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Executive Summary 

Ever wondered how transport decision-making varies across individual (consumers), 
organisational (fleet managers, local authorities) and policy (central government) levels? Or 
how these decisions impact on energy systems? If so then quantifiable decision support tools 
may provide key supporting evidence on answering current policy questions such as the 
impacts and energy/transport interdependencies of road transport electrification, air 
pollution mitigation and dwindling energy tax revenues. 

There is broad agreement on the need for substantial use of low carbon and local air 
pollutant vectors in the medium to long term in the transport sector. It is well known that 
societal energy consumption and pollutant emissions from transport are not only influenced 
by technical efficiency, mode choice and the pollutant content of energy, but also by lifestyle 
choices and socio-cultural factors. However, only a few attempts have been made to 
integrate all of these insights into systems models of future transport energy demand or even 
scenario analysis. Across the world a range of macro-economic and energy system wide, top-
down models are used to explore the potential for reductions in energy demand, carbon 
emissions and air pollution in the transport sector. These models can lack the bottom-up, 
sectoral detail needed to simulate the effects of integrated demand and supply-side policy 
strategies to reduce emissions (Creutzig, 2015). There are also concerns that the pace and 
extent implied by many modelling studies is problematic and that assessment of (a) the 
heterogeneity in the market, (b) other low carbon vectors (e.g. conventional hybrids, 
hydrogen fuel cell) and (c) life cycle energy and environmental impacts have been relatively 
neglected. 

Bridging the gap between short-term forecasting and long-term scenario models, the 
Transport Energy and Air pollution Model (TEAM) represents a major update of the UK 
Transport Carbon Model (Brand et al., 2017; Brand et al., 2012). 

TEAM is a strategic transport, energy, emissions and environmental impacts systems model, 
covering a range of transport-energy-environment issues from socio-economic and policy 
influences on energy demand reduction through to lifecycle carbon and local air pollutant 
emissions and external costs. TEAM is built around exogenous and quantified scenarios, 
covering passenger and freight transport across all modes of transport (road, rail, shipping, 
air). It provides annual projections up to 2100, is technology rich with endogenous modelling 
of 1246 vehicle technologies, and covers a wide range of output indicators, including travel 
demand, vehicle ownership and use, energy demand, life cycle emissions of 26 pollutants, 
environmental impacts, government tax revenues, and external costs. 

TEAM can be used to develop transport policy scenarios that explore the full range of 
technological, fiscal, regulatory and behavioural change policy interventions to meet climate 
change, energy security and air pollution goals. 

This Methodology Guide describes the model in detail, including the overall methodology, 
core methods, functional relationships, data flows and main data sources.  

 

  



11 

 

1. Introduction 

1.1 Purpose of this Guide 

This Methodology guide describes the Transport Energy Air pollution Model (TEAM) in detail. 
The TEAM is a highly disaggregated, bottom-up system modelling framework of transport 
energy use and life cycle pollutant emissions. It provides annual projections of transport 
supply and demand, for all passenger and freight modes of transport, and calculates the 
corresponding energy use, life cycle pollutant emissions and environmental impacts year-by-
year up to 2100. It takes a holistic view of the transport system, built around a set of 
exogenous scenarios of socio-economic and political developments. The model is technology 
rich and, in its current version, provides projections of how different technologies evolve over 
time for hundreds of vehicle technology categories, including a wide range of alternative-
fuelled vehicles such as more efficient gasoline cars, hybrid electric cars, plug-in hybrid panel 
vans, hydrogen fuel cell trucks, battery electric buses and advanced aircraft. The current 
version (v2.5) includes 1,246 such vehicle technology categories. TEAM is specifically 
designed to develop future scenarios to explore the full range and potential of not only 
technological, but fiscal, regulatory and behavioural change transport policy interventions. Its 
high level outputs include travel demand, vehicle ownership and use, energy demand, annual 
and cumulative life cycle emissions, environmental impacts and external costs. 

The latest version of TEAM provides significant improvements in three areas: 

1. It extends previous market and consumer segmentation work for the private car 
market to the fleet and company car market and integrates this into a whole-systems 
transport-energy-environment modelling framework previously developed and 
applied in policy modelling studies (Anable et al., 2011a; Anable et al., 2012; Brand et 
al., 2013; Brand et al., 2012). This specifically addresses the need to integrate 
behavioural realism into whole systems transport-energy-environment models and to 
upscale the insights from place-based research and behavioral sciences (Creutzig, 
2015; Sims et al., 2014). 

2. It improves the way passenger travel demand is simulated over the longer term. By 
pursuing a more flexible approach that explores uncertainty in a scenario setting that 
originates in the Shell scenarios in the 1970s, TEAM now simulates passenger 
transport demand by simulating demand for travel with endogenously applied 
assumptions on how key drivers of travel demand affect trip patterns by trip purpose, 
trip distance, modal split, modal shift and occupancy rates, and how these may evolve 
over time (domestic passenger transport only). For freight transport and international 
aviation, demands are calculated endogenously year by year up to 2100 employing a 
typical econometric demand model. 

3. It adopts a revised base year (2012) and longer timeframe (up to 2100) in line with 
energy systems and climate models such as TIMES/MARKAL. This should make it 
easier to couple and ‘soft link’ sectoral and economy wide models. 
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1.2 Setting the scene: strategic modelling of the transport-energy-
environment system 

Essentially three different approaches have been pursued for strategic modelling of the 
transport-energy-environment (TEE) system (for an overview see e.g. Burgess et al., 2005). 
This involves: 

1. top-down equilibrium or optimisation models such as PRIMES (Syri et al., 2001) and 
MoMo (Fulton et al., 2009); 

2. bottom-up simulation models such as TRENDS (Georgakaki et al., 2005), TREMOVE 
(De Ceuster et al., 2004), Zachariadis (2005) and Schäfer and Jacoby (2006), and; 

3. transport network models such as ASTRA (Martino and Schade, 2000), SCENES (IWW 
et al., 2000) and EXPEDITE (de Jong et al., 2004). 

The majority of these models were designed to explore specific policy questions, focusing on 
economic and technology policy interventions and their effects on transport demand, with 
some modelling of (direct) energy use and emissions. They often lack the detail necessary to 
model national low carbon policies that go beyond techno-economic policy options, e.g. 
policy aimed at changing travel behaviour. Models based solely on econometric approaches 
are deemed to be inappropriate for looking into the medium to long term future, as societies, 
preferences and habits (and thus elasticities) change. 

At the national level a number of models exist, see e.g. de Jong et al. (2004). In the UK, no 
truly integrated (and independently operated) TEE model existed until the late 2000s, with 
policy makers relying on running different sets of models such as the (road) National 
Transport Model (NTM; DfT, 2005), with separate models for rail, aviation and navigation. In 
addition, transport and climate mitigation policy is informed by energy and economy systems 
modes such as the MARKAL/TIMES suite of models (Loulou et al., 2004), seeking to explore 
intra-sector dynamics and trade-offs. Although the models cover the majority of GHG 
emissions sources and types, they do not project full life cycle emissions. Finally, and crucially 
for the research community, assumptions and methods of government run models are often 
not explicit, making independent scenario planning and policy analysis difficult. The lack of an 
integrated policy-relevant life cycle model of carbon and local air pollutant emissions from 
transport was the main motivation for the development of the TEAM. 

2. TEAM Overview 

2.1 Approach 

The TEAM provides annual projections of transport supply and demand, for all passenger and 
freight modes of transport, and calculates the corresponding energy use, life cycle emissions 
and environmental impacts year-by-year up to a set target date (up to 2100, depending on 
the policy or research question). It takes a holistic view of the transport system, built around 
a set of exogenous scenarios of socio-economic and political developments. The model is 
technology rich and, in its current version, provides projections of how different technologies 
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evolve over time for more than 1200 vehicle technology categories, including a wide range of 
alternative-fuelled vehicles such as more efficient gasoline cars, hybrid electric cars, plug-in 
hybrid vans, battery electric buses and advanced aircraft. However, the TEAM is specifically 
designed to develop future scenarios to explore the full range and potential of not only 
technological, but fiscal, regulatory and behavioural change transport policy interventions. 
Figure 1 provides an overview of the system components which include: 

1. a set of quantified scenarios which describe a range of possible external political and 
socioeconomic developments envisaged up to 2100; 

2. a set of single policy options and multiple policy packages that include fiscal, technical, 
regulatory and demand management measures; 

3. four linked models of the transport-energy-environment system, and; 

4. a graphical user interface, to set up and run the model and view key modelling 
results.  

Figure 1: Components of the Transport Energy Air pollution Model 

 

Together with the policy and scenario components, the models are linked by: 
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model; 
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 interface data tables, containing all the variables and values which need to be 
transferred from one model to a subsequent model and to the results database; 

 the results database, containing all the simulation modelling results the user might be 
interested in, calculated for a user-defined set of alternatives1. The main outputs 
include travel demand, vehicle stock, energy and fuel demand, fuel tax revenues, 
annual and cumulative life cycle emissions, environmental impacts and external costs. 

2.2 Background scenarios 

The basic idea of using ‘background’ scenarios in TEAM is to introduce wider contextual 
factors and consideration of uncertainty into the analysis of transport policy and technology 
take-up. The set of background scenarios describes a range of possible external political and 
socio-economic developments envisaged to 2100 or earlier. In TEAM, up to four exogenous 
scenarios can be developed as four internally consistent possible futures. The futures are 
quantitatively specified by a set of exogenous variables which may affect the outcomes of the 
models, while being outside the control of the transport-energy-environment system. These 
variables include changes in national GDP, pre-tax energy prices, demographics, household 
disposable income and maximum car ownership levels. The purpose of the scenarios is to 
provide a series of contexts within which the UK transport system may develop over time so 
that alternative policies can be tested for robustness against the uncertainties in the political, 
socio-economic and technological spheres. 

