems in a Whole			
(EnergyREV)		Systems Context.			
		The University of Strathclyde is leading <u>EnergyREV</u> , the Energy			
		Revolution Research Consortium (ERRC) with 29 investigators			
		across 22 universities, forming a network of researchers and			
		stakeholders to help to put the UK at the forefront of knowledge			
		services for integrated energy systems.			
		The EnergyREV consortium will work with the Energy Systems			
		Catapult to enable and inform demonstrators (funded by the			
		ISCF Prospering from the Energy Revolution PFER programme)			
		through their lifetime; undertaking analysis, evaluation and			
		assessment of the demonstrators, building and driving best			
		practice and leading knowledge exchange through national and			
		international engagement with policy, academic and industrial communities.			
		Additionally, EnergyREV will deliver its own strategic research			
		projects that address some of the industrial challenges in			
		developing local, investable, consumer-centred energy			
		approaches.			
		EnergyREV has shaped and defined a strategic programme of			
		applied interdisciplinary research which aims to achieve			
		significant outputs in the areas of whole energy systems and			
		smart local energy systems.			
		EnergyREV includes investigators in many Universities and has			
		20 industrial collaborators.			

Programme	Funding Agency	Description	Committed	Period	Representative
			Funds		Annual Spend
			(as of Sept 2019)		
<u>Grid-scale</u>	EPSRC	Grid-scale energy storage was identified in the Autumn	£45.6m	2013 on	
<u>energy storage</u>	<u>UKRI</u>	Statement 2012 as one of the Eight Great Technologies to drive			
<u>R&D</u>		UK growth. Grid-scale energy storage received an Capital Grant			
		of £30 million with additional funding contributions of £9.8m			
		from higher education institutions and £5.8m from industrial			
		partners (total of £45.6m). Funding was provided to 17			
		Universities for 5 projects. (also see <u>Section 6</u>).			
		• <u>EP/K002252/1</u> Energy Storage for Low Carbon Grids			
		Grid Connected Energy Storage Research Demonstrator			
		Manchester-Liverpool Advanced Grid-scale Energy			
		Storage R&D facilities			
		• <u>EP/L017725/1</u> Centre for Cryogenic Energy Storage			
		ThermExS Lab: thermal energy storage lab			
		The IMAGES project was announced around the same time.			
		EP/K002228/1 Integrated, Market-fit and Affordable Grid-scale			
		Energy Storage (IMAGES)			

Programme	Funding Agency	Description	Committed Funds	Period	Representative Annual Spend
			(as of Sept 2019)		
Energy	<u>Energy</u>	The Energy Technologies Institute (ETI) was a public-private			
Technologies	Technologies	partnership between global energy and engineering companies			
<u>Institute -</u>	<u>Institute</u>	and the UK Government.			
Energy Storage		Its role was to act as a conduit between academia, industry and			
and Distribution		the government to accelerate the development of low carbon			
		technologies.			
		Energy storage and distribution was one of ETI's eight			
		technology programme areas.			
		An ETI project resulted in development of the world's first			
		pumped heat energy storage system.			
		After 12 years of research, the Energy Technologies Institute			
		(ETI) has now closed. Available data and findings from the ETI's			
		programmes are available online through the Programme pages			
		and Knowledge Zone until 2025, and the project results will also			
		be available from the ETI Publications component of the UKERC			
		Energy Data Centre.			
		Much of the capability developed by the ETI now resides with			
		the Energy Systems Catapult, the Centre for Sustainable			
		Roadfreight and others.			
		The Energy System Modelling Environment (ESME) developed			
		by ETI was transferred to the <u>Energy Systems Catapult</u> .			

Programme	Funding Agency	Description	Committed Funds (as of Sept 2019)	Period	Representative Annual Spend
<u>Carbon Trust</u> <u>Future Energy</u> <u>Systems</u>	<u>Carbon Trust</u>	Established in 2001, the Carbon Trust works with businesses, governments and institutions around the world, helping them contribute to and benefit from a more sustainable future through carbon reduction, resource efficient strategies, and commercialising low carbon businesses, systems and technologies. The Carbon Trust co-ordinated funding by three major utilities, E.ON, SSE and Scottish Power, as well as the UK Department of Energy and Climate Change (DECC) and the Scottish Government to produce and publish an <u>Energy Storage Report</u> in March 2016			
<u>Challenge Led</u> <u>Applied Systems</u> <u>Programme</u> (CLASP)	Science & Technology Facilities Council (STFC)	 STFC External Innovations runs a Challenge Led Applied Systems Programme (CLASP) to support the application and commercialisation of STFC research in the key global research challenge areas of energy, environment, healthcare and security. Individual annual calls are aligned to specific challenge areas. Key priority areas in the 2013 CLASP Energy Call included grid- scale storage methods. The scope of the <u>CLASP 2021 Call</u> is Healthcare and Energy. 	£2m per annum, total for all challenge areas	2021	£600k total for all challenge areas

Table 4.2: Key Research Providers

Name	Description	Sub-topics Covered	No of Staff	Sector
ITM Power	 ITM Power participated in a collaborative project together with E.ON, University of Nottingham and others, on coated metal hydrides for hydrogen energy storage. The project is part-funded by the Technology Strategy Board over the period 2011-2014. Hydrogen storage in metal hydrides could be part of an electrical energy storage system based on electrolysers and fuel cells. The Carbon Trust's Polymer Fuel Cell Challenge supported development of polymer fuel cells by ITM Power and ACAL Energy. ITM Power products are applicable to a range of energy storage markets including grid balancing, and storing renewable energy. 	 Metal-hydrides for hydrogen storage Fuel cell membranes Hydrogen electrolysers 		R&D Science and Engineering
<u>Gravitricity</u>	The <u>Gravitricity energy storage</u> project is developing a mechanical technology using gravitational potential for grid-connected energy storage.	Gravitational energy storage		

