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Abstract

There is pressing need to understand the potenitiamerging low carbon energy
supply technologies, and the learning processesf{ects) associated with them. In
particular, analytical approaches are needed tieadlale to balance simplification (to
allow comparisons between technologies), and coxtpléto recognise technology
specific enablers and barriers). In addressing i$ssie, this paper firstly briefly
reviews existing tools used to compare emergingnelogies, especially learning
curves and learning rates. Then, drawing on exgesbunts of learning effects for
several emerging low-carbon energy supply techne¢og novel framework based
on ‘learning pathways’ is developed. A learninghpays framing enables cross-
technology and inter-temporal analysis of learrpngcesses. Finally, research themes
are identified to further elaborate the learninthpeys approach.

1. Introduction
1.1 The research problem

The increasing urgency of climate change mitigahias focused attention on energy
system transformation so as to achieve radicalatezhs in carbon emissions. One of
the key dynamics — and uncertainties — associatgdthis transformation relate to
the development and deployment of low carbon ensugyply technologies.

After a long period of decline in energy R,D&D adly globally, associated with
economic liberalisation, there has been an upswinguch activity in recent years,
and there is now a number of emerging supply tdogmes at various stages of
development, each supported by particular polityaiives, investment programmes,
developer firms and research institutions. Makiagse of this activity — in terms of
systematic ordering, and judging its effectiveneshas become a major research
challenge, and effort, in its own right (see, feample, IEA/OECD, 2006, CEC 2007,
DTI, 2007). This is an inherently multi-discipliiyaresearch challenge, spanning
detailed technology-specific expertise, and systade knowledge and comparisons.

Despite a significant expansion of multi-disciplyaenergy systems research in
recent years, our present levels of understandirtgahnological innovation in the
energy sector — and how to best manage the inéwitedzertainties involved — remain
limited. A range of tools are drawn on, includieghnology roadmaps, energy system
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important aspects of system transformation, inclgdiystem reconfiguration, microgeneration and a
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models and scenario planning techniques. Eachthasréngths. Technology-specific
roadmapping exercises are able to identify (ankl tigether) the R,D&D challenges
involved in commercialising new technologies. Systaodelling enable comparison
between technology options, and between differessiple portfolios of technologies
in an overall energy mix. Scenarios allow more spéur explicitly considering
alternative possible system futures, and the impdacwvider social and economic
trends and potential disruptions.

All of these tools are limited in their ability tapture and compare the potentials and
uncertainties associated with early-stage techmedogRoadmaps are capable of
elaborating technology-specific enablers and barriesome detail, but may overlook
competition (and synergies) between technologiesad®aps may also lack
comparability, in articulating varied levels of amniusness across different research
communities, or differ significantly in terms ofeiin method and content. Energy
system modelling and scenarios offer standardisedparisons, but typically only
allow for rather crude representations of innovatativity in emerging technologies
on the basis of a small set of parameters, sudap@ital and operating cost, resource
availability and conversion efficiency. Innovatipnocesses (or learning effects) are
often represented by a single parameter —l¢hening rate— which may disguise
important differences between technology-specdariiing effects.

The (necessary) simplifications and abstractionssygtem modelling have their
dangers. Not least, they risk projecting an imafgerergy policy, in the realm of
supply-side options, as a matters of choosing bEtve®mpeting technology options
which can be made straightforwardly comparabletf®lars of future supply mixes
can then be assembled on the basis of their supremomic and technical metrics,
even though these data are, often inevitably, ambakly grounded in research
evidence. Recognition of the uncertainties embeddeduch projections may be
underplayed.

Alongside these modelling approaches, there isdy bbb social science-led research,
under the banner of innovation studies, which higité the many enablers and
barriers shaping the emergence of new energy sugglynologies. These mainly
qualitative accounts are informed by conceptuan&aorks such as technological
innovation systems (Jacobsson and Bergek, 2004pdscn et al., 2004, Hekkert et
al., 2007; Bergek et al., 2008) and the multi-lgweispective (Geels, 2004; Geels and
Schot, 2007). Typically, they reference the ranigactors and institutions involved in
sociotechnical change, and distinctive types ofnieg processes, such as learning-
by-doing, by-interacting and by-researching.

Clearly, there is a trade-off here between sersitio technology-system specifics,
and the abstractions and generalisations neededentble cross-technology
comparisons and system planning.