Each background scenario in TEAM can describe an internally consistent trajectory of 
exogenous development for the next 40 years or so. Together, the background scenarios are 
meant to span the credible range of uncertainties of interest to stakeholders. When talking 
about exogenous developments, we mean factors that are external relative to the transport 
system in the UK but nevertheless salient to its evolution, and specifically to the evolution of 
transport demand and the deployment of transport technologies. Factors internal to the 
British transport system are, in principle, to be dealt with in the modelling chain of the TEAM 
system. 

Driving forces, which are high in impact and uncertainty, are at the core of the scenarios.  
These can be identified and characterised through extensive consultation with external 
experts, as performed in similar exercises around the world (see e.g. the visioning work by 
Hickman and Banister, 2006). The resulting scenarios should highlight different developments 
along the “dimensions” of governance and people’s values and perceptions, primarily in the 
UK. In order that the set of scenarios covers a sufficiently wide range of possibilities, each 
scenario is relatively extreme – albeit plausible. Descriptions of the most likely developments 
would be of little help in coping with uncertainty. 

Of course, a set of four scenarios cannot cover all possible combinations of variations in 
external factors. Developments and occurrences that are weakly linked to the core features 

                                                                 

1 Each alternative represents one combination of scenario and policy package. For example, different 
levels of gasoline and diesel taxation could be defined and calculated as a set of alternatives. 
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of any specific scenario may occur in any of the four scenarios. This could e.g. be shock 
events, a new oil crisis or different trajectories for demographic data. 

In modelling terms, the set of scenarios provides input data to the TEAM modelling system 
according to a vector of scenario variables, shown in Table 1. For each variable, scenario and 
year, data are given in a scenario database. The TEAM system provides default data for all 
variables. The user can modify these variables that do not relate strongly to core features of 
the scenarios, within certain limits. (Such variation is actually recommended, to provide a 
sensitivity/uncertainty analysis.) 

Table 1: Description of TEAM background scenario variables 

Description Form of variable Can be 
modified 
by user? 

   

Annual rate of GDP growth %, per year Yes 

Number of households index Index relative to base year Yes 

Fuel price index (pre-tax): 

 Crude oil 

 Natural gas 

 Biomass 

 Electricity 

Index relative to base year Yes 

Vehicle price index (pre-tax), for 
small, medium and large cars 

Index relative to base year Yes 

Load factor index (by vehicle type, 
urban and non-urban) 

Index relative to base year Yes 

Electricity generating mix % share, for each year, of crude oil, coal, 
hydro, natural gas, photovoltaics on buildings, 
nuclear, biomass, wind & wave, imports to 
total electricity generated 

Yes 

Extra-UK freight growth rate %, per year Yes 

Changes in 

 average speed (motorway, 
rural roads) 

 frequency of cold starts 

 idling time 

% change over the period base year-2100.  
Used as a look-up table to guide user 
modification of assumptions entered in the 
DEEM, rather than as a direct quantitative 
input. 

Yes 

Change in transport intensity of 
GDP 

 passenger 

 freight 

Index relative to base year, influencing the 
elasticity of transport demand 

No 

Index of passenger transport split 

 private car 

 public transport 

 air 

Index relative to base year, influencing the 
elasticity of transport demand 

Yes 

Index of freight transport split 

 road 

 rail 

Index relative to base year, influencing the 
elasticity of transport demand 

Yes 
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Description Form of variable Can be 
modified 
by user? 

Split of demand between journey 
segments for car trips 

 urban 

 rural 

 motorway 

Index relative to base year Yes 

2.3 Policies and policy packages 

The policy options include fiscal measures such as vehicles and fuel taxes, regulatory 
measures such as fuel economy standards, information and education policies and 
investment and planning policies. Table 1 provides a list of the main policy options that can 
be modelled in TEAM, and their primary and secondary effects. Importantly, policy packages 
of two or more policies listed in the Table can be modelled at the same time in an integrated 
and internally consistent manner. 

Table 2: List of the main policy options that can be modelled in TEAM, and their effects 

Policy  Primary (and secondary) effects Model 

Fiscal 

Company car tax fleet car technology choice, (demand) VSM/TDM 

Vehicle circulation tax road vehicle technology choice, (demand) VSM/TDM 

Vehicle purchase tax / feebates vehicle technology choice, (demand) VSM/TDM 

Car scrappage incentive/rebate private car technology choice, car 
ownership, (demand) 

VSM/TDM 

Fuel taxation (by volume or carbon 
and local air pollutant content) 

vehicle technology choice, (demand) VSM/TDM 

Road user/congestion charging 
(graduated) 

vehicle technology choice, (demand) VSM/TDM 

Parking charges vehicle technology choice, (demand) VSM/TDM 

   

Regulation 

Fuel economy standards 
(voluntary, compulsory) 

Technology innovation in new vehicle 
fleets, vintaging (demand) 

VSM/TDM 

Regulation for low rolling 
resistance tyres and tyre pressure 
monitoring 

vehicle emissions factors DEEM 

Speed limits and enforcement road vehicle speed profiles and emissions 
factors 

DEEM 

Fuel obligations (e.g. Renewable 
Transport Fuel Obligation) 

carbon and local air pollutant content of 
blended fuel, vehicle emissions factors 

DEEM 

Low emission zones (carbon and 
local air pollutant) 

‘redistribution’ of traffic to low emissions 
vehicles in access areas (e.g. urban) 

VSM 
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Policy  Primary (and secondary) effects Model 

High occupancy vehicle lanes average load factors, (average speeds 
and emissions) 

VSM, 
(DEEM) 

   

Information, education, smart/soft measures 

Travel plans (individualised, 
residential, workplace, schools) 

travel activity, modal shift, average 
distance travelled by car 

Scenario  

Eco-driving / driver behaviour vehicle emissions factors DEEM 

Labelling technology choice (via preference 
parameter) 

VSM 

Car sharing / pooling  load factors, car demand VSM/TDM 

   

Planning and investment   

Parking space availability car ownership (second, third+ car) VSM/TDM 

Rail electrification direct emissions, indirect emissions 
(electricity generation) 

 

Changes in electricity generation indirect emissions from (plug-in, battery) 
electric vehicle use 

LCEIM 

Additional public transport 
infrastructure, e.g. high speed rail 
investment 

indirect emissions from manufacture, 
(modal shift, induced demand) 

LCEIM, 
(Scenario) 

Note: TDM = transport demand model, VSM = vehicle stock model, DEEM = direct energy use 
and emissions model, LCEIM = life cycle and environmental impacts model. 

2.4 The graphical user interface 

The user accesses the model mainly via a newly developed graphical user interface (GUI) 
which serves as the main portal for setting up the exogenous scenarios, endogenous policies 
and policy packages, running of the modelling chain, visualisation of the results in tabular and 
graphical form, and semi-automated export to Excel or similar analysis software packages. 
TEAM has been developed in Microsoft Access (v2010) as a relational database system. The 
main menu form of the GUI is shown in Figure 2. For further information on how to use TEAM 
refer to the existing UKTCM user guide (Brand, 2010), which is available to download from 
the UKERC website (www.ukerc.ac.uk). 

 

http://www.ukerc.ac.uk/
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Figure 2: Screenshot of the main menu of the TEAM user interface 

 

2.5 The core modelling system 

The four linked simulation models represent the core of the modelling system and describe 
the transport system and calculate their impacts. They are: 

1. the transport demand model (TDM); 

2. the vehicle stock model (VSM); 

3. the direct energy use and emissions model (DEEM) and; 

4. the life cycle and environmental impacts model (LCEIM).  

The TDM calculates the overall level of transport activity and modal shares for passenger and 
freight movements. The VSM tracks the changes in the vehicle stock brought about by the 
overall demand for vehicles, the scrapping of old vehicles and the purchasing of new vehicles 
– potentially using new or improved propulsion technologies. This is highly disaggregated and 
involves comparing hundreds of alternative vehicle technologies in any year, totalling over 
1,240 technologies that are ‘vintaged’ in order to simulate innovation over time. Table 3a 
summarises this for passenger and Table 3b for freight transport technologies. The outputs of 
the VSM are the total vehicle kilometres and number of vehicles (split by technology) each 
year.  