Name	Description	Sub-topics Covered	No of Staff	Sector
Johnson Matthey Battery Systems	Johnson Matthey Battery Systems (Axeon was acquired by Johnson Matthey in 2012) is Europe's largest independent designer and manufacturer of lithium-ion battery systems, for electric and hybrid vehicles, as well as high volumes of batteries for e-bikes, power tools and mobile technologies. An EU-funded project <u>SmartBatt</u> (Jan 2011 - March 2013) aimed to develop the next generation of electric vehicle propulsion batteries which are both lighter and safer than their predecessors, and relied on technology and input from Axeon.	 Lithium-ion battery solutions for a range of applications State-of-the-art battery management systems 		R&D Science and Engineering
<u>Nexeon</u>	 Nexeon was founded in 2005 and has patented a unique way of structuring silicon so that it delivers extended cycle life and significantly increases battery capacity. Nexeon's silicon anode materials enable lithium-ion batteries with greater energy storage capacity and/or smaller battery size, or for greater battery life between charges. Nexeon has offices in Japan and in the UK where it has a state-of-the art process development and manufacturing facility. 	 Patented silicon anode materials for lithium-ion batteries Increased energy capacity and battery lifetime 		R&D Science and Engineering

Name	Description	Sub-topics Covered	No of Staff	Sector
OXIS Energy	OXIS is developing Lithium Sulfur [Li-S] battery chemistry that has the potential to revolutionize the rechargeable battery market. Li-S has a theoretical energy density 5 times greater than Li- ion.	 sulphur based cathode materials highly stable electrolyte systems anode made of Lithium metal and intercalation materials 		R&D Science and Engineering
<u>Invinity Energy</u> <u>Systems</u>	UK-based redT and Avalon merged in 2020 as Invinity Energy Systems, a leading Vanadium Flow Battery company. redT has been developing its vanadium redox battery in the UK since 2001, partly supported by Innovate UK (formerly DTI & BIS) funding, and offers a modular product with capacity from 5kWh to 150kWh.	 Vanadium redox flow battery 		R&D Science and Engineering
<u>Ricardo - Energy and</u> <u>Environment</u>	The TSB provided part-funding for the <u>KinerStor</u> project, announced in November 2009. Ricardo led a consortium including of industrial partners including CTG, JCB, Land Rover, SKF, Torotrak and Williams Hybrid Power, to demonstrate the viability of low-cost flywheel hybrid systems. The Kinerstor project forms part of the history of flywheel development in the UK.	 Kinetic energy recovery systems in automotive hybrid drivetrain 		R&D Science and Engineering

Name	Description	Sub-topics Covered	No of Staff	Sector
Siemens - Energy Storage Solutions	Siemens co-ordinated a Power-To-Gas and Energy Storage project, supported by Innovate UK. The project constructed an <u>ammonia synthesis and</u> <u>energy storage demonstration system</u> at the STFC site, which focussed on the use of ammonia as a carbon-free energy vector, and decoupling intermittent wind energy from the supply of firm energy to meet demand. Collaborators with Siemens included the University of Oxford, Cardiff University and the STFC.	 Storage of Wind energy Synthesis of hydrogen and ammonia 		R&D Science and Engineering
<u>GKN Innovation Centre</u>	GKN acquired Williams Hybrid Power Ltd (WHP) in 2014. Williams was a member of the <u>KinerStor</u> project consortium project, part-funded by the TSB, and developed an electro-mechanical composite flywheel system for use in Formula 1 racing. The hybrid flywheel technology was integrated in a car that won the 24-hr Le Mans for two consecutive years. The Kinerstor project forms part of the history of flywheel development in the UK. The technology provides a high-power solution for mobile or stationary energy recovery and storage, and is included in the development of next-generation vehicles at the <u>GKN UK</u> <u>Innovation Centre</u> in Abingdon.	High power electromechanical composite flywheel system		R&D Science and Engineering

5. Development and Demonstration Funding Return to Top

In 2011 ABB commissioned its first DynaPeaQ energy storage installation for UK Power Networks at a site in Norfolk, England. The system is based on ABB's SVC Light technology, combined with Lithium-ion (Li-ion) battery storage. It is connected to an 11kV grid with considerable penetration of wind power, the first time an electrical energy storage device has been installed on an 11kV distribution network in the UK.

<u>Ofgem</u> funded demonstration projects via several funding mechanisms. The Energy Networks Association established the <u>Smarter Networks Portal</u> to share learning from projects.

The Energy Storage Operators Forum (ESOF) produced a summary of the electrical energy storage installation in the UK in 2013, <u>State of Charge of GB</u>, The summary lists projects by DNOs funded by Ofgem's Low Carbon Networks Fund (LCNF) and Innovative Funding Incentive (IFI). In 2013 there were 14 systems installed, under construction, planned or decommissioned, with a total power capability of 15.5MW and energy storage capacity 26.8MWh. The ESOF also produced a <u>Good Practice Guide on Electrical Energy Storage</u>.

The Renewable Energy Association (REA) produced a report, <u>Energy</u> <u>Storage in the UK, An Overview, 2nd edition</u>, that included details of energy storage projects in the UK as of Autumn 2016.

Demonstrations have shown that storage is commercially viable, providing a range of services ranging from <u>balancing services</u> such as firm frequency reserve, to trading using arbitrage, and facilitating the integration of renewable generation. The renewables trade association <u>RenewableUK</u> provides tracking information for members via its <u>Project Intelligence Hub</u>. Statistics on <u>energy storage projects</u> published by RenewableUK in December 2019 shows that energy storage power capability is increasing rapidly, with 0.742GW of operational battery storage capacity and over 10GW of planning applications. Pumped storage is also increasing from 2.833GW operational, and 1.796GW planned. While lithium batteries make up the majority of planned projects, the next phase of growth will include a range of new technologies. Companies ranging from Siemens to Highview Power are developing hydrogen, ammonia, and compressed air and liquid air storage technologies, with 0.600GW in development.