1.2 Paper Themes and Outline

This paper reports some of the findings of a cdissiplinary research group of the
UK Energy Research Centre (UKERC) on Learning Effemd Rates for emerging
energy supply technologies. UKERC’s Learning Efettorking Group (LEWG)
was established with the following aims:



* to identify and characterise key learning processes number of emerging
energy supply technologies

* to highlight the main issues associated with thpragentation of these
processes in cost and performance, as used innsygtte modelling
exercises

* to develop a common method for assessing learnifegte for early-stage
energy supply technologies

» to define the insights (and limits) associated withss-technology analysis of
learning effects for emerging energy supply tecbgials

A starting point for our work has been recognisithg need to strike a balance
between attention to specifics, and abstraction sangblification to enable system-
level assessments. This led to us to develop al aonadytical tool, or framing device,
to enable cross-technology comparisons, while siituring important technology-
specific differences of content and context: lg@ning-pathways matrix

UKERC’s LEWG brings together expertise across a lmemof emerging energy
supply technologies. The work of the Group has msged in the following steps:

1. An extensive review was undertaken of the learngffigcts and rates
research literature, as it applies to energy supgaiinologies and energy
systems modelling. (Over 100 research papers gaitsewere reviewed.)

2. The principle learning effects for several diffareenergy supply
technologies were characterised using qualitatte¢esients, ‘stages of
development’ analysis, and component analysis. Cemtamies were also
provided on the representation of technology-spel@arning processes in
learning rates and modelling exercises.

3. Drawing on the above contributions, a ‘learninghpatys’ (LP) matrix
was then constructed to allow for comparisons betwéhe learning
systems of different technologies, in terms ofrtinstorical development,
current status and prospects.

Each of these steps are described in more detelitsvb Firstly, Section 2 offers a
brief review of the difficulties associated withateing curve and learning rate
analysis for emerging energy technologies. SecBosummarises the technology-
specific contributions on learning effects from th€ERC Working Group. Section 4
introduces the learning pathways matrix, and hgttd some of the initial insights it
has provided. Finally, Section 5 summarises thepapd identifies issues for further
research.



2. Learning curves and learning rates

Discussions of future energy supply mixes ofterenreéb the commercialisation of
emerging energy technologies with reference taiegrcurves. Typically, these use a
single aggregatedearning rate to show a progressive decline in unit costs of
generation technology over time (more correctlythwaumulative deployment) (see
Figure 1, below$.
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Figure 1: Idealised Cost Curve for Energy Supply Tehnologies (Grubb, 2006)

The process of developing learning curves can be as an attempt to represent and
condense-down complex sociotechnical processesaisiagle modelling parameter,
the learning rate. Learning rates are appealin@user of their apparent ability to
capture and quantify technological change, andeptaj forwards — allowing system-
wide modelling exercises to take account of tecbgiokl learning.

The ‘headline message’ from learning rate repregiems of innovation is
straightforwards: given sufficient investment inptigyment, learning-by-doing will
drive down unit costs over time towards commers&ion. Indeed, given some initial
cost data, learning curves can be generated amdpekdted so as to calculate the
‘learning investment’ required to achieve cost-cefitiveness with existing, mature
technologies.

In practice, innovation processes are less prddetand manageable than this
suggests, and given the specificities and compésxiinvolved, our attempts to
compare different technologies on the basis ofiegr rates are likely to disguise
important differences. As is recognised in the aede literature, applying learning
rates for long-term energy system projections abj@matic (see, for example, Neij et
al., 2003; Nemet, 2006; Jamasb and Koéhler, 200de®®Im and Sundqvist, 2007;
Neij, 2008). Some of the difficulties here include:

» the presumed correlation between market growthcastireduction cannot be
assumeda priori. Case study research includes examples of energy

® The learning rate is the percentage reductiominaosts associated with each doubling of instialle
cumulative capacity. Figure 1, above is an illusteacurve, with the same learning rate used for al

technologies. In practice, energy system modellisgs technology-specific learning rates based on
research evidence.



technologies which fail to lower costs over timel avith deployment, despite
significant spending on development programmes.

* even where a correlation is observed, the directbbrcausality may be
unclear. Different learning processes mean that maductions mayesult
from market growth (via learning-by-doing), or bel@er of market growth
(via learning-by-research).

e using a single learning rate for an emerging teldgyo field is likely to
disguise significant diversity in terms plface, time andcontent
o despite a trend toward liberalisation and glob&bsa of energy
systems, learning effects and rates still exhibitsidderable geographic
diversity, across regions, nations and organisation
o0 even under stable economic and institutional const learning rates
may be expected to vary significantly over timetexhnologies pass
through different stages of development (see FigRrebelow).
Especially in a context of raised demands for enesystem
transformation, there is a need to allow for actoal potential
discontinuities, step-changes or radical breakitinsu
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Figure 2: Idealised Learning and Phases of Developnt
(Source: Colpier and Cornland (2002); adapted fronBoston Consulting
Group, 1972).

o learning effects vary considerably between differeachnology
systems within a field (e.g. wave and tidal enerfiygt and second
generation biomass), and across the componentsighagi the system
(e.g. power modules, balance-of-plant, fuel supgigins, etc.) (see
Figure 3, below).