Table 3a: Summary of TEAM vehicle technologies for motorised passenger transport 

Vehicle type Size Primary fuel Engines/ drivetrains No. of 
vintages/ 
innovations 

Car Small Gasoline  ICV, HEV, PHEV 29 

 (A/B segments) Diesel ICV 10 

  Electric Battery EV 12 

  H2, LPG, CNG FC, ICV 20 

 Medium Gasoline  ICV, HEV, PHEV 30 

 (C/D segments) Diesel  ICV, HEV, PHEV 30 
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  Electric  Battery EV 10 

  Biodiesel (B100) ICV 3 

  Bioethanol (E85) ICV 9 

  LPG, CNG ICV 20 

  H2  FC 2 

 Large Gasoline  ICV, HEV, PHEV 30 

 (C/D segments) Diesel  ICV, HEV, PHEV 30 

  Electric  Battery EV 8 

  Biodiesel (B100) ICV 3 

  Bioethanol (E85) ICV 9 

  LPG, CNG ICV 20 

  H2 FC 2 

Motorcycle (one size) Gasoline ICV 3 

  Electric Battery EV 3 

  H2 FC 2 

Bus Mini Gasoline  ICV 3 

  Diesel ICV, HEV 22 

  Electric  Battery EV 3 

  LPG, CNG ICV 18 

  Bioethanol (E85) ICV 9 

  Biodiesel (B100) ICV 3 

  H2 FC 1 

 Urban Diesel ICV, HEV, PHEV 30 

  Electric Battery EV 9 

  LPG, CNG ICV 18 

  Bioethanol (E85) ICV 3 

  Biodiesel (B100) ICV 3 

  H2 FC 6 

 Coach Diesel ICV, HEV 22 

  Electric Battery EV 9 

  LPG, CNG ICV 18 

  Biodiesel (B100) ICV 3 

  H2 FC 6 

Rail Light, metro, urban Diesel  ICV 3 

  Grid electricity Electric  3 

 Regional  Diesel  ICV 3 

  Grid electricity  Electric 3 

 Intercity  Diesel  ICV 3 

  Grid electricity  Electric 3 

 High speed Grid electricity Electric 3 

Air General aviation Jet A-1 Turboprop  1 

 Short haul, dom. Jet A-1, Bio jet Turbine  9 

 Medium haul, int. Jet A-1, Bio jet Turbine 9 

 Long haul, int. Jet A-1, Bio jet Turbine 9 

 Supersonic, int. Jet A-1, Bio jet Turbine 9 
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Table 3b: Summary of TEAM vehicle technologies for motorised freight transport 

Vehicle type Size Fuels Engines/ drivetrains No. of 
vintages/ 
innovations 

Trucks & Six van types:  Gasoline  ICV 73 

Vans   Panel & side Diesel ICV, HEV, PHEV 175 

   Car derived Electric Battery EV 60 

   Pickup & 4x4 Biodiesel (B100) ICV 54 

   Drop & Tipper Bioethanol (E85) ICV 54 

   Box, Luton, Insul. LPG, CNG ICV 114 

   Other H2 FC 36 

 Medium HGV Diesel  ICV, HEV 14 

 (3.5t - 16t GVW, Electric Battery EV 3 

 +non-articulated) Biodiesel (B100) ICV 4 

  LPG, CNG ICV 19 

  H2 FC 7 

 Large HGV Diesel  ICV, HEV 15 

 (>16t GVW, Biodiesel (B100) ICV 4 

 +articulated) LPG, CNG ICV 19 

  H2, biomethanol  FC 7 

Rail Regional  Diesel  ICV 3 

  Grid electricity  Electric 3 

Shipping Inland Diesel  ICV 2 

 Coastal Diesel  ICV 2 

 Maritime Diesel  ICV 2 

Air Short haul, dom. Jet A-1, Bio jet Turbine  9 

 Medium haul, int. Jet A-1, Bio jet Turbine 9 

 Long haul, int. Jet A-1, Bio jet Turbine 9 

 Supersonic, int. Jet A-1, Bio jet Turbine 8 

Where: HGV=heavy goods vehicle; LCV=light commercial vehicle; GVW=gross vehicle weight; 
ICV=internal combustion engine vehicle; HEV=hybrid electric vehicle; PHEV=plug-in hybrid 
electric vehicle; H2=hydrogen (gaseous or liquid); B100=100% biodiesel; E85=85% 
bioethanol-15% gasoline blend; LPG=liquefied petroleum gas; CNG=compressed natural gas; 
dom.=domestic; int.=international; Jet A-1=aviation jet fuel (kerosene) 

 

The DEEM takes data from the VSM to calculate direct2 emissions and energy consumption 
due to the different vehicle technologies that comprise the vehicle fleet.  The model 
produces information on emissions of carbon dioxide (CO2), carbon monoxide (CO), nitrogen 
oxides (NOX), sulphur dioxide (SO2), total hydrocarbons (THC) and particulate matter (PM). 
(The DEEM can also be linked to a Traffic Noise Model (TNM) which estimates the areas 

                                                                 

2 ‘Direct’ also refers to ‘tailpipe’, ‘source’ or ‘end use’. 
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affected by various levels of noise.) The LCEIM has two functions. First, it provides an energy 
and emissions life cycle inventory due to the manufacture, maintenance and disposal of 
vehicles, as well as infrastructure contributions (e.g. embedded emissions from building high 
speed rail tracks). The inventory also provides energy use and emissions over the fuel 
production cycles for the different fuels used by different vehicle technologies. Secondly, the 
LCEIM estimates the environmental impacts of the overall levels of emissions by providing a 
series of ‘impact indicators’, such as global warming potential, as well as monetary valuation 
of the damage associated with such emissions levels (external costs). 
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3. Transport Demand Model 

3.1 Approach 

The function of the transport demand model (TDM) is to project transport demand for the 
years up to 2100. As future demand for transport is highly uncertain, the aim of the TDM is 
merely to develop a set of plausible developments of transport demand as a function of 
scenario variables (such as changes in populations, incomes, fuel prices and demographics) 
and costs of current and future transport technologies.  

Given the timescale involved, the TDM is not intended to provide an accurate prediction of 
the most likely future development of transport demand. The choice of the appropriate 
modelling approach has been determined by a trade-off between the required high level of 
detail and the availability of data. 

In order to disaggregate the results for about 20 transport demand categories, a hybrid 
approach of combining detailed simulation of passenger travel patterns with econometric 
modelling of freight and international aviation demand. For each of the main modes of 
transport (Table 4), demand is either: 

 simulated with endogenously applied assumptions on how key drivers of travel 
demand affect trip patterns by trip purpose, trip distance, modal split, modal shift and 
occupancy rates, and how these may evolve over time (domestic passenger transport 
only), or; 

 calculated endogenously year by year up to 2100 employing a typical econometric 
demand model (freight transport and international aviation). 

In the simulation, passenger demand is essentially decoupled from traditional econometric 
forecasting in that the user specifies key drivers of demand, including changes to trip 
frequencies by purpose (e.g. commuting, shopping), mean distances and occupancy rates by 
mode. This allows exploring more radical changes in travel patterns, lifestyles and systemic 
changes that are not easy to model using standard econometric techniques that essentially 
project historic choices (revealed through elasticities of demand) into the future.  

In the simple econometric model, the evolution of demand for freight (and international 
aviation) depends on exogenous scenario parameters such as future estimates of GDP/capita, 
the number and structure of households and the population’s propensity to travel. It is also 
affected by the evolution of energy prices and average ownership and operating costs for 
each vehicle type, dependent on the technologies in the vehicle fleet and the levels of 
taxation, via a feedback loop from the vehicle and policy cost sub-modules. 

This hybrid approach aims to provide a set of plausible developments of transport demand – 
it is not intended to provide an accurate prediction of the most likely future development of 
transport demand to 2100. 

Table 4: The TEAM transport demand segments 

Passenger demand segments Freight demand segments 

Mode Journey segment Mode Journey segment 

Walking Urban  LCV (vans) Urban  
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Cycling Urban / non-urban  Rural 

Motorcycle Urban   Motorway 

 Rural HGV (trucks) Urban  

 Motorway  Rural 

Car  Urban   Motorway 

 Rural Rail Dedicated rail freight 

 Motorway Navigation Inland / domestic 

Bus Local bus (urban)  Coastal / domestic 

 Coach (motorway)  Maritime / intern. 

 Minibus (rural) Air freight Domestic short haul 

Rail Light rail and underground  International medium haul / 
Europe 

 Regional rail  International long haul / 
intercontinental 

 Intercity rail  International supersonic 

 High speed rail   

Passenger 
air 

Domestic short haul   

 International medium haul / 
Europe 

  

 International long haul / 
intercontinental 

  

 International supersonic   

Where: HGV=heavy goods vehicle (trucks over 3.5t GVW); LCV=light commercial vehicle (vans 
1-3.5t GVW) 

The amount of demand calculated in the TDM influences the development of prices in the 
Vehicle Stock Model (VSM) in the same year. The development of prices in the VSM then 
influences the development of demand in the TDM in the following year. This allows us to 
calculate a near-equilibrium between supply and demand. The final outputs of the demand 
model are passenger transport demand (expressed in passenger-kilometres), freight 
transport demand (expressed in tonne-kilometres) and passenger occupancy rates (load 
factors for freight) for the demand segments summarised in Table 4. 

The approach outlined above is deemed appropriate for the following reasons: 

 The development of passenger transport demand (in passenger-km) is dependent on 
changes in demographic, socio-economic and structural factors, including changes in 
transport costs/prices, land use, employment patterns, access to and use of ICT, and 
so on. GDP/capita is less of a factor for passenger demand than for freight. 

 The development of freight transport demand (in tonne-km) is strongly dependent on 
GDP/capita and population growth as well as structural changes (land use, logistics). 

 The freight elasticities used in the TDM can vary from year to year. This reflects a 
change in consumption preferences and avoids a simple translation of the 
developments of the past into the future. 
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 The freight elasticities used are short-run elasticities and reflect the dependence of 
transport demand on GDP/capita and population growth in a given period – in a single 
year in TEAM. Studies have shown that there is a difference between short-run and 
long-run transport demand elasticities. In the short run, incomes/prices influence the 
spontaneous decision of making a trip and also the decision concerning which 
transport mode is used (e.g. in the short run, a van has already been purchased and 
‘only’ the variable costs of a trip are decisive). In contrast, in the long-run, changes in 
incomes and prices can lead to a lasting change in consumer/business behaviour and 
can also influence the vehicle purchase decision. This difference between short-run 
and long-run effects has been taken into account in an indirect way in TEAM. On the 
one hand, the elasticities used in the TDM reflect the short-run effects of prices/costs 
on transport demand. On the other hand, the VSM handles long-run effects on 
transport demand like vehicle purchasing cost, which are transmitted to the TDM via 
the average transport costs. 