 Table 5.1 Demonstration Funding Programmes

Programme	Funding	Description	Number of	Committed	Period	Representative
	Agency		projects	Funds		Annual Spend
Ofgem Low Carbon	<u>Ofgem</u>	The LCNF ran from April 2010 until March		Tier 1: £15m	2010 to 2015	
<u>Networks Fund</u> (LCNF)		2015, with two tiers of funding.		total		
		 The 1st Tier of the LCN Fund allowed DNOs to recover a proportion of expenditure incurred on small scale projects. Sep 2010 – Mar 2014 SSE 1MW Battery, Shetland £1m Oct 2011 – Mar 15 SSE Orkney Energy Storage Park and trial £1.81m The LCNF Tier 1 projects 2nd Tier of the LCN Fund provided DNOs with an annual opportunity to compete for funding for the development and demonstration of new technologies, operating and commercial arrangements. Up to £64m per annum was available through the LCN Fund. The LCNF Tier 2 projects 		Tier 2: Up to £64m per year		

Programme	Funding	Description	Number of	Committed	Period	Representative
	Agency		projects	Funds		Annual Spend
Ofgem Electricity	<u>Ofgem</u>	LCNF Tier 1 & 2, and IFI funding mechanisms		up to £70m	2013	Up to £70m per
Network Innovation		were replaced by the <u>Electricity Network</u>		per annum	onwards	annum
Competition		Innovations Allowance (NIA) and Electricity				
		Network Innovation Competition (NIC)				
		funding mechanisms. The NIC is an annual				
		opportunity for electricity network				
		companies to compete for funding for the				
		development and demonstration of new				
		technologies, operating and commercial				
		arrangements.				
		The 2019 NIC funding decisions included an				
		award of £21.2m across one gas and two				
		electricity projects.				

Programme	Funding	Description	Number of	Committed	Period	Representative
	Agency		projects	Funds		Annual Spend
ETI Energy Storage	Energy	The aim of the Energy Storage and		£14m	2012 - 2017	£3m
and Distribution	<u>Technologies</u>	Distribution Programme was to enable and				
<u>Programme</u>	<u>Institute</u>	develop the UK's energy infrastructure to				
		manage fundamental long-term changes in				
		Energy generation source types and				
		their geographic location				
		Energy demand patterns and energy				
		usage requirements				
		The original aim of an Energy Technologies				
		Institute (ETI) <u>Distribution Scale Energy</u>				
		Storage project was to develop and				
		demonstrate a 1.5MW/6MWh energy				
		storage device by Isentropic.				
		See Table 5.2 for more details.				
		After 12 years of research, the Energy				
		Technologies Institute (ETI) has now closed.				
		Available data and findings from the ETI's				
		programmes are available online through				
		the Programme pages and Knowledge Zone				
		until 2025, and the project results will also				
		be available from the ETI Publications				
		component of the UKERC Energy Data				
		<u>Centre</u> .				

Programme	Funding	Description	Number of	Committed	Period	Representative
	Agency		projects	Funds		Annual Spend
DECC's <u>Energy</u>	Department of	In 2012 the DECC had two energy storage	4 Demo	£2m	2013-2015	£5m
Storage Technology	Energy &	innovation schemes:	projects			
Demonstration	Climate	Feasibility studies into innovative and				
	Change	diverse energy storage ideas under the				
	(DECC)	under the <u>Energy Storage Technology</u>				
		Demonstration Competition (£0.5m for 12				
		organisations)				
		Improvement of components or materials				
		used for energy storage systems and				
		feasibility studies to explore how storage				
		systems can be used in the UK electricity				
		network, under the <u>Energy Storage</u>				
		Component Research & Feasibility Study				
		Competition. (£1.5m for 4 companies)				
Energy Innovation	Department	The <u>Storage at Scale Competition</u> (closed	Up to 3	Up to £20m	2019	
<u>Programme</u>	for Business,	April 2019) objective is to demonstrate			onwards	
	Energy and	large-scale energy storage using innovative				
	Industrial	technologies, capable of operating cost-				
	Strategy (BEIS)	effectively with a target minimum output				
		power of 30MW or minimum capacity of				
		50MWh for electrical energy storage				
		technologies.				
		The programme does not include				
		conventional types of energy storage				
		technology i.e. lithium-ion batteries, sodium				
		sulphur batteries, lead acid batteries or				
		pumped hydro.				

Programme	Funding	Description	Number of	Committed	Period	Representative
	Agency		projects	Funds		Annual Spend
Faraday Institution	<u>UKRI</u>	The UK Battery Industrialisation Centre		£80m	2017	
		(UKBIC) (aka the National Battery			onwards	
		Manufacturing Development Facility) is part				
		of the Faraday Battery Challenge. It will				
		enable the development of the next				
		generation of battery systems including				
		battery chemistry, electrodes, cell design,				
		and battery modules, and cover all aspects				
		of battery manufacturing.				
		However most of the Faraday funding is for				
		Strategic Research (Section 3) and for				
		Applied R&D (<u>Section 4</u>).				
		See the 2018 UK Governmenrt				
		announcement about the Faraday Battery				
		Challenge.				

Programme	Funding	Description	Number of	Committed	Period	Representative
	Agency		projects	Funds		Annual Spend
ISCF Prospering	<u>UKRI</u>	Prospering from the Energy Revolution is		up to	£25m for	£5m
from the Energy		one of 15 Challenges funded by the		£102.5m	2018-2022	
Revolution		Industrial Strategy Challenge Fund and aims				
		to create more efficient smart energy				
		systems to intelligently link energy supply,				
		storage and use and support the move to				
		renewable energy.				
		See the 2018 UK Government				
		announcement about the ISCF: <u>ISCF</u>				
		Prospering from the energy revolution				
		Four <u>energy demonstrators</u> were funded in				
		April 2019, which include storage to some extent:				
		 The <u>Energy Superhub Oxford – project</u> website 				
		 <u>ReFlex</u> - <u>project website</u> (REFLEX Orkney) 				
		 <u>Project LEO</u> - <u>project website</u> (Local Energy Oxfordshire) 				
		<u>SmartHubs SLES</u> - project website				