* The need for more complex representations of iation processes, especially learning-by-research
as well as learning-by-doing, has led to the dgwmlent of ‘two-factor’ learning rates in recent sasd
(e.g. Koéhler et al., 2006). While these promise enmaaalistic representations of early-stage innovati
(where learning-by-research may be expected to k), they bring added data demands.
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Figure 3: Hierarchies in Learning Systems

While these temporal, place and content sensewitire ‘ironed out’ (and
therefore essentially ignorable) over long-run glostudies, they may well
affect innovation outcomes at any level of detatha national, organisational,
and research programme level.

* Finally, because the outputs of long-term modellexgercises are highly
sensitive to input data, seemingly minor differengeempirical learning rates
derived from different studies have dramatic impagh required learning
investments and timescales for commercial brealtiiro of individual
technologies, and, at the system level, optimatgnmixes.

Despite these limitations, learning curves andnliegr rates remain a useful (and
commonly adopted) tool for incorporating learninffeets into energy system
modelling, and their improvement and refinementl@some a highly active research
area in recent years. At the same time, their daakd suggest a research need to
supplement quantitative, aggregated analyses wiitier otools which, while also
simplifying to allow for comparison, retain greatechnology-specific complexity.

3. Learning effects and learning systems
3.1 Technology-specific learning effects

Section 2 suggested that our tools for comparinggergmg technologies need
adequate ways of capturing and representing diveiss a starting point for such an
approach, technology-specific descriptive accowftdearning effects for several
emerging power supply technologies were developgdmiembers of UKERC's
Learning Effects Working GroupThese accounts characterise learning effects for
different technologies, and provide a basis fonidging points of commonality and
disparity. The following are bulleted summariestsd accounts.

® Individual contributors here are: Bioenergy: Sepbablonski (Imperial College); Solar PV: Chiara
Candelise (Imperial College), Marine Energy: Hedejfrey (Edinburgh University); Nuclear Fission:
Paul Howarth (Manchester University); Nuclear Fasibavid Ward (UKAEA Culham); Carbon
Capture and Storage: Nils Markusson (Edinburgh ehsity).



Bioenergy

Bioenergy production systems are diverse and complee development of
empirical bioenergy learning curves is difficultyen the variety of fuel types,
plant scales and layouts, multiple outputs (eleityri heat, transport fuels,
materials), and location-sensitive cost and peréorce. Fuel costs are a
significant proportion of overall system costs. Agges with fossil fuel plants
are possible in some cases.

Compared to more modular technologies (such aspeindr or solar PV),
significant learning-by-doing occurs during plamecation and maintenance.
There has been relatively little research analgkisioenergy learning effects,
and published studies have tended to focus on ddrye scale plants. One
study of three plants (biomass CHP, fluidised bedebs, biogas plants)
suggested a 10% learning rate (Junginger et @§)20

Different learning processes dominate for techniedeveloped on a local or
regional scale (where learning-by-using and legntiy-interacting dominate),
and technologies developed globally (where locakselnination of global
knowledge becomes important).

Cost reduction is not guaranteed: one study obdeaveincrease of district
heating plant costs, associated with a lack of toang of plant performance.

Solar PV

The solar PV system comprises ‘power modules’ (soé#ls) and ‘balance of
systems’ (BoS) components. PV modules represenindr&/0% of total
system cost, and dominate learning analysis of PV.

There has been considerable learning curve analg§isconventional
crystalline Silicon (c-Si) modules, much less om tiim cells, almost nothing
on third generation technologies (e.g. organic rsaklls). This coverage
reflects the availability of historic data, ratlilean future market potential.

For pre-market technologies, expert elicitationhteques are used for
estimating the impact of step-change breakthroufihsse may be subjective.
There are very few studies of BoS costs, and thesédighly varied e.g. grid-
connected, off-grid, and regional differences insige and installation
techniques.

For conventional c-Si, learning priorities includell and module efficiencies,
cheaper feedstock production, reducing materiatedasconomies of scale,
production process automation and product stanzkerdn.

For thin film technologies, learning is focussedcefi efficiency, productivity
(by developing large scale continuous in-line peiun), and developing
flexible substrates to reduce installation costs.

Marine Energy

Learning is spread over a wide variety of concepits components, and at the
highest level, wave and tidal flow have differenhavation needs. At the
same time, some generic technologies and compoo#etsopportunities for
‘shared’ learning (e.g. materials, moorings, resew@ssessment).