 The design of the TEAM does not allow for a feedback between transport prices and 
GDP, which would be desirable from a theoretical point of view, but can only be 
realised with a complex (combined economic and transport demand) modelling 
approach performed by an equilibrium modelling software like GAMS. However, from 
a practical point of view this is not necessary as long as the policy effects (of raising 
fuel duty, for example) are moderate. A good way to estimate the effect of the 
missing feedback would be to compare TEAM with an economy-wide systems model. 
The transport demand results, the changes in transport costs and the amount of 
transport taxes over the modelling years obtained from a TEAM modelling run could 
be used as input for an economic model. This would show the effect on the 
development of GDP and a possible correction to the GDP scenario to be used in a 
repeat of the modelling run. This type of modelling exercise was performed during 
the Energy2050 project at the end of UKERC Phase I. 

3.2 Overview of the demand modelling specification 

At the top level transport demand is split into passenger transport (the demand for 
transporting people) and freight transport (the demand for transporting goods). Figure 3 
outlines the structure of the TDM. Based on scenario, context and policy variables such as 
demographic, socio-economic and fuel tax projections, step A calculates overall transport 
demand for passenger and freight. In step B changes in modal make up of total passenger 
and freight demands are derived on the basis of relative changes in average ownership and 
operating costs for each mode. The relative changes of supply costs for each mode of 
transport fed back from the VSM lead to an income effect influencing the level of demand 
and a substitution effect causing a change in the relative transport volume shares for each 
mode. Step C merges the outputs of steps A and B, checks for internal consistency and finally 
provides modal shares for each demand segment. 
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Figure 3: Outline structure of the TDM 

 

3.2.1 Domestic passenger transport 

In step A, the passenger transport demand model simulates passenger travel demand as a 
function of key travel indicators structured around data obtained from the UK National Travel 
Survey (DfT, 2016), including the average number of trips and average distance travelled per 
person per year. These were further disaggregated by seven main trip purposes: 

1. commuting, 
2. business, 
3. long distance leisure, 
4. local leisure, 
5. school/education, 
6. shopping, 
7. other. 

For each of those the demand model disaggregates trip frequencies by eight trip lengths:  

1. under 1 mile, 
2. 1-2 miles, 
3. 2-5 miles, 
4. 5-10 miles, 
5. 10-25 miles, 
6. 25-50 miles, 
7. 50-100 miles, and 

 
Policy and Context Variables
(e.g. GDP, fuel tax, elasticities)

B: Calculating modal shift 
Output: shif ts in passenger km / tonne km by mode

A: Calculating total transport demand 
Output: aggregate passenger km / tonne km

Input from the VSM:
average ownerhsip and operating costs/prices for 

each vehicle type, RC

C: Calculating modal shares

Output
passenger km / tonne km by mode
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8. more than 100 miles. 

Passenger transport is further disaggregated by twelve modes of passenger transport: 

1. walk, 
2. bicycle, 
3. car/van driver, 
4. car/van passenger, 
5. motorcycle, 
6. local bus, 
7. coach, 
8. rail and underground, 
9. other private including shared taxi, 
10. taxi, 
11. domestic air, 
12. other public. 

International air travel is modelled separately as a function of income (GDP/capita), 
population and supply and policy costs (see next section).  

TEAM-UK was calibrated to UK national statistics for the year 2012 (DfT, 2014d). We obtained 
Special Licence Access to the National Travel Survey dataset (DfT, 2016) and used SPSS v23 to 
derive average trip rates, distance travelled and mode splits for the UK. A similar exercise was 
undertaken to set up and calibrate the Scottish version, STEAM. 

Default (i.e. reference) transport demand projections are usually simulated based on ‘no 
changes’ in trip patterns3 (i.e. trips and distance travelled per person p.a., and mode split) 
apart from lower commuting levels due to an ageing population, and average demand 
elasticities (of GDP/capita, population and generalized cost) for international air and freight 
transport (Dunkerley et al., 2014; Sims et al., 2014). In contrast, alternative demand 
projections can be modelled by changing the underlying drivers. For example, recent work on 
Scotland analyzed consequences for travel patterns of future changes to ‘lifestyles’ and social 
norms. This took as its starting point the figures for current individual travel patterns based 
on Scottish data in the UK National Travel Survey (DfT, 2016). The Scottish data was analyzed 
so as to derive figures for each journey purpose (commuting, travel in the course of work, 
shopping, education, local leisure, distance leisure and other) in terms of average number of 
trips, average distance (together producing average journey length). In addition, mode share 
and average occupancy were altered based on an evidence review (e.g., Cairns et al., 2004, 
2008; Petrunoff et al., 2015; Scottish Government, 2013) relating to the impact of transport 
policies and current variation in travel patterns within and outside Scotland.  

3.2.2 Freight  

Total freight demands are derived using a simple transport demand function that relates 
demand (dependent variable) with explanatory variables such as scenario context variables, 
policy variables and other TEAM input variables. In essence, freight demand is simulated as a 

                                                                 

3 This applies to the Reference case only. Average distance travelled vary by propulsion technology 
(e.g., diesel cars travel further per year than petrol or EV cars, based on national statistics). 
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function economic activity (GDP/capita) and population, with reference demand elasticities 
taken from a RAND Europe study (Dunkerley et al., 2014). Steps A and B can be summarised 
in an econometric function of exogenous parameters, together with their respective 
elasticities of demand. This takes on the form shown in Equation 1: 

Equation 1: The main TEAM demand function 
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where  T  = demand for travel (expressed in passenger-km and tonne-km) 

 GDP = Gross Domestic Product 

 NHH = total number of households 

 RC = relative vehicle ownership and operating costs 

 EX = elasticity with respect to X 

 n = modelling year (currently 2012, 2013, …, 2100) 

 

As mentioned above, in the short run incomes/prices influence the spontaneous decision of 
making a trip and also the decision concerning which transport mode is used. In contrast, in 
the long-run, changes in income and in prices can lead to a lasting change in people’s 
behaviour and can also influence vehicle purchase decisions (for a good review see Goodwin 
et al., 2004). The difference between short-run and long-run effects has been taken into 
account in an indirect way in TEAM. The first two elasticities in Equation 1 reflect the short-
run effects of changes in prices/costs/population on transport demand. The third elasticity 
reflects the long-run effects of relative changes of vehicle ownership and operating costs as 
fed back by the vehicle stock model. 

To avoid a simple static approach the elasticities can take different values for each future 
year up to 2100. This dynamic approach allows modelling change in behaviour and 
preferences and avoids a simple projection of the past into the future. The estimation of the 
parameters for the calculation of future demand is based on statistical data for previous 
years and on transport demand forecasts taken from other studies. This allows the 
researcher and user to specify a ‘base case’ or ‘reference’ scenario against which alternative 
scenarios are compared. 

3.3 The main TDM inputs 

The TDM uses a number of parameters to determine transport demand, which can all be 
readily modified by the user. The parameters can be divided into five groups. 

In the first group are income elasticities and population growth elasticities for each of the 
demand segments listed in Table 4. The income elasticities represent the dependence of 
transport demand growth on growth of income measured as GDP. The population growth 
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elasticities reflect the dependence of transport demand on the development of the 
population measured as the number of households. 

The second group concerns the passenger transport demand module, which requires trip 
frequencies, average trip lengths and mode shifts by trip length. As an example, the Scottish 
‘lifestyle’ scenario values are shown in Table 5 and  

Table 6 below. 

Table 5: Example of passenger travel demand indicators, Scottish ‘Lifestyle’ scenarios 

 2012 2020 2030 2040 2050 Comment/source 

Number of trips 
     

  

Commuting, 
reduction due to 
teleworking 

3% 4% 5% 10% 15% The uptake in teleworking is reinforced by tax incentives, 
travel plans, broadband-roll-out, and road user charges and 
parking charges. 

Business travel, 
reduction due to 
tele/video 
conferencing 

5% 6% 8% 17% 25% Going Smarter report (Scottish Government, 2013) 
concludes that tele/ video conferencing could reduce 
business trips by 18% after 10 years. Extrapolate this on to 
reach 25% maximum reduction in trips by 2050 on the 
basis that there are many business trips eg nursing which 
cannot be avoided. TC share in 2012 is assumed to be 5%. 
These proportional reductions will also apply to air trips. 

Local leisure, 
increase due to shift 
to more local trips 

0% 1% 3% 7% 10% There is a general shift in all age groups towards more local 
leisure trips for at the expense of longer trips, so a small 
increase is assumed due to this effect 

Long distance 
leisure in Scotland, 
increase due to 
holidaying at home 

0% 0% 0% 0% 0% Fewer people travelling abroad means more domestic 
holidays - however, the increase in weekends away will be 
neutralised by fewer distance day trips (due to affordability 
as price of travel increases) with people using their local 
area more instead 

Shopping, increase 
due to more walking 
and cycling 

0% 2% 5% 8% 10% Based on figures in Going Smarter report (Scottish 
Government, 2013) 

Shopping, reduction 
due to teleshopping 

0% 1% 3% 7% 10% Going Smarter report (Scottish Government, 2013) 
suggests that home shopping could reduce vehicle mileage 
for shopping by 4% after 10 years. Here we assume 3% 
trips by 2030 and 10% by 2050. (NB: van use goes up.) 

Other trips, 
decrease due to 
tele-activity 

0% 1% 3% 8% 12% It will increasingly be the norm to access many services 
such as banking and medical care on-line. 

Trip length 
     

  

Commuting, 
reduction due to 
more teleworking 

0% 1% 2% 4% 6% Teleworking abstracts the longer commute trips and 
therefore has a disproportionately large impact on average 
trips lengths. 