Table 5.2: Major Demonstration Projects

Name	Description	Sub-topics covered	Total Project Cost	Public Sector Funder	Public Sector Funding	Period
<u>DynaPeaQ Energy</u> <u>Storage (Norfolk)</u>	A dynamic energy storage system deployed by UK Power Networks, and designed and built by <u>ABB</u> is the first time an electrical energy storage device has been installed on an 11kV distribution network in the UK. As well as providing dynamic voltage control, it will enable it will enable dynamic storage of surplus energy from wind farms, and can be utilized to level out peaks in grid loading and increase grid stability. Using this strategy, the power harnessed from the wind can be put to more efficient use than would otherwise be possible. Monitoring and analysis in being undertaken by Durham University.	 Deployed by UK Power Networks in an 11kV grid in Norfolk Based on ABB's SVC Light[®] technology, combined with Lithium-ion (Li-ion) battery storage Storage capacity 200kWh, power delivery 200kW for 1 hour or 600kW short-term Reactive power control and dynamic voltage control Provides active power control and grid stability improvement 				2011

Name	Description	Sub-topics covered	Total Project Cost	Public Sector Funder	Public Sector Funding	Period
Shetland 1MW Battery	 This Low Carbon Networks Fund (LCNF) Tier 1 project commenced in 2010 with the aim of installing a grid scale energy storage device in Shetland integrated with an active network management system. This was one of the first gridscale battery systems in the UK. Three battery technologies were considered: Sodium Sulphur (NAS); Vanadium Redox; and Zinc Bromide. Although a NaS battery (1MW 6MWh) was installed, this was removed in 2013 due to safety concerns, and a lead-acid battery system (1MW 3MWh) comprising 3166 cells was installed. The criteria for project success were to: reduce the peak demand on Lerwick Power Station for the battery to cycle efficiently to meet the needs and profiles of the islands' generation and demand to increase the knowledge and understanding of battery operation within a network environment 	 NaS battery Lead-acid battery Peak lopping 		Ofgem LCNF Tier 1	flm	Sep 2010 to Mar 2014

Name	Description	Sub-topics covered	Total Project Cost	Public Sector Funder	Public Sector Funding	Period
<u>Orkney Storage</u> <u>Park Project</u>	One of the first large-scale battery systems in the UK was the Orkney Storage Park Project Battery at Kirkwall Power Station. The lithium-ion 2MW 0.5MWh 0.25h battery system used two 12 m containers for its batteries and one for its power conditioning system, and was installed in 2013 by Mitsubishi Heavy Industries, Ltd. with Scottish Hydro Electric Power Distribution (SHEPD). Funding was provided by the Office of Gas and Electricity Markets (OFGEM) under its Tier 1 Low Carbon Network Fund (LCNF).	 Renewable energy intermittency Revenue streams including arbitrage 		Ofgem LCNF Tier 1	£0.3m Trial £1.51m	Oct 2011 to Aug 2012 Trial until Mar 2015
	The trial project ran until March 2015 and investigated how large scale batteries could absorb renewable energy to resolve intermittency issues.					

Name	Description	Sub-topics covered	Total Project Cost	Public Sector Funder	Public Sector Funding	Period
<u>Leighton Buzzard</u> <u>battery storage</u> <u>facility</u>	The 6MW/10MWh facility in Leighton Buzzard commenced operations in 2014 and was the UK's largest grid-scale battery storage facility at the time. It was funded by the <u>Low Carbon Network Fund</u> (<u>LCNF</u>), and helped to prove the technical and commercial viability of battery storage technologies.	Smart network storage	£17.2m	<u>Ofgem</u> <u>LCNF</u>	£13.2m	2013 to 2016
	It is owned by UK Power Networks and was offered for sale in 2019 following Ofgem's decision that network operators cannot provide energy generation, including storage.					

Name	Description	Sub-topics covered	Total Project Cost	Public Sector Funder	Public Sector Funding	Period
ReFLEX (Responsive Flexibility) Orkney project	The project has been launched to digitally link distributed and intermittent renewable generation to flexible demand and storage. The project aims to create a 'smart energy island', demonstrating the energy system of the future, which will reduce and eventually eliminate the need for fossil fuels. Led by the European Marine Energy Centre (EMEC), the ReFLEX Orkney project brings together an expert consortium of Orkney-based partners – Solo Energy, Aquatera, Community Energy Scotland, Orkney Islands Council and Heriot-Watt University – as well as multi-national energy company Doosan Babcock.	 Batteries Vehicle to grid (V2G) Electric vehicles (EVs) Hydrogen fuel cell Distributed power system control Whole System design and modelling 	£28.5m	UKRI Industrial Strategy Challenge Fund	£14.25m	Apr 19 - Mar 22

Name	Description	Sub-topics covered	Total Project Cost	Public Sector Funder	Public Sector Funding	Period
<u>Kilroot Advancion</u> <u>Energy Storage</u> <u>Array</u>	The Energy Storage Array at Kilroot, Belfast, uses AES Corporation's advanced 10MW battery-based energy storage facility, and is the first transmission grid- scale array in the UK. The array began operations on 5th January 2016. The project consortium demonstrating the capabilities of the storage array includes AES, Queen's University Belfast, System Operator for Northern Ireland (SONI), Northern Ireland Electricity (NIE) and the Utility Regulator. There are plans to increase the energy storage facility power to 100 MW. <u>EPSRC Project EP/N508408/1</u> provided funding for Queen's University research.	 Balancing Integration of renewable energy sources 	£2.4m	Innovate UK	£366,985	Apr 15 - Mar 18

Name	Description	Sub-topics covered	Total Project Cost	Public Sector Funder	Public Sector Funding	Period
Pumped Heat Energy Storage (PHES) Demonstrator	Isentropic developed a Pumped HeatElectricity Storage (PHES) technology forlarge-scale energy storage. A £15minvestment by the Energy TechnologiesInstitute (ETI) enabled a 150kW /600kWh demonstration system to beconstructed. ETI continued the projectwith a Newcastle University Team (nowat Durham University) who completedand commissioned the demonstrationsystem, and collected the firstperformance data from a pumped heatenergy storage system. The first testsindicated that with further testing anddevelopment, efficiencies in excess of60% were viable.The pumped-heat technology potentiallyplaced the UK as a leader in the R&D oflow-cost and grid-scalable electrical andthermal energy storage.	 Pumped Heat Electricity storage 150kW / 600kWh energy storage 	£15.7m	ETI	£14m	2012 – 2019