There is limited operational data on prototype @eniance, and empirical
evidence of learning and cost reduction. Develognaetivity is tending to



focus on a few large-scale prototypes, up to ardiMw/, which offer limited
device iterations and learning opportunities.

Across the wider R&D community, there is an emphasn learning-by-
research given limited learning-by-doing opportunities. ditionally, an
emphasis on conventional designs / componentserrdttan more radical
options, possibly restricting step-changes in costs

The transfer of learning-by-doing within the ‘demeér community’ is limited
by commercial competition. These features may iotstpportunities for
learning and cost-reduction.

Learning priorities include:

o Knowledge transfer from other sectors, e.g. offshiadustry supply
chains, and understanding the costs of transfercoigponents to
marine environment.

o ldentifying opportunities for collaboration with har industries and
supply chain partners on potential ‘step-changsinelogies.

o Greater understanding of O&M costs, given very ti@diexperience in
real operating conditions.

0 At an appropriate stage of development, designexms to catalyse
cost reduction, and ‘designing-out’ expensive cpixe and
components.

Nuclear Fission

Nuclear power has a poor historic track-record obtcreductions with

deployment, associated with non-standard planthagld construction costs,
lack of financial scrutiny, complexity of safetyssgms and high costs of
regulatory compliance.

At the same time, there is some evidence of legrmiith deployment, for

example, the incorporation passive safe featuresnore recent reactor
designs.

Future nuclear plant build is likely to involve yaie sector developers
deploying standard global designs with little magdifion, and seeking fleet
build so as to cover ‘first-of-a-kind’ costs. Whepessible, systems will be
built around standard international engineering ponents, rather than
national supply chains

Key learning priorities:

o Within a generation, ‘fleet build’ cost savings ¢apital and O&M
costs (there is some international evidence hesgvrdrfrom Japan,
Korea, France).

0 Between generations, estimating cost reductionocaged with
projected shifts from Gen Il into Gen Ill and G&hdystems.

Nuclear Fusion

Fusion energy innovation involves the developménoree-off experimental
prototype designs. The system is highly co-ordahatéernationally, and over
time.

At the system level, costing issues relate to estimg how costs are expected
to change from one-off experimental systemsfirst-of-a-kind commercial
devices, and, eventually, multiple units.



At the component level, prototype fusion systemy b separated into novel
and conventional components. Conventional compsnan¢ estimated to
make up around 30% of overall system costs. Taneséi an overall system
learning rate, a single rate is used for all notezhs, typically 15%. A zero
learning rate is assumed for conventional companegiving an overall
system learning rate of 10%.

Industrial analogues are used for estimating legrnates where possible. For
example, learning rates for superconducting magreeestimated by analysis
of magnets used in MRI scanners.

Carbon Capture and Storage

A CCS technology system consists of three main @orapts: capture of
carbon dioxide from large point sources, mainly powstationstransport of
CO, to a suitable storage locatiostorage of the gas, including injection,
monitoring, and remediation.

There is a very small learning rates literatureC&@. This focuses mainly on
capture, which is expected to be the dominant@msiponent of the system.
CCS is an assembly of components and technolomes dther applications
and sectors. Transport, injection, etc., draws xpeeence from the oil and
gas industry. Capture draws on the chemical praugsedustry as well as
fossil-fuelled power generation technologies, husialso highly relevant to
learn from previous emissions control technologies.

The transfer of these technologies to the CCS sy#ateolves, for example,
the scaling-up of capture technology, and the nattgon of capture and power
generation plants. The integration of CCS with plogver plant system poses
technical as well as economic and regulatory chg#e. A business model to
drive the CCS value chain is needed.

The technology is large scale, in terms of largatahinvestments, onto large
point sources, possibly integrated into large pigehetwork infrastructures.
This scale creates a threshold for early investymex@n though the technology
Is associated with large companies.

The technology is generally considered ready fonatgstration of the first
full-scale, complete CCS system.

Nuclear Fusion

Fusion energy innovation involves the developménoree-off experimental
prototype designs. The system is highly co-ordahatéernationally, and over
time.

At the system level, costing issues relate to estimg how costs are expected
to change from one-off experimental systemsfirst-of-a-kind commercial
devices, and, eventually, multiple units.

At the component level, prototype fusion systemy b separated into novel
and conventional components. Conventional compsnan¢ estimated to
make up around 30% of overall system costs. Tanes#i an overall system
learning rate, a single rate is used for all notaghs, typically 15%. A zero
learning rate is assumed for conventional compayegiving an overall
system learning rate of 10%.



e Industrial analogues are used for estimating legrnates where possible. For
example, learning rates for superconducting magreeestimated by analysis
of magnets used in MRI scanners.