Commuting, 
reduction due to 
proximity principle 

0% 1% 3% 9% 15% The proximity principle assumes that there is a movement 
towards living closer work places. 

Business travel, 
reduction due to 
more tele/video 
conferencing 

0% 1% 3% 9% 15% Assumed that the longest trips are increasingly substituted 
by tele-video conferencing. 

Long distance 
leisure, more 
weekends away 

0% 0% 0% 0% 0% There are fewer day trips and more people cycling and 
walking from home but some longer holiday trips 
(weekends away) to replace travel abroad - means that on 
balance average distance stays the same. 

Local leisure, switch 
to local W&C trips 

0% 0% 0% 0% 0% Although there is a shift towards walking and cycling 
around the local area, this does not reduce the average 
length of local leisure trips. With leisure, it is mainly modes 
that change, not the number or length of trips. 
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School, reduction 
due to proximity 
principle 

0% 1% 3% 9% 15% School selection policy is revised to insist that 'local schools' 
are chosen. 

Shopping, reduction 
due to more local 
shopping 

0% 2% 5% 10% 15% Restriction of cars in urban areas means that shorter, local 
journeys become more attractive. 

Other trips, 
reduction due to 
proximity principle 

0% 1% 3% 9% 15% Re-introduction of local clinics, post office/ banking services 
etc especially in rural areas. Restriction of cars in urban 
areas means that shorter, local journeys become more 
attractive. 

 

Table 6: Example of mode shift by trip length, Scottish ‘lifestyle’ scenarios 

Trip length Mode shift 2020 2030 2050 

0-1 miles from car/van driver to walk 2% 8% 20% 

from car/van driver to bicycle 1% 5% 13% 

from car/van driver to local bus 1% 3% 8% 

from car/van passenger to walk 2% 8% 20% 

from car/van passenger to bicycle 1% 3% 8% 

from car/van passenger to local bus 1% 3% 8% 

from local bus to walk 1% 5% 13% 

from local bus to bicycle 1% 3% 8% 

1-2 miles from car/van driver to walk 3% 10% 25% 

from car/van driver to bicycle 1% 5% 13% 

from car/van driver to motorcycle 0% 1% 2% 

from car/van driver to local bus 1% 3% 8% 

from car/van passenger to walk 3% 10% 25% 

from car/van passenger to bicycle 1% 5% 13% 

from car/van passenger to motorcycle 0% 1% 2% 

from car/van passenger to local bus 1% 3% 8% 

from local bus to walk 1% 5% 13% 

from local bus to bicycle 1% 3% 8% 

2-5 miles from car/van driver to walk 1% 5% 13% 

from car/van driver to bicycle 1% 5% 13% 

from car/van driver to motorcycle 0% 1% 2% 

from car/van driver to local bus 1% 5% 13% 

from car/van passenger to walk 1% 4% 10% 

from car/van passenger to bicycle 1% 4% 10% 

from car/van passenger to motorcycle 0% 1% 2% 

from car/van passenger to local bus 1% 5% 13% 

from local bus to bicycle 1% 5% 13% 

from rail/underground to bicycle 1% 5% 13% 

5-10 miles from car/van driver to bicycle 1% 3% 8% 

from car/van driver to motorcycle 0% 1% 2% 

from car/van driver to local bus 2% 8% 20% 

from car/van driver to rail/underground 1% 3% 8% 

from car/van driver to MaaS 1% 5% 13% 

from car/van passenger to bicycle 1% 2% 5% 

from car/van passenger to motorcycle 0% 1% 2% 
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from car/van passenger to local bus 1% 5% 13% 

from car/van passenger to rail/underground 1% 3% 8% 

from car/van passenger to MaaS 1% 3% 8% 

10-25 miles from car/van driver to bicycle 1% 2% 5% 

from car/van driver to motorcycle 0% 1% 2% 

from car/van driver to express coach 1% 5% 13% 

from car/van driver to rail/underground 3% 10% 25% 

from car/van driver to MaaS 2% 8% 20% 

from car/van passenger to bicycle 0% 1% 3% 

from car/van passenger to motorcycle 0% 1% 2% 

from car/van passenger to express coach 1% 3% 8% 

from car/van passenger to rail/underground 2% 10% 25% 

from car/van passenger to MaaS 1% 5% 13% 

25-50 miles from car/van driver to express coach 2% 10% 25% 

from car/van driver to rail/underground 2% 10% 25% 

from car/van driver to MaaS 1% 5% 13% 

from car/van passenger to express coach 1% 5% 13% 

from car/van passenger to rail/underground 2% 10% 25% 

from car/van passenger to MaaS 1% 5% 13% 

50-100 miles from car/van driver to express coach 1% 5% 13% 

from car/van driver to rail/underground 2% 10% 25% 

from car/van driver to MaaS 1% 5% 13% 

from car/van passenger to express coach 1% 3% 8% 

from car/van passenger to rail/underground 1% 5% 13% 

from car/van passenger to MaaS 1% 3% 8% 

>100 miles from car/van driver to express coach 1% 5% 13% 

from car/van driver to rail/underground 2% 10% 25% 

from car/van driver to MaaS 1% 5% 13% 

from car/van passenger to express coach 1% 3% 8% 

from car/van passenger to rail/underground 1% 5% 13% 

from car/van passenger to MaaS 1% 3% 8% 

from domestic air to express coach 0% 1% 5% 

from domestic air to rail/underground 1% 2% 9% 

Note: MaaS=Mobility as a Service, which includes taxi hailing mobile applications, car clubs and the tendency to hire shared 
PHEV for longer distance travel. 

The third group of parameters provides values for the spatial disaggregation of transport 
demand. Three values are given for each for the vehicle types motorcycle, car, bus, train and 
truck, which express the share of transport demand for the journey segment types urban, 
rural and highway. Passenger rail is disaggregated by urban rail (light rail, underground), 
regional rail (slow to medium regional services), intercity rail (fast inter-regional services) and 
high speed rail (currently only Eurostar services operating from London St Pancras 
International). Air travel is spatially disaggregated by domestic short haul, international 
medium haul (Europe), international long haul (intercontinental) and international supersonic 
(intercontinental). 

The fourth group of parameters provides yearly values for the average trip length for the 
vehicle types car, bus, motorcycle, plane and truck. These are used in the DEEM to calculate 
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cold start emissions as well as disaggregation of aircraft emissions by flight phases ‘cruise’ 
and ‘landing and take-off’ (LTO). 

The fifth group gives the cost elasticities of transport demand. These elasticities represent 
the dependence of transport demand growth on the change of relative costs provided by the 
VSM. Again the elasticities can be specified for each year to avoid a simple static approach. 
The TDM takes average weighted cost information for all motorised vehicle types (passenger 
transport: car, train, bus, plane; freight transport: truck, train, shipping, plane). The cost 
figures represent a weighted average of the running costs and purchase costs for a given 
vehicle type and year. The development of the costs over time is used in the TDM to 
determine the shift of demand between the vehicle types, for passenger and freight 
transport respectively. An example is shown for income elasticities in Figure 4. 

Figure 4: Screenshot of the TDM form to view and edit average transport cost elasticities 

 

3.4 Demand model calibration – UK case 

Background data were based on published statistics of transport, demographic and economic 
data for the UK. 

For passenger transport, trip rates, average distance travelled, trip distances and occupancy 
rates were calibrated to NTS 2012 figures (DfT, 2016). For example, the share of the UK 
population aged 65 or more years was 15.7% in 2012. This is expected to increase to 24.1% 
by 2050. 

For freight transport, demand elasticities for the UK were calibrated for the base year (2012). 
For future years up to 2100, the elasticities were dynamically reduced by about half to 
simulate saturation effects of demand vis-a-vis GDP/capita and population growth. The 
GDP/capita growth rates and population projections used in the UK calibration are shown in 
Figure 5. 
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Figure 5: Historic and projected GDP growth rates and number of households for the reference 
scenario 

 

Sources: demographic (ONS, 2012) and economic (HM Treasury, 2018a, b) data, and own 
assumptions for GDP beyond 2018 

 

In ‘simulation mode’ internal consistency checks can be carried out by comparing the 
elasticities implicit in the exogenous demand, GDP and population projections with published 
figures. For instance, Wohlgemuth (1997) provides short-run income elasticities of demand 
of between 0.23 (Europe) and 0.78 (US) for distance travelled by cars, 0.39 (Europe) for 
tonne-km by trucks and between 1.35 (Europe) and 1.75 (US) for passenger air miles 
travelled. These are comparable with other studies such as Goodwin et al. (2004). Assuming a 
long term GDP/capita growth rate of between 1.3% and 1.5% per year, Government 
projections of population growth and taking current demand projections based on DfT 
(2018b), the TEAM demand model calibration implied short term (up to 2025) elasticities in 
the range between -0.3 and -0.4 for distance travelled by car, between -0.7 and -0.8 for 
tonne-km by trucks and between -1.3 and -1.6 for passenger air miles – a reasonable fit with 
published data (Clements, 2008; see e.g. Goodwin et al., 2004; Wohlgemuth, 1997). 
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4. Vehicle Stock Model 

4.1 Overview  

The vehicle stock model (VSM) is the most complex of the four models employed in TEAM. It 
provides two key functions within the TEAM system: 

1. a breakdown of the numbers of vehicles present in the population, by vehicle type, 
size, technology and age, as input to the LCEIM; 

2. detailed disaggregation of the vehicle-kilometres produced in the TDM, in terms of 
vehicle type, size/class, propulsion technology and vehicle age, as input to the DEEM 
and the LCEIM. 