6. RESEARCH FACILITIES AND OTHER ASSETS RETURN TO TOP

In January 2013, the UK Government announced funding for <u>Eight great</u> <u>technologies</u> including an extra £30 million to create dedicated R&D facilities to develop and test new grid scale storage technologies. In response to EPSRC's Capital for Great Technologies Call in July 2013, the <u>EPSRC Capital Grant of £30 million</u> for grid-scale energy storage included capital funding for 5 projects at 17 Universities:

• Energy Storage for Low Carbon Grids (£14.3m)

Imperial College London, University of Birmingham, University of Cambridge, Cardiff University, Newcastle University, University of Oxford, University of Sheffield, University of St Andrews, University College London

- Grid Connected Energy Storage Research Demonstrator_(£4.9m) University of Sheffield, Aston University, University of Southampton
- Manchester-Liverpool Advanced Grid-scale Energy Storage R&D facilities (£3.3m)
 The University of Manchester, University of Liverpool

- <u>Centre for Cryogenic Energy Storage</u> (£5.9m) University of Birmingham, University of Hull
- ThermExS Lab: thermal energy storage lab (£1.7m) Loughborough University, University of Nottingham, University of Warwick

The capital grants funded the building of energy storage pilot plants on university campuses at Birmingham, Manchester, Newcastle and Nottingham, together with the Sheffield facility at Willenhall on a public distribution network.

The EPSRC funded <u>Manifest</u> project (<u>EP/N032888/1</u>) builds on this investment, by conducting systematic comparative studies of the technologies. Dissemination is through an <u>UK Energy Storage Observatory</u> (<u>UKESTO</u>), a web-based portal with information on the facilities, and providing access to research outputs and data from operational runs of the pilot plants.

Table 6.1: Research Facilities

Name	Description	Type of asset	Scale of operation	Annual Operating Budget
Liquid-air	Liquid-air Energy Storage Pilot Plant at University of Birmingham	Pilot Plant	No info	No info
Li-ion battery	Li-ion battery energy storage system at the University of Manchester	Pilot Plant 200 kW 240 kVA 100 kWh	No info	No info
Battery and supercapacitor test bed	Energy storage <u>test bed for batteries and</u> <u>supercapacitors</u> at University of Newcastle	Pilot Plant	No info	No info
Heat storage plant	Packed bed sensible heat storage at University of Nottingham	Pilot Plant	No info	No info
Lithium Titanate (LTO) battery	Lithium Titanate (LTO) battery, part of a new 11kV Grid Connected <u>2MW Energy</u> <u>Storage Demonstrator</u> based at the Willenhall primary substation, near Wolverhampton in the West Midlands, part of the Western Power Distribution's network. The battery is owned and operated by the energy storage research team at the <u>Energy 2050 Research Institute</u> at the University of Sheffield, in conjunction with partners at Aston University and the University of Southampton.	Pilot Plant	No info	No info

Name	Description	Type of asset	Scale of operation	Annual Operating Budget
National Centre for Energy Systems Integration (CESI)	The £20m EPSRC National Centre for Energy Systems Integration (CESI) is primarily funded by the Engineering and Physical Sciences Research Council (EPSRC) and Siemens. The balance of funding comes from industry and academic partners. The Centre draws upon the expertise of leading academics from the universities of Newcastle, Heriot-Watt, Sussex, Edinburgh, and Durham The Centre paves the way to a flexible smart infrastructure, empowering customers and giving them greater control of their energy use. It allows industry to meet the tough new low carbon targets.	 Research Centre, aiming to optimise the energy network, including all aspects of supply and demand: gas power renewables transport heating cooling 	£20m	No info

7. NETWORKS

Return to Top

The <u>Institution of Engineering and Technology</u> (IET), <u>Institution of</u> <u>Mechanical Engineering</u> (IMechE), <u>Institute of Physics</u> (IOP), and the <u>Energy</u> <u>Institute</u> (EI), include storage in their energy agenda, and provide networking opportunities, information and events on energy storage.

The EPSRC-funded <u>Energy Storage Research Network</u> was set up in October 2012, bringing together researchers from academic, industrial and policy domains with an interest in energy storage and its application to future low carbon energy systems.

The <u>UK Electricity Storage Network</u> was formed in 2008 and is now managed by <u>Regen</u>, and complements the activities of the main trade association, the <u>Electricity Storage Association</u> which is mainly focussed on the USA but has an increasing international scope. Other networks include the <u>STFC Global Challenge Network in Batteries and</u> <u>Electrochemical Energy Devices</u> (founded in 2013).

Conferences addressing mainly commercial and business aspects of electricity storage include the Energy Storage World Forum which is held annually in Europe and Asia. IQPC organised the Pan European Energy Storage Forum in London in 2010. A forum for flow battery developers, suppliers and users is provided by the International Flow Battery Forum, which holds annual conferences at international venues, including past conferences in the UK at Edinburgh in 2011, and in Ireland in Dublin in 2013.

<u>EUROSOLAR</u>, the European Association for Renewable Energy International, has organised a <u>Renewable Energy Storage conference</u> for eleven years.

Table 7.1 Networks

Network	Established	Description	Membership	Activities
Supergen Storage	July 2019	The aim of the ES-Network+ is to	Researchers	The ES-Network+ project will
Network Plus 2019		connect and serve the whole Energy	Industry	develop an ES database and an
		Storage (ES) community including	Policymakers	authoritative ES whitepaper
		industry, academia and		through ES network mapping,
		policymakers, and will complement		data gathering, and feasibility
		existing activities (e.g. Faraday		studies. The database and the
		Institution, UKERC, Energy Systems		whitepaper will benefit a large
		Catapult, Centre for Research into		number of stakeholders.
		Energy Demand Solutions (CREDS),		Academic and industrial
		and other Supergen Hubs). The		stakeholders will develop
		Network will create, exchange and		pathways for future
		disseminate energy storage		collaborative research
		knowledge and will support early		programmes.
		career researchers.		Policymakers and public sector
		The project is led by University of		stakeholders will have access to
		Birmingham, and includes Supergen		ES experts for advice, thus
		Storage investigators and 32		shaping local and national
		commercial organisations		energy policy in the longer
				term.