2.2 Learning Matrices and Stages of Development

Alongside the briefing notes on learning effectsl &marning priorities summarised
above, members of the LEWG also provided additiam@irmation in diagrams and
tables. This took two forms:
a. For diverse technological fields (such as bioenengg PV), different
systems or configurations were mapped onto a ‘stagdevelopment’
(or ‘innovation chain’) table.
b. For specific systems within a field, a componerdlgsis matrix was
used to differentiate between:

» Conventional component$or which limited future learning
opportunities may be anticipated (and a zero-léeaining
rate is often assumed).

* ‘Novel and specificc componentsfor which learning
processes are limited to within the system.

* ‘Novel and wider application componentsivhich enable
transfer of knowledge and components from othetosec

Given space restrictions here, only a few exampleportions of the ‘stages-of-
development’ and component analyses are providégpendix 1.

3. Comparing Energy Technology Innovation Systemsa ‘learning pathways’
model

3.1 Characterising Learning Systems: Generic Issues

Any effort at comparing different energy supplyheologies must recognise stark
divergencies in the development history, preseatustand future vision of ‘rival’
technologies. Technologies which are commonly gedutpgether in assessments of
low carbon energy system have obvious technicabh@mic, organisational and
political differences. For example, some techn@sghave demonstration or early
commercial devices already in-place, while others mot expected to become
available until the middle of the century at thédieat.

Despite these differences, a comparative readinlyeoéxpert summaries described in
Section 2 and Appendix 1 reveal a number of comrtfttemes. These reflect
underlying shared concerns, opportunities and éxarin the learning processes for
different technologies. These common issues include

1. Design consensus or design variegome technology fields (e.g. nuclear
fusion), have high degrees of technical design@osiss (and also institutional
co-ordination and concentration), while others.(bigenergy, marine energy)
span a wide variety of system designs and configurs, and also tend to be
much more institutionally diverse, fragmented oerewompetitive. To some
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extent, this relates to the stage of developmertheftechnology, with more
well-developed fields expected to have establishdugh degree of design
consensus, and to exhibit less institutional ditgrs

. An emphasis on either relativeipcremental progression of systems and
components, or on moradical step-changes within a field, at the system or
component level. Some fields (e.g. nuclear fissiarg characterised by a
relatively incremental progressions between systarages over time, while
for some other fields (e.g. marine, PV) there msatgr emphasis on capturing
step-change reductions in cost from developingdemoying radical systems
or components.

. Associated with radicalness or incrementalism,dififerences in théearning
styles being prioritised, in terms of the emphasis learning by research
(through dedicated R&D efforts) éearning by doingthrough demonstration
programmes and deployment of early designs). Ths® aelates to an
emphasis on eithatedicated learningvithin a technology field, olearning
by adaptionof components developed in other fields,kapwledge transfer
from more mature technologies.

. Scale effectsscale and learning are closely intertwined: fearaple, a large
number of small-scale prototypes offer, in genergigater ‘learning
opportunities’ than fewer larger-scale devices [N&008), and also provide
greater opportunities for upscaling as part ofrieittost reductions.

. Capital Intensity and Modularitpf technology systems: emphasis here varies
between priority on reducing capital cost composéetg. marine devices, PV
modules or running/operating costs (e.g. for sonoenergy systems), and
also of themodularity versus morebespokesystems. Modular systems in
general offer greater opportunities for learninighaugh fleet build of large
plant may also provide significant opportunities lEarning by doing.

. Geographic aspectstechnology systems can be characterised by having
relatively globalised or relatively localised learning systems (and also
location-dependent or location-independent perfocea and impacts).
Geographic dimensions also include perceivearket potentiatsfor some
fields, innovation activity and investments may fedicated on capturing
mainstream market share, while for other fieldshai/ local applications may
be important, especially for initial deployments.

. Policy mechanisms, institutional/organisational erdgsts, and funding
arrangementsThe perceived market potential of emerging tetgies also
relates closely to their ability to attract and ntisb economic, organisational
and political resources. In particular, the relatoontributions opublic and
private finance and the relative role here of ‘technology push*rarket-
pull’ mechanisms have powerful impacts on the dyisanand styles of
learning pursued.

11



3.2 Two-parameter modelling

In seeking to develop a comparative framework witlwhich to consider these
themes, a first step was to position them on atgpecaccording to the degree to
which they appear to emphasise more fundamertelynical issuesn one hand, to
more fluidsocial issuegeconomic, institutional, and organisational) ba bther hand
(Figure 4, belowS§.