A crucial attribute of the stock model is that the user can test the effects of policy levers on 
the deployment of different technologies within the vehicle population. 

The basis of the vehicle stock model is the evolution of the vehicle stock, in size, age and 
technology terms, over time. In each year the structure of the vehicle population will change 
due to a combination of two processes: the purchase of new vehicles and the scrapping of 
old vehicles. The process is iterative, with changes year-on-year against the vehicle 
population distribution for the base year. New technologies enter the population through the 
purchase of new vehicles. 

For all vehicle types there is a common equation which describes the way the vehicle stock 
evolves over time (Equation 2). 

Equation 2: The basic formula for vehicle stock evolution 

 
 NewVehicles(y) = TotalVehicles(y) - TotalVehicles(y-1) + ScrappedVehicles (y-1) 

 

where y = modelling year, from (base year + 1) to end of modelling horizon 

 

To understand the processes for modelling vehicle supply and linking supply to demand, the 
processes are split into five separate modules: 

1. Vehicle supply (for cars at level of household car ownership); 

2. Vehicle scrappage; 

3. Technology availability for new vehicles; 

4. Technology choice for new vehicles (for cars, vans and trucks at levels of market 
segment and consumer segment); 

5. Vehicle-kilometre distribution. 

The key steps in calculating the vehicle stock for each vehicle type are summarised in the box 
and in Figure 6 below. During model run time, they are repeated for each year, background 
scenario, policy package and transport mode (car, bus, rail, etc). 
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Within the VSM, the calculation of the total number of different vehicle types in the stock 
each year is treated separately, as different forces are assumed to affect the entry of new 
vehicles into the stock. The background scenarios, which describe the societal factors and 
attitudes that partly determine vehicle ownership, affect the overall vehicle numbers in each 
year. The vehicle types modelled are motorcycles, three passenger car sizes/classes, urban 
buses, express coaches, mini buses, six types of vans, medium and large trucks, four aircraft 
sizes, four train sizes and three shipping vessel sizes. 

The entry of new car, van and truck technologies into the fleet is modelled differently from 
the entry of other new vehicle technologies by splitting the private vehicle market from the 
fleet/company market and applying a discrete choice modelling framework based on cost 
(e.g. upfront, running) and non-cost (e.g. make/model availability, charging availability, 
consumer preferences) attributes. 

Vehicle scrappage is essentially treated in the same way for all vehicle types and uses a 
modified statistical approach. 

The following sections provide the detailed model specification of each module, starting with 
the vehicle ownership modules. 

 

Key steps in calculating vehicle stock 

1. Import of passenger-kilometres and tonne-kilometres from the demand model 
2. Conversion of passenger-kilometres or tonne-kilometres produced by the demand 

model into vehicle-kilometres, based on average load factors 
3. Calculation of total vehicle numbers 
4. Calculation of total number of vehicles scrapped 
5. Calculation of total number of new vehicles needed to meet demand 
6. Calculation of vehicle costs for each technology based on technology costs and policy 

inputs 
7. Disaggregation of new vehicles by size/class and consumer segment 
8. Disaggregation of new vehicles by technology (fuel, engine type, hybridisation) 
9. Addition of new vehicles to the remaining vehicle stock from the previous year 
10. Disaggregation of vehicle-kilometres by technology 
11. Calculation of average costs per vehicle type, based on disaggregated vehicle numbers 

and vehicle kilometres 
12. Output of vehicle numbers and vehicle kilometres by technology and travel type to the 

DEEM and LCEIM 
13. Output of relative operating costs (RC) to TDM by vehicle type 
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Figure 6: Flow of calculations in the Vehicle Stock Model 
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4.2 Vehicle ownership 

The purpose of this module is to estimate the total number of vehicles necessary to fulfil 
consumer or fleet ‘demand’ in a given year. The number is obtained in a different way for 
each vehicle type. In particular, the more complicated procedure is that one used for cars, 
vans and trucks. The others are slightly simpler and similar to each other. The description is 
reported separately for each vehicle type. 

Definitions 

The whole set of years considered is defined as . The expression means 
that all the years are taking into consideration, otherwise the equation reports explicitly 

which one it refers to.  The base year is indicated with  or directly with 0. In the current 
version of the VSM, the base year is 2012. End year can be anything from 2013 to 2100. 

In the same way, the whole set of transport modes considered is indicated with

.  represents the set of scenarios. In addition, two others set were defined; one, 
Z, representing vehicle size (NB: not all vehicle types are broken down further by size), and 
the other, T, representing all available technologies for each vehicle type. 

4.2.1 Passenger cars 

The car ownership model projects future car ownership (by private and company/fleet 
owners), vehicle scrappage and vehicle sales, taking into account established scrappage 
rates, vehicle buyer behavior, consumer segmentation as well as market response to vehicles 
attributes, price signals and incentives (financial and otherwise). 

Total car ownership is modeled based on established methods (DfT, 2013; Whelan, 2007) 
taking into account household income, average vehicle costs, household location (urban, 
rural) and car ownership saturation rates for multiple car ownership. The module treats 
household ownership of a first, second and third or more car separately and draws on a 
number of explanatory variables such as changes in average new car prices, car ownership 
saturation levels, household location (urban, non-urban), household disposable income and 
availability of public transport. 

Overall levels of car ownership are expected to continue growing until a “saturation point” is 
reached.  To date no country in the world has reached such a saturation point, which is 
assumed to occur when all those able to drive have their own vehicle (leading to a level of car 
ownership of approximately 650 vehicles per 1000 population). European levels of car 
ownership vary considerably, with average EU-28 ownership of 505 cars per 1000 inhabitants 
in 2016. In 2016, Romania had the lowest car ownership level at 261 cars per 1000 
inhabitants, with Luxembourg (662) one of the highest and the UK below the mean at 469 
cars per 1000 inhabitants (Eurostat, 2018).  

The difference between overall levels of car ownership at the start of year n+1, levels of 
ownership at the start of year n and the number of vehicles scrapped during year n provides 
the number of new cars purchased in year n, for each successive year. 

},...,1{ nY  Yy

0y

},...,1{ mM 

},...,1{ rE 
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Car ownership is mostly modelled on a household basis, as it is considered to be at this level 
at which decisions are made. The level of car ownership is considered to be linked directly 
with changes in disposable incomes, which are in turn linked to changes in GDP, fuel prices 
and other household expenditure. The serious drawback of using a GDP-based model for 
levels of car ownership is that this precludes the option of de-coupling transport and vehicle 
demand from economic growth through policy intervention. 

The key variables used for modelling household car ownership are: 

 household structure (number of adults, number and age of children); 

 household disposable income (by year); 

 average new car price; 

 household location (urban and non-urban), linked to public transport availability; 

 car ownership saturation level (urban and non-urban). 

Apart from the average new car price all of the above listed variables are scenario variables, 
i.e. they are assumed to be external to the transport system. The average new car price in 
year n+1, on the other hand, is derived based on the average car price in year n, weighted by 
the vehicle-km for each car technology in year n. This includes any scenario and policy 
options applied, e.g. cost reduction of technology ‘x’ assumed in background scenario ‘y’, or 
graded purchase taxes or rebates assumed in policy scenario ‘z’. For example, the lower 
average car purchase price brought about by a national car scrappage scheme increases 
overall car ownership levels as long as the scheme is in place. Once the scheme is abolished 
the average car purchase price goes up again relative to no policy option, thus decreasing 
overall car ownership. 

The households are divided into three “ownership groups”, namely: 

1. households owning at least one car; 

2. households owning at least two cars; and 

3. households owning more than two cars or having a business car at their disposal. 

They are treated separately and a subscript letter c indicates which one has been considered, 

while the whole set is represented with .  The expression  means that 
there is an equation for each group otherwise the equation reports explicitly which one it 
refers to. 

As a further twist, households in different locations (urban/non-urban) are treated differently 
and in the same way a subscript letter l indicates which one has been considered, while the 

whole set is represented with . The product gives a total of six household 
categories. 

A schematic presentation of how total car ownership is derived in TEAM is shown in Figure 7. 

 

}3,...,1{C Cc
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Figure 7: Flow chart of how total car ownership is derived in TEAM 
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As specified in Equation 3, the total stock of cars Vy,v=1 for each year y is calculated by: 

 multiplying the share of households owning cars by the total number of households, 
disaggregated by ownership level and household location; 

 aggregating over household location and car ownership level. 

 

Equation 3: Calculation of total car ownership 

  

where  is the number of households for each year and location, 

and  represents the share of households falling in each category. 

 

While  is the user’s preferred population projection/forecast, the household 

hares  are endogenously modelled. The equations used to calculate the proportion of 

household with one, two or more than two cars ( ) are slightly different since buying a 
first car is considered to be a different type of decision than the purchase of a second, third 
or business car. 

In order to present the equations to calculate P, it is necessary to define a maximum level of 

the proportion of car ownership: .  It limits the overall growth level and it 
depends on many factors such as the proportion of the population able to drive and the 
household size distribution. 

Base year data  

The base maximum levels of car ownership in urban and rural areas are assumed to be 100% 
for at least one car, 70% for at least 2 cars and 30% for three or more cars. Rural shares are 
slightly higher at 100% (at least one car), 80% (at least two cars) and 40% (three or more 
cars). The base year levels in 2012 for urban areas in the UK are 71.2% for at least one car, 
22.3% for at least two cars and 4% for three or more cars. Rural shares are significantly 
higher at 88.9% (at least one car), 40.4% (at least two cars) and 7% (three or more cars). 