Network	Established	Description	Membership	Activities
Energy Storage Research Network (ESRN)	Started in October 2012, and run by the Energy Futures Lab at Imperial College, the network was initially funded for a period of 3 years. The network has successfully to provide a focal point for news, events and opportunities for networking.	The Energy Storage Research Network brings together researchers from academic, industrial and policy domains with an interest in energy storage and its application to future low carbon energy systems.	 Researchers Industry Other stakeholders 	Organising events, workshops and seminars on energy storage research and policy. Support and events with the aim of promoting UK energy storage research in both academia and industry.

Network	Established	Description	Membership	Activities
Electricity Storage Network	The Electricity Storage Network was established in 2008 as an industry group dedicated to electricity storage. <u>Regen</u> took over management of The Electricity Storage Network in 2018.	 The group is examining the issues for the greater deployment of electrical energy storage and provide a network for discussion of key issues. Mission: To demonstrate the social, technical and economic benefits of electrical energy storage To inform and educate To present electrical energy storage as an integral part of the power network 	 Policy makers Developers Researchers Users Other interested organisations 	 Activities include organising annual conferences organised jointly with the Institution of Mechanical Engineers. The network expects to cover the following activities over the next year: Workshop meetings / seminars on key policy points Further development of the strong interaction with policy makers Dissemination of relevant news to members Establishment and reinforcement of links with related organisations Responses to other significant consultations

Network	Established	Description	Membership	Activities
Electricity Storage Association (ESA)	Established by more than 30 utilities in 1991 as the Utility Battery Group (UBG). In May 1996, the scope was broadened to all energy storage technologies, and the name was changed to the Energy Storage Association. In April 2001, the name was changed to the Electricity Storage Association.	The Electricity Storage Association is an international trade association established to foster development and commercialization of energy storage technologies. The mission is to promote the development and commercialization of competitive and reliable energy storage delivery systems for use by electricity suppliers and their customers.	 Electricity utilities Technology developers involved with advanced batteries, flywheels, CAES, pumped hydro, supercapacitors and component suppliers, such as power conversion systems Researchers advancing the state of the art in energy storage solutions 	 ESA Goals: Promote the commercial application of energy storage technologies as solutions to power and energy problems Coordinate and attract international interest and involvement in energy storage. Provide a forum for technical and commercial information exchange between suppliers, customers, and researchers.

Network	Established	Description	Membership	Activities
Energy Storage Council	Established in USA	The ESC was founded to promote the research, development and deployment of storage technologies and to raise awareness of the 	 Technology providers Policy makers 	 develops policies on key legislative and regulatory issues affecting the energy storage industry acts as a central source of information and media contact provides research and analysis of current market factors and developments in energy storage technologies provides information about energy storage maintains an online library of energy storage white papers

Network	Established	Description	Membership	Activities
STFC Global	June 2013	The objectives of the network are to:	industry	 networking events
Challenge Network			• academia	 best practice workshops
in Batteries and		Bring together an international	national laboratories	 grants to ensure mobility of
Electrochemical		community of researchers with an	• and all stakeholders with	students and early-career
Energy Devices		interest in battery and	an interest in the	researchers
		electrochemical energy device	application of large scale	
		research.	facilities	
		Encourage collaborations between		
		researchers using large-scale		
		facilities to promote standardisation		
		of techniques and best-practice		
		methodologies.		
		The Network will fund activities to		
		promote the use of large scale		
		facilities to explore batteries and		
		electrochemical devices- for		
		example, by supporting researcher		
		mobility through the STFC Futures		
		Early Career Award Scheme.		
IRES International	August 1988 (Eurosolar)	EUROSOLAR, the European	Academia	Conference and networking
Renewable Energy		Association for Renewable Energy	Research institutes	 publication of Open Access
Storage Conference		International, has organised a		Conference Proceedings
		International Renewable Energy		
		Storage Conference for eleven years.		
		Electrochemical storage is one of the		
		six technology sectors.		

8. UK PARTICIPATION IN EU PROGRAMMES

Return to Top

The table below lists the most relevant EU Framework projects with UK participation. The projects are presented in order of project start date (most recent first).

Horizon 2020 funded projects may be searched using a range of filters. Filters used here were Collection - Projects; Domain - Energy; Programme H2020; Start Date – from 1-Jan-2015; Total Cost – from €1m; Organisation Country – UK. This is clearly a subset of relevant projects, some earlier Framework 7 projects with UK participation are also included.

Table 8.1: EU Framework Programme Participation

The EC supports many projects that advance batteries technologies to benefit consumers and industries, providing <u>Reports and Initiatives on Batteries</u>. Following the launch of the <u>European Battery Alliance</u> in October 2017, additional calls for proposals on batteries were published to further boost development. Projects funded within the Horizon 2020 programme from a cross-cutting call for proposals from 2019 are listed <u>here</u>.

Project	Objectives	Action Line	Type of	UK	Co-ordinator	Total	EU	Duration	Annual
			Action	Participants	and partners	Funding	Funding		Spend
RECYCALYSE	Water electrolysis is a key	H2020-EU.2.1.3.	RIA -	TWI Limited	Teknologisk	€ 5.56m	€ 5.56m	1 April 2020	€2m
New	technology for storing excess		Research		Institut,			to	
sustainable and	renewable energy. The EU-funded	H2020-EU.2.1.2.	and		Denmark			31 March	
recyclable	RECYCALYSE project aims to break	Industrial	Innovation					2023	
catalytic	the bottlenecks that hold back the		action		(+10 partners)				
materials for	further development of proton								
proton	exchange membrane electrolysers,								
exchange	namely the high capital costs and								
membrane	the use of critical raw materials.								
electrolysers	The project will develop new								
	catalyst supports and replace								
	critical raw materials in catalysis								
	with earth-abundant elements								
	such as nickel, manganese and								
	copper. It will then devise a								
	recycling scheme for the new								
	catalysts, electrodes and overall								
	electrolyser system. The								
	sustainable development and								
	management of materials could								
	ultimately reduce EU imports and								
	create a circular economy.								