. . . Co- Public /
Design Capital Learning-by-  ordination Private
Radical or Consensus Intensity doing or of the Funding
Incremental or Variety or Fuel Learning-by-  Innovation  ix
Systems and Intensity research System
Components
Modular/ Scale Niche or Policy and
Bespoke Effects Knowledge Mainstream Regulatory
Units Transfer Markets Framework
‘Technical’ ‘Social’
Issues Issues

Figure 4: Generic socio-technical issues in learnghsystems characterisation

To enable comparison between different fields, adensed representation of the
themes and issues described above was needed.islneffiort, predominantly
‘technical’ and predominantly ‘social’ issues wegeouped together under two
headings: an incremental-radical parameter (whickbie to absorb many of the more
technical issues described above), and secondlygoracentrated / distributed
parameter (which captures many of the more sociahsiitutional issues described
above). These two parameters are understood assesgpations of distinctive (though
not wholly independent) socio-technical aspectkeafning, as represented in Figure
5, below.

/ ‘Technical’ Character '\ ‘Social’ Character of "
! of Learning Systems: ! \ Learning Systems: \
i Radical or Incremental 1 Concentrated or 1
\ Systems and \ | Distributed H
Y Components \ /  Institutions /

Figure 5: Condensed Parameters for Learning SysteAnalysis

® It is important to note that there is no real siimh here, and what might be considered more rigid
technical matters, such as prototype design, aglglshaped by more ‘fluid’ social issues, such as
available financial and political resources
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Given that they appear to capture distinctive duesliof learning effects, these two
parameters were then displayed as x and y axesrtothe Learning Pathways Matrix
(figure 6, belowy.

Radical
innovation
Low coordination High coordination
Distributed Concentrated
Incremental
Innovation

Figure 6: Socio-technical Learning Pathways Matrix
3.3 Applying the Learning Pathways Matrix

This section outlines how the learning pathways )(LRatrix has enabled a
preliminary cross-technology and inter-temporal panson of learning effects
associated with different energy supply technolegign Figure 7, below, two
contrasting technology fields are represented: meaghergy: a relatively diverse field
with multiple emerging prototype designs, spanrting distinctive sub-fields (wave
and tidal flow energy); and nuclear fusion, a ratlibut much more highly co-
ordinated field, with international R&D activity ighed around a much smaller
number of design prototypes.

Marine

Fusion
Radical

Distributed Concentrated

WV

Incremental

v

Figure 7: Marine Energy and Fusion Energy LearningFields

" This selection was also informed by wider analysésnovation studies, and existing models of a
similar kind applying to the governance of innowatsystems In particular Smith et al.’s, (2005)
‘typology of transition contexts’. Where Smith acmlleagues focus on governance and institutions at
the ‘meso-level’ regime, our interest here is ratiere with socio-technical processes in emerging
niches, and on explicitly representing technicalva$ as social shaping.
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As Figure 7 illustrates, a single technology fisfthns a range of innovation activity
within its borders, and this range may be expettelle higher for more distributed
(or less highly co-ordinated) fields.

Technology fields may incorporate both radical amdre conventional/incremental
systems (e.g. marine energy spans relatively cdiorenl horizontal axis tidal flow
technologies, and also more radical offshore wasgture prototypes). Typically,
radical systems are less well-resourced, portraydide model as radical tails linking
to incremental ‘bodies’, as shown in Figure 8, lelo

The thickness of the border around the field iguse(roughly) indicate the levels of
resourcing of innovation activity. The solid bordedicates that flows of information
and resources can pass relatively easily withimelal.f For example, more radical
components and component configurations may berpocated in successive
generations of technology systems over time.

This was observed in the evolution of windpowerhteogy: following the
emergence of windpower as a modern supply techgologthe 1970s, it has
progressed from a weakly co-ordinated, low consemsd poorly resourced system
(spanning a range of more or less radical desigashecome, today, a highly co-
ordinated international industry, dominated by feternational manufacturers, and
a clearly dominant design. The most successfulvation systems for windpower
were characterised, initially, by a relatively iegrental adoption of conventional
components (drawn from other sectors, such asdggnial equipment); over time,
these were able to incorporate more components faplical / ambitious programmes
(Figure 8) (Garud and Karnde, 2003).

Radical
A

Distributed Concentrated

N\ >

today

Incremental

Figure 8: Evolution of windpower learning field ove time
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Reflecting their different origins and drivers, fdient technology fields show
different development pathways over time. While dgower has developed via a
predominantly incremental pathway, from a relagveleakly co-ordinated system
initially dominated by small-scale developers, tBelar PV field, since its first

emergence as a tightly co-ordinated technology ciestsnl with the NASA space

programme, has, in the course of its commerciatisadiversified and become less
tightly-co-ordinated. As shown in Figure 9, beldhe PV field now spans a range of
different applications and component configuratjofrem relatively incremental

systems silicon-based power modules, to more rhticafiim and organic cells.