The maximum level of car ownership (i.e. the saturation level of the Sigmoid curve) is 
dependent on: 

 the share of the population who cannot drive (people below legal driving age); 

 the household size, which takes three values of: 1 person, more than 1 person; 

 the parking availability, a user-defined index (only applied to households in urban 
areas); 

 the availability of public transport (for households in non-urban areas). 
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The equation to calculate the maximum level of car ownership varies with the number of cars 
owned (dimension c). 

Calculating maximum car ownership for households owning at least one car 

For households owning at least one car, the equation used is the same for both urban and 
non-urban areas (Equation 4).  

 

Equation 4: Maximum car ownership for households owning at least one car 

  

where 

  

is the change of the share of the population able to drive relative to the base year. Dy is an 
exogenous scenario variable and can be changed by the user for each modelling year. 

Calculating maximum car ownership for households owning at least two cars  

For households owning at least two cars, the methods to calculate maximum car ownership 
are different for urban and non-urban areas. 

In urban areas (l = 1), this maximum level is given by a combination of the availability of 
parking space with the change in proportion of households with more than one person, as 
shown in Equation 5. 

 

Equation 5: Maximum car ownership for households owning at least two cars, in urban areas 

  

where 

  

is the ratio of the share of households with more than one person in the current year (mopy) 
to the share of households with more than one person in the base year (mop0), and 

  

is the parking availability index, related to base year availability. The index is an internal 
parameter of the VSM, and PA0 = 100 is assumed as the base year value. 

In non-urban areas (l = 2), on the other hand, the maximum level is given by Equation 6. 

 

Equation 6: Maximum car ownership for households owning at least two cars, in non-urban 
areas 
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where the first function, f3, is the same as in the sub-model for urban areas, representing the 
change in the proportion of household with more than one adult with respect to the base 
year, while the second one represents the availability of public transport in non-urban areas: 

  

where PKl=2,y is calculated as total bus and train passenger-km driven in non-urban areas: 

 

𝑃𝐾𝑙=2,𝑦 = 𝑃𝐾𝑀𝑏𝑢𝑠,𝑟𝑢𝑟𝑎𝑙,𝑦 + 𝑃𝐾𝑀𝑏𝑢𝑠,𝑚𝑜𝑡𝑜𝑟𝑤𝑎𝑦,𝑦 + 𝑃𝐾𝑀𝑟𝑎𝑖𝑙,𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙,𝑦 + 𝑃𝐾𝑀𝑟𝑎𝑖𝑙,𝑖𝑛𝑡𝑒𝑟𝑐𝑖𝑡𝑦,𝑦 

 

The maximum level of car ownership for households owning at least two cars is then 
aggregated over household locations, as shown in Equation 7. 

 

Equation 7: Maximum car ownership for households owning at least two cars, aggregated over 
geographical areas 

𝑀𝑎𝑥𝑂𝑤𝑛𝑐=2,𝑦 = ∑ 𝑀𝑎𝑥𝑂𝑤𝑛𝑐=2,𝑙,𝑦 ×
𝑁𝑢𝑚𝐻𝐻𝑙,𝑦

𝑁𝑢𝑚𝐻𝐻𝑦

2

𝑙=1

 

 

Calculating maximum car ownership for households owning at least three cars 

The maximum car ownership level for households owning at least three cars is assumed to 
stay constant over the modelling period, as specified in Equation 8. 

 

Equation 8: Maximum car ownership for households owning at least three cars 

  

 

Once the maximum level of car ownership is derived, the actual levels of ownership can be 
calculated as follows. 

Calculation of the share of households owning a least one or two cars 

The proportion of households owning at least one car or two cars is mainly determined by 
the ratio of disposable income for each household (Iy) to the average new car purchase price 
(Ry) through a sigmoid (S-shaped) curve.  As disposable income grows (or shrinks) the total 
level of car ownership will also grow (or shrink), but the rate at which this occurs depends on 
the car ownership elasticity (ey).  Moreover, to define the sigmoid function it is necessary to 
define the point where the slope changes.  In this case, the point is defined through the 

function  which represents the car ownership elasticity parameter; it is calibrated 
internally in VSM for the base year (y = 0) and stays constant over the modelling horizon. 

43
02222 f*f* MaxOwnMaxOwn ,,lc,y,lc  

yl

l

PK

PK
f

,2

0,24






033 ,l,c,l,yc  MaxOwnMaxOwn  

5f



42 

 

For each year, y, the share of households owning at least one or two cars is given by Equation 
9 below. 

 

Equation 9: Car ownership for households owning at least one or two cars 

  

where 

  

and 

  

  

 

The latter function updates the base value of the car ownership elasticity e0 for each car 
ownership type, household location and year. It is a function of the calibration parameter g 

and , which is given by: 

 

  

 

Share of households owning at least three cars  

For each year the share of households owning more than two cars or having a company car 
at their disposal is given by Equation 10: 

 

Equation 10: Car ownership for households owning at least three cars 

  

Where: 
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Fy
6 is the relative change in the share of households owning two cars. The idea is that the 

proportion of household owning three cars increases (or decreases) in the same way that the 
proportion of household with two cars increases (or decreases). 

4.2.2 Motorcycles 

When compared to the car model the motorcycle module is fairly simple and matches 
demand and supply (total ownership) by mapping the single motorcycle demand segment to 
the single ‘average motorcycle’ size category. Table 7 gives the main assumptions on vehicle 
capacities and load factors for the year 2012. These assumptions were derived from 
calibrating the model to national transport statistics for 2012 (DfT, 2016, 2017). 

 

Table 7: The main motorcycle model assumptions 

Vehicle size category Average capacity 
(AvgCap), 
in pass/vehicle 

Average load 
(AvgLF) (1) 

Average annual 
vehicle distance 
travelled 
(AveAnnKM) 

Average motorcycle  2 39% 4,053 

Notes: (1) the figures shown are for the year 2012. AvgLF derived from pkm and vkm data for 
2012 (DfT, 2016, 2017).  

 

These parameters feed into the calculation of total vehicle-km travelled, as shown in 
Equation 13. 

 

Equation 11: Motorcycle traffic by vehicle size category 

𝑉𝐾𝑀𝑦,𝑣=1,𝑠 =
𝑃𝐾𝑀𝑦,𝑣=1,𝑑

𝐴𝑣𝑔𝐶𝑎𝑝𝑠 × 𝐴𝑣𝑔𝐿𝐹𝑠
 

 

where: VKMy,v=2,s  = vehicle-km for year y 

 PKMy,v=2,d = passenger-km for year y 

 AvgCaps = average capacity (in passengers per vehicle) 

 AvgLFs  = average load factor (in % of capacity) 

 

The average load factor, AvgLF, and average annual distance travelled, AveAnnKM, are 
scenario variables and determine the total number of buses needed to fulfil demand 
(expressed in vehicle-km). Both AvgLF and AveAnnKM can be changed for each future year, 
thus making it possible to simulate futures with different vehicle utilisations and travel 
patterns. 

From this it is straightforward to calculate the total number of buses needed to fulfil demand 
by applying Equation 12. 
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Equation 12: Total motorcycle ownership 

𝑉𝑦,𝑣=1,𝑠 =
𝑉𝐾𝑀𝑦,𝑣=1,𝑠

𝐴𝑣𝑒𝐴𝑛𝑛𝐾𝑀𝑦,𝑠
 

 

where: Vy,v=2,s  = vehicle stock for year y 

VKMy,v=2,s  = vehicle-km for year y 

 AveAnnKMy,s = average annual vehicle distance travelled for year y 

 

4.2.3 Non-private vehicles 

The number of vehicles needed for commercial purposes (which includes all vehicles other 
than private cars and motorcycles) is dependent on the level of activity demanded coupled 
with the efficiency of vehicle operation, or the level of vehicle utilisation.  For passenger 
transport (including air) this depends on the number of passenger-kilometres demanded by 
the travelling public, together with vehicle capacities, loading factors on vehicles, service 
frequencies and timetabling considerations.  For freight transport this depends on the tonne-
kilometres needed, together with vehicle sizes, loading factors and vehicle scheduling. For 
road freight, overall truck and van ownership is also strongly linked to economic activity 
(GDP). 

The level of activity is an input from the TDM. However, vehicle utilisation is affected by 
possible policy options, such as: 

 deregulation/ regulation of services (e.g. airlines in Europe); 

 any fiscal measures affecting the balance of costs in the freight industry. 

The scenario and policy variables used for modelling ‘other’ vehicle ownership include: 

 GDP growth rates; 

 vehicle utilisation in the commercial sector. 

Note vehicle purchase price is not usually taken into consideration when calculating overall 
vehicle ownership levels for other vehicles than cars; it is considered that as GDP grows the 
relative price of a new vehicle is dropping and this is explained by the elasticity between GDP 
and vehicle ownership levels. 

4.2.4 Buses and coaches 

The TDM provides the number of passenger-km for three bus demand segments namely 
urban, rural and motorway/dual-carriageway. The bus module makes the simple assumption 
of mapping these demand segments to the three bus size categories included in the model, 
namely urban bus, mini bus (scheduled community bus in rural areas) and express coach (e.g. 
National Express, Airport links). Table 8 shows this mapping together with assumptions on 
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vehicle capacities and load factors for the year 2012, derived from calibrating the model to 
national transport statistics (DfT, 2016, 2017). 

 

Table 8: The main bus model assumptions 

Demand 
segment 

Vehicle size 
category 

Average capacity 
(AvgCap), 
in pass/vehicle 

Average load 
(AvgLF) (1) 

Average annual 
vehicle distance 
travelled 
(AveAnnKM) 

Bus, Urban Urban bus 50 22.7% 39,569 
Bus, Rural Mini bus 16 47.6% 13,970 
Bus, Motorway Express coach 50 35.2% 99,413 

Notes: (1) the figures shown are for the year 2012, based on national statistics (DfT, 2016, 
2017).  