LISA Lithium Sulphu for Safe Road Electrification	The Lithium Sulphur for Safe Road rElectrification (LISA) 43 month project starts on the 1st January 2019. It is worth over €7.9m and consists of 13 European partners including OXIS Energy UK Ltd. The overall goal is to design and manufacture lithium sulfur technology that will enable safe electrification for EV applications.	H <u>H2020-</u> EU.2.1.3. H2020-EU.2.1.2. Industrial Leadership	RIA - Research and Innovation action	OXIS Energy, Cranfield University, Optimat Ltd	Acondicionamie nto Tarrasense Associacion, Spain (+12 partners)		€7.9m	to July 2022	€2m
E-MAGIC European Magnesium Interactive Battery Community	Energy storage is a key technology to facilitate a widespread integraWith the growing use of intermittent energy sources in power grids, there is a growing mismatch between when energy is produced and when it is consumed. This has led to the need of energy storage or demand- response systems in order to use the energy in a balanced and efficient way. Given this context, the Micro Energy Storage (MES) systems are expected to seek radically new approaches to supply energy where it is needed.	FET Proactive	RIA - Research and Innovation action	University of Cambridge	Fundacion Cidetec, Spain (+9 partners)	€ 6.73m	€ 6.73m	1 Jan 2019 to 31 Dec 2022	€2.2m

ZapGoCharger	Zap&Go has developed a fast	H2020-EU.2.1.5.	SME-2 - SME	ZapGo Ltd	ZapGo Ltd	€2.04m	€ 1.43m	Feb 2017 to	€700k
Rapid charging	charging solution to appliances,		instrument		(no partners)			Jan 2019	
of cordless	devices and vehicles. In contrast to	H2020-EU.2.1.3.	phase 2						
appliances	Lithium-ion batteries, Zap&Go's								
using	supercapacitors charge in 5	H2020-EU.2.3.1.							
graphene-	minutes or less and are safe to								
based	handle without fire risk.	H2020-EU.2.1.2.							
supercapacitors	In this Phase II project Zap&Go will								
	develop 1) supercapacitor power	INDUSTRIAL							
	modules and electronics	LEADERSHIP							
	specifically integrating with								
	cordless tools such as cordless								
	vacuum cleaners and power drills								
	and 2) build trial units to conduct								
	customer trials.								

NUOVOpb	<u>Aurelius Environmental Ltd</u> has	H2020-EU.3.5.	SME-2 - SME	Aurelius	Aurelius	€1.86m	€1.3m	1 Aug 2017	€1m
A unique Lead	developed a novel		instrument	Environmental	Environmental			to	
Acid Battery	hydrometallurgical process	Societal	phase 2	Ltd	Ltd			31 Jan 2019	
(LAB) recycling	technology to recycle waste LABs	Challenges							
technology to	in a highly energy efficient, non-				(no partners)				
reduce CO2	polluting and cost effective way.	H2020-EU.2.3.1.							
emissions by	NUOVOpb's commercial appeal lies								
89%, reduce	in its low cost and scalability, and	Industrial							
waste by 81%,	our ground-breaking ability to	Leadership							
and transform	produce LAB-ready products that								
the battery	exceed the performance of current								
recycling	products on the market. Our LAB-								
industry	ready paste can create new LABs								
	with 22% greater energy capacity								
	and 50% longer life.								
	The technology has the potential to								
	transform the global battery								
	recycling industry, which has an								
	expected value of €9.5 billion in								
	2024.								

Lithium Sulphur battery for xEV	development and commercial	<u>H2020-</u> EU.2.1.3.2. Industrial	RIA - Research and Innovation	OXIS Energy Limited, Cranfield	Acondicionamie nto Tarrasense Associacion, Spain	€6.8m	1 June 2015 to 31 May 2019	€1.8m
		Leadership. Materials development and transformation	action	University, Williams Advanced Engineering Limited	(+14 partners)			
high specific energy aluminium-ion rechargeable	project is to develop aluminium- ion battery technology for energy storage application in decentralised electricity generation sources.	H2020- EU.2.1.3.4. Industrial Leadership. Materials for a sustainable, resource- efficient and low-emission industry	RIA - Research and Innovation action	University of Southampton	Acondicionamie nto Tarrasense Associacion, Spain (+11 partners)	€7.2m	1 June 2015 to 31 May 2019	€1.8m

BATTERY 2030+	The <u>BATTERY 2030+</u> initiative will	H2020-EU.1.2.2.	CSA -	Uppsala	€499 <i>,</i> 456	€499,456	Mar 2019	€500k
At the heart of	be based on a multi-disciplinary	FET Proactive	Coordination	Universitet,			to	
a connected	and cross-sectorial approach to		and support	Sweden			Feb 2020	
green society	bring in all the necessary skills for		action					
	developing future European			+ 16 partners				
	battery roadmap while addressing							
	a wide range of strategic							
	applications.							
	Three specific objectives have been							
	defined: 1) BATTERY 2030+							
	roadmap establishment 2) Propose							
	R&D actions and 3) Secure official							
	stakeholder commitments.							

BATSTORM	The BATSTORM project supported	H2020	Supporting			2016-2018	
Battery-based	the European Commission and the		Action				
energy storage	European Technology and						
roadmap	Innovation Platform (ETIP) for						
	SmartGrids and Storage in their						
	progress to identify and support						
	RTD&D needs and market uptake						
	of battery based energy storage.						
	The project produced five reports,						
	including:						
	a) <u>10-year roadmap for 2018-</u>						
	2027 and short-term						
	<u>prioritisation</u>						
	b) <u>Technical analysis of on-going</u>						
	<u>projects</u>						
	Within the EU, six projects for						
	stationary application were chosen						
	for a detailed view, viz. ELSA;						
	M5BAT; TILOS; InFluENCE;						
	POWAIR; and SmartPowerFlow.						