Radical 1 @

'

Distributed tpday Concentrated

Incremental

v

Figure 9: Evolution of PV learning field over time

The different quadrants of the learning matrix associated with different

entrepreneurial, financial, organisational andiingonal interests. To a large extent,
these interests govern the learning and innovadroness for technology fields which
reside in them. Different technological and finahciisks are acceptable to the
interests of the different quadrants, and as tdolgyosystems evolve over time, they
attract different organisational and institutiomalerests. Figure 10 illustrates this,
with stylised labels indicating the kinds of intet®ethat dominate in each quadrant.

From our interest centralised electricity producfidmigure 10 also suggests that the
goal for emerging supply technology systems — twb® an established, commercial
power generation technology — means migrating & kbttom right quadranthis
guadrant is characterised by a highly coordinatesicentrated and well-integrated
system of centralised utilities and governmentitimbns, and relatively incremental
and low-risk innovations.

8 Innovation and learning processes that may leafibt@xample, a more decentralised generation
system, are not represented here.
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Radical

Small-scale start-ups / spin- ‘Big-technology’

offs State / military R&D
Universities
Distributed Concentrated
SMEs Commercial Mainstream
Solo inventors In-house R&D

Incremental

Figure 10: Organisational Interests and Learning Qadrants

There are different aspects to the opportunities adrallenges for movement around
the matrix. For example, the ‘coordination challengf moving from the left hand
side of the matrix to the right, and the ‘technatagj challenge’ involved in moving
from top (radical) to bottom (incremental). As dttated by Figures 7, 8 and 9 above,
different emerging technological fields originatedifferent socio-technical contexts,
and so prospective learning pathways will necelysdiffer.

4. Conclusions
4.1 Summary and Discussion

This research is informed by the need for improwederstanding of emerging energy
supply technologies, and to find methods of analydiich, while facilitating system-
wide comparison across technological fields, alfonthe specifics and contingencies
of technological learning systems. Established icgetior energy system analysis,
such as learning curves and learning rates, althamgortant and useful — and the
subject of much ongoing research interest — hay@fgiant limitations here.

While the quantification of learning effects for defling exercises inevitably

involves simplification and generalisation, our ibapremise is that qualitative
analytical frameworks and case study evidence ofirtelogy-specific innovation

systems, or wider sociotechnical systems accourgeaotechnical change, can help
inform and contextualise system modelling accounts.

The original research reported here was initiateddmi-standardised descriptions of
the main learning effects for a range of technolbelgs, drawing on the expertise of
members of the UKERC Learning Effects Working Grolwsing these accounts,
cross-technology analysis allowed for identificatiof generic themes (similarities
and contrasts) across different technologies. farther step of generalisation, two
parameters were chosen to characterise learnintensgs— incremental-radical
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innovation and concentrated-distributed co-ordorati— forming the ‘learning
pathways matrix’.

Together, these two parameters capture somethitigeociotechnical complexity of
learning effects. The coordination dimension sengesighlight important ‘social’
(organisational, institutional, economic, and pglicelements of technological
learning, while the innovation dimension recognis@portant differences in the
‘technical’ character of change. The pathways matilows for incorporating
research insights from the rich innovation studitesature on learning, such as terms
of coordinating and linking actors together, ane distributed creation of variety in
early-stage innovation (Jacobsson and Bergek, 20@dobsson et al., 2004). The
approach also recognises the structures and baaesdhat shape learning within and
across technological fields.

In relation to existing literature on technologit@nsitions (Smith et al, 2005; Geels
and Schot, 2007), the learning pathways approaghlights the diversity of niche
origins of emerging technological fieldSuch differences imply different conditions
for learning in early stage development, and difiérin becoming established.
Different niche origins lead on to different leargi pathways, with different
governance and policy needs along the way.

This paper has set out a novel model of learnirfigcef analysis that allows for
greater complexity and specificity than aggregajedntifications such as learning
rates, whilst still allowing for comparisons betwedechnological fields. The learning
pathways matrix highlights points of similarity addferences in the origins, status
and prospects between emerging energy supply texies — and the need to
recognise these differences in policy and goveraahalso allows for elaborations of
the dynamics of technological fields over time, afdvariety in terms of systems,
components, and resource flows. As such, this g¢exdsology analysis has already
provided useful insights.