BRIDGE	BRIDGE is a European Commission	H2020	Supporting					2014-2019	
Cooperation	initiative that unites smart grid and		Action						
group of Smart	energy storage projects funded								
Grid, Energy	under Horizon 2020.								
Storage,									
Islands and	The group has published several								
Digitalisation	reports. In 2018, the group								
H2020 projects	published a <u>Bridge battery report</u>								
	based on input from 15 projects								
	involved in battery integration in								
	the energy system, viz.								
	CROSSBOW, EU-SYSFLEX,								
	FLEXITRANSTORE, GRIDSOL,								
	NETfficient, SMILE, TILOS, GOFLEX,								
	INTEGRID, InterFlex, WiseGRID,								
	ELSA, NOBEL GRID, STORY, and								
	NAIADES.								
	In June 2020 the group published a								
	report and project fact sheets that								
	includes details of 64 projects								
	including links to project websites.								
<u>ECLIPSE</u>	This research action is aimed at	H2020-EU.2.1.6.		OXIS Energy	Airbus Defence	€999,953	€999 <i>,</i> 953	Dec 2015	€500k
European	developing Li-S technology for	INDUSTRIAL		Limited <i>,</i>	and Space SAS			to	
Consortium for	space applications, based on	LEADERSHIP -						Nov 2017	
Lithium-Sulfur	Lithium-Sulfur chemistry	Leadership in		Imperial College	+ 8 partners				
Power for		enabling and		Of Science					
Space		industrial		Technology And					
Environments		technologies –		Medicine					
		Space							

INFLUENCE	The INFLUENCE project aims to	FP7-ENERGY	Collaborative	Imperial College	vito Vlaamse	€3.50m	€2.58m	Sept 2013	
Interfaces of	improve the fundamental		project	of Science,	Instelling Voor			to	
Fluid	understanding and control of		(generic)	Technology and	<u>Technologisch</u>			Aug 2016	
Electrodes:	interfaces of a battery type based			Medicine	Onderzoek N.V.				
New	on Li-ion and Na-ion active				Belgium				
Conceptual	materials: semi solid flow batteries								
Explorations	(SSFB).				+ 7 partners				
<u>HI-C</u> Novel in	The primary goals are to:	FP7-ENERGY	Collaborative	Uniscan	<u>Danmarks</u>	€6.319	€4.646	Sept 2013	
situ and in			project	Instruments	<u>Tekniske</u>			То	
operando	1) Understand the important		(generic)	Limited	<u>Universitet,</u>			Feb 2017	
techniques for	interfaces in an operating battery				Denmark				
characterizatio	on an atomic and molecular scale.								
n of interfaces	2) Characterize the formation and				+ 7 Partners				
in	nature of interfaces in situ.								
electrochemica	3) Devise methods to control and								
l storage	design interface formation,								
systems	stability and properties.								
	4) Prepare ion-conducting								
	membranes, mimetic of the								
	polymeric part of the SEI, in order								
	to study their mechanical and								
	electrochemical properties.								

<u>SIRBATT</u> (Stable	SIRBATT is a collaborative project	FP7-ENERGY	Collaborative	The University of	The University of	€4.4m	€3.14m	Sept 2013	€1m
Interfaces for	including 6 Universities, 1 Research		project	Liverpool	<u>Liverpool</u>			to	
Rechargeable	Institute and 5 industrial partners.		(generic)					Aug 2016	
Batteries)	The organisations provide			Johnson	+ 5 Universities,				
	complementary expertise in			Matthey PLC	1 research				
	experimental and theoretical				institute, and 5				
	studies of battery electrode				industrial				
	interfaces.				partners.				
	SIRBATT will develop microsensors								
	to monitor internal temperature								
	and pressure of lithium cells in								
	order to maintain optimum								
	operating conditions to allow long-								
	life times that can be scaled for use								
	in grid scale batteries.								

9. INTERNATIONAL INITIATIVES

Return to Top

The <u>IEA Technology Collaboration Programme (TCP)</u> supports the work of 38 independent, international groups of experts that enable governments

and industries from around the world to lead programmes and projects on a wide range of energy technologies and related issues.

Table 9.1: International Activities

Name	Туре	Description	UK Contact Point
IEA - Energy	IEA	Energy Conservation and Energy Storage (ECES) facilitates integral research, development,	Dr Shane Long, <u>BEIS</u>
Conservation	Technology	implementation and integration of energy-storage technologies, and published a 2018	
through Energy	Collaboration	Annual Report. The main focus is thermal energy storage, while two Annexes are concerned	
Storage (ECES)	Programme	with Electrical Energy Storage:	
		Annex 28, Distributed Energy Storage for the Integration of Renewable Energies (completed)	
		Annex 32, Modelling of Energy Storage for Simulation/ Optimization of Energy Systems	
		(currently running)	
		In June 2020 the IEA published a <u>Tracking report</u> , reporting that the size of the global market	
		fell for the first time in a decade.	
<u>European</u>	European	This cooperative platform was launched by the European Commission in October 2017, and	via the <u>European Battery</u>
Battery Alliance	Cooperative	includes the European Commission, interested EU countries, the European Investment Bank,	Alliance website
	Platform	key industrial stakeholders, and innovators. The objective is to create a competitive	
		manufacturing value chain in Europe with sustainable battery cells at its core, The Alliance	
		brings together more than 250 industrial and innovation actors, from mining to recycling,	
		with the common objective to build a strong and competitive European battery industry.	
		Batteries Europe, launched in 2019, is the European technology and innovation platform of	
		the European Battery Alliance.	

Name	Туре	Description	UK Contact Point
EASE -	European	EASE was established in 2011 and currently represents almost 40 members including utilities,	info@ease-storage.eu
<u>European</u>	Cooperative	technology suppliers, research institutes, distribution system operators, and transmission	or via <u>Regen</u> , a Partner
Association for	Platform	system operators.	Organisation
Storage of		The mission is to:	
<u>Energy</u>		 Stimulate the development and deployment of innovative & cost-effective energy storage technologies Promote a fair and future oriented energy market design that recognises storage as an indispensable element of the energy system Establish a platform for information-sharing on energy storage technologies and applications 	
		The <u>EC - European Technology and Innovation Platform on Batteries</u> was launched in February 2019 to provide support for research and innovation on all types of battery technologies, and consolidate the industrial basis for this sector.	