4.2 Future Research

A number of themes from this research deserve duittention. Firstly, the issue of
how different niche origins shape learning pathwaysd the potentially ensuing
regime transitions. The cross-technology analyp@@ach chosen here offers good
scope for further work along those lines. Seconthyg, policy implications of the
pathways approach should be analysed further. Touehappears to offer new ways
of analysing which policies may be suitable fortjgatar technologies. There may be
scope here for identifying groups of technologiethwimilar pathways that can be
targeted together, offering a middle ground betwaedividual support, and
generalised “technology-blind” policy.

Thirdly, it is worth considering opportunities fantegrating learning pathways
analysis with learning rates approaches. It is ipssgthat more elaborate uses of
learning rates are able to capture some of contgl@fithe pathways model. For
example, the different pathways portrayed here ccdad illustrated with stylised

° There is a degree of arbitrariness here, sindent@ogies have multiple “roots” starting pointserté
are significant differences in the sociotechnidaracter of emerging niches.
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learning curves, and patterns of change (in termgnitial variety, later cost
reductions, technology transfer and step changespcated different ‘ideal
pathways could be assembled.
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APPENDIX 1: Learning Matrices for Emerging Energy Supply Technologies
Figure Al: Solar PV (Part)

Technology component /
sub-unit

Development Stage /

Primary Learning Mechanism(s)

R&D

Demonstration

Commercialization

Market accumulation

Diffusion/Fully
commercial

Cell/module: crystalline
silicon technology

Still supported, but gg

cost reduction. Estimated 40% by 2010

od potential for quick ™

Cell/module: thin film
technologies

Smaller mark
Good potenti
efficiencies a

et share than c-Si.
al for increase in
hd decrease in costs

Thin film on flexible
substrates

<Y

Cell/module: other concepts
technologies

e.g. High efficiencies (llI-V
compounds), dye sensitized
cells, organic cells)

Some pilot pr
UK, university

pjects. In
spin-offs

Concentrating PV

<
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Figure A2: Bioenergy (Part)

Technology component /

sub-unit

Development Stage /
Primary Learning Mechanism(s)

R&D Demonstration Pre-Commercial Supported
Commercial

Fully Commercial

Conversion (part)

Modern stoves and heat-
only boilers

Pressing and extraction for
bio-oil

Biomass cofiring (>50MW)

Gasification for power
production in large units

Indirect firing for kW-scale
power / CHP production
using Stirling engine

Fast pyrolysis for bio-oil
Gasification as basis for

hydrogen production (for
fuel cells)
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Figure A3: Nuclear Fission (Part)

component / sub-unit

Technology

Component Characterisation
(assumed learning effects)

Conventional
limited / zero future learning

Novel & specific
learning limited to the specific
technology

Novel & wider application
learning involves other sectors.
Adoption in the specific
technology may involve
additional learning

Reactor Internals and

Vessel

Limited opportunity for novel
development. Conventional
manufacturing technology based
on heavy engineering (ship
building etc)

Steam Generators and

Pressuriser

Limited opportunity for novel
development. Conventional
manufacturing technology based
on heavy engineering (ship
building etc)

Containment Vessel

Novel and Specific, passive safe
systems alter containment vessel
design and some future designs
with inherent safety have no
containment vessel.

Control & Instrumentation

Some learning from outside the
industry based on other industries
(computer industry and
application in oil, gas etc)
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Figure A4: Wave Energy

. , Component Conventional Novel Novel
aalm e pie topic no learning Specific W idespread
. Ballast mass X
Device :
Structure Device X
structure
Generator X X
Controls X
Electrical O ffshore power X X X
collection &
transmission
Anchors X
; M ooring lines X X
Moorings F ittings/release X
mechanism
Power storage X X
M echanical Hydrayllcs X X
Turbine X
Seals X
Control Controlsyste_m X
Instrum entation X
Assembly X
Insurance X
Project X
A uxiliary management
Operation and X
m aintenance
Installation X X X
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Figure A5: Carbon Capture and Storage
(adapted from IPCC, 2005)

Capture Transport Injection System
integration
Post- Pre- Oxyfuel Pipelines | Shipping| EOR Depleted | Aquifers
combustion [ combustion (onshore)| oil and | (on- and
gas fields | offshore)

Mature X

market

Economically | X X X X X

feasible under

specific

conditions

Demonstration X X

Research X
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Figure A6

: Nuclear Fusion (Part)

Technology component / Component Characterisation
sub-unit (assumed learning effects)
Conventional Novel & specific Novel & wider application
limited / zero future learning learning limited to the specific learning involves other sectors.
technology Adoption in the specific technology
may involve additional learning
Superconducting magnets X
Buildings X
Vacuum Vessel X
Blanket/Shield/First wall X
Heating systems X
Turbine plant X
Heat Transport X
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