 

These parameters feed into calculation of total vehicle-km travelled by each bus size 
category, as shown in Equation 13. 

 

Equation 13: Bus traffic by vehicle size category 

𝑉𝐾𝑀𝑦,𝑣=2,𝑠 =
𝑃𝐾𝑀𝑦,𝑣=2,𝑑

𝐴𝑣𝑔𝐶𝑎𝑝𝑠 × 𝐴𝑣𝑔𝐿𝐹𝑠
 

 

where: VKMy,v=2,s  = vehicle-km for year y, by size s (urban, mini, coach) 

 PKMy,v=2,d = passenger-km for year y, by demand segment d 

 AvgCaps = average capacity (in passengers per vehicle), by size s 

 AvgLFs  = average load factor (in % of capacity), by size s 

 

The average annual distance travelled, AveAnnKM, is a scenario variable and determines the 
total number of buses needed to fulfil demand (expressed in vehicle-km). AveAnnKM can be 
changed for each future year, thus making it possible to simulate different operational 
utilisations. From this it is straightforward to calculate the total number of buses needed to 
fulfil demand by applying Equation 14. 

 

Equation 14: Total bus ownership 

𝑉𝑦,𝑣=2,𝑠 =
𝑉𝐾𝑀𝑦,𝑣=2,𝑠

𝐴𝑣𝑒𝐴𝑛𝑛𝐾𝑀𝑦,𝑠
 

 

where: Vy,v=2,s  = vehicle stock for year y, by size s (urban, mini, coach) 

VKMy,v=2,s  = vehicle-km for year y, by size s (urban, mini, coach) 
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 AveAnnKMy,s = average annual vehicle distance travelled for year y, by size s 

 

4.2.5 Vans and trucks 

The number of businesses operating in each year and scenario largely determines the truck 
populations. Growth in van and truck numbers is closely related with growth in GDP/capita 
and population. As is common practice in other simulation models a linear regression method 
has been used to project future van and truck numbers for each year, shown in Equation 15. 

Equation 15: total number of vans and trucks 

𝑉𝑦,𝑣=3 = 𝑉𝑦−1,𝑣=3 × (1 + 𝛽 + 𝛾 × ∆𝐺𝐷𝑃𝑦) 

 

where  and g are regression parameters which have been calibrated for historic years 1980 
to 2015 based on GDP data (HM Treasury, 2018b), vehicle licensing statistics (ONS, 2018) and 
the MOT dataset (Chatterton et al., 2015) for vans (up to 3.5t gross vehicle weight, GVW), 
medium (3.5t to 12t GVW) and heavy (above 12t GVW) trucks. 

Van and truck fleet data for 2016 are shown in Figure 8. 

Figure 8: Van and truck fleet shares, private and business 

 

The TDM provides the number of tonne-km for the three truck demand segments, namely 
urban, rural and motorway/dual-carriageway. The truck module maps these demand 
segments to the eight truck size categories included in the model, in pro rata shares 
according to traffic and tonne-km statistics (DfT, 2017). Table 9 shows the main assumptions 
on vehicle capacities, load factors and annual mileages. These are calibrated figures for 2012 
based on GDP data (HM Treasury, 2018b), traffic statistics (DfT, 2017) and vehicle licensing 
statistics (ONS, 2018); van data have been scaled according to MOT van types (Chatterton et 
al., 2015). 
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Table 9: The main truck and van model data and assumptions (1) 

Vehicle size 
category 

Average 
capacity 
(AvgCap), 
in tons/veh. 

Average 
load 
(AvgLF) 

Average 
annual 
distance 
travelled 
(AveAnnKM) 

Constant 

 

GDP 
coefficient 
g 

Panel & side vans 0.8 36.6% 22,393 -0.0002088 0.9990167 
Car derived vans 0.6 39.0% 20,197 -0.0002088 0.9990167 
Pickup & 4x4 vans 0.8 36.6% 16,473 -0.0002088 0.9990167 
Drop & tip vans 1.0 38.0% 18,970 -0.0002088 0.9990167 
Box, Luton, ins. van 1.0 38.0% 24,377 -0.0002088 0.9990167 
Other vans 1.0 35.1% 14,076 -0.0002088 0.9990167 

Medium trucks 8.0 32.2% 73,796 -0.0205624 0.7167248 
Heavy trucks 22.0 38.6% 49,260 -0.0110262 0.6534065 

Notes: (1) the figures shown are for the year 2016. The reference scenario assumes some of 
these change over time.  

 

These parameters feed into the calculation of total vehicle-km travelled by each truck size 
category, as shown in Equation 16. 

 

Equation 16: Van and truck traffic by vehicle size category 

𝑉𝐾𝑀𝑦,𝑣=3,𝑠 =
𝑇𝐾𝑀𝑦,𝑣=3,𝑑

𝐴𝑣𝑔𝐶𝑎𝑝𝑠 × 𝐴𝑣𝑔𝐿𝐹𝑠
 

 

where: VKMy,v=3,s  = vehicle-km for year y, by size s (6 van types, 2 HGV types) 

 PKMy,v=3,d = tonne-km for year y, by demand segment d 

 AvgCaps = average capacity (in tonnes per vehicle), by size s 

 AvgLFs  = average load factor (in % of capacity), by size s 

 

The disaggregation of future road freight demand (in tonne-km, from TDM) to road freight 
vehicle types is an exogenous input to the model, simulating structural changes in vehicle 
logistics (and the expected transition from larger to smaller vehicles in urban areas). This is 
illustrated in Figure 9 which shows that HGVs, in particular larger trucks, transport the vast 
majority of freight by weight, while the van shares increase gradually over time. Amongst the 
latter, panel and side vans dominate tonne-km demand. 
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Figure 9: Projected changes in shares of total road freight demand by vehicle type 

 

4.2.6 Passenger aircraft 

Passenger aircraft are bought on a commercial basis in a highly competitive market. Any 
change in passenger numbers (trips) and destinations (trip lengths) will have a direct effect 
on total vehicle numbers. Aircraft numbers have therefore been assumed to depend on the 
ratio of the total annual vehicle kilometres (based on passenger-km from the TDM, which are 
divided by the average load factors from the scenario module) and the average number of 
kilometres per plane and year. 

The TDM provides the number of passenger-km for domestic and international aviation. The 
aircraft module maps these demand segments to the five aircraft size categories included in 
the model, namely small jets (private/chartered), domestic short haul, international medium 
haul / Europe, international long haul / intercontinental and international supersonic (NB: the 
supersonic category is not used at present as all Concorde aircraft were retired in the early 
2000s). Table 10 shows this mapping together with assumptions on vehicle capacities, load 
factors, the annual number of trips per aircraft and the average distance per aircraft per 
flight for the year 2015. These assumptions were derived from calibrating the model to 
national transport statistics (CAA, 2017; DfT, 2017). The reference scenario assumes that 
these input parameters stay constant over the modelling horizon. These assumptions can of 
course be modified for simulation of alternative scenarios such as changes in aircraft 
capacities and utilisations. 
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Table 10: The main passenger aircraft demand modelling assumptions (1) 

Demand 
segment 

Aircraft size 
category 

Average 
capacity 
(AvgCap), 
pass./plane 

Average 
load 
(AvgLF) 

Average 
annual trips 
per aircraft 
(AvgAnnTrips) 

Average 
distance 
per trip 
(AvgTripDis
t), km 

Domestic Small jets 4 50% 531.0 250 

Domestic Short 
distance 

90 65% 510.3 500 

International, 
medium haul / 
Europe 

Medium 
distance 

215 65% 1,422.3 2,100 

International, 
long haul / 
intercontinental 

Long 
distance 

275 78% 726.1 5,475 

International, 
supersonic (2) 

Supersonic 100 76% 639 6,000 

Notes: (1) the figures shown are for the year 2015. The reference scenario assumes that these 
parameters stay constant over the modelling horizon. (2) Not used currently. 

 

Total vehicle-km travelled are derived for each aircraft size category according to Equation 
17. 

Equation 17: Aircraft traffic by size category 

𝑉𝐾𝑀𝑦,𝑣=4,𝑠 =
𝑃𝐾𝑀𝑦,𝑣=4,𝑑

𝐴𝑣𝑔𝐶𝑎𝑝𝑠 × 𝐴𝑣𝑔𝐿𝐹𝑠
 

 

where: VKMy,v=4,s  = vehicle-km for year y, by aircraft size s  

 PKMy,v=4,d = passenger-km for year y, by air demand segment d 

 AvgCaps = average capacity (in passengers per vehicle), by aircraft size s 

 AvgLFs  = average load factor (in % of capacity), by aircraft size s 

 

The total number of aircraft needed to fulfil demand is then derived by dividing total annual 
aircraft-km by the product of the average annual trips per aircraft and the average distance 
per aircraft and per trip, as shown in Equation 18. 

 

Equation 18: Total aircraft numbers 

𝑉𝑦,𝑣=4,𝑠 =
𝑉𝐾𝑀𝑦,𝑣=4,𝑠

𝐴𝑣𝑔𝐴𝑛𝑛𝑇𝑟𝑖𝑝𝑠𝑦,𝑠 × 𝐴𝑣𝑔𝑇𝑟𝑖𝑝𝐷𝑖𝑠𝑡𝑦,𝑠
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where: Vy,v=4,s   = vehicle stock for year y, by aircraft size s  

VKMy,v=4,s   = vehicle-km for year y, by aircraft size s  

 AvgAnnTripsy,s  = average annual number of trips for year y, by size s 

 AvgTripDisty,s  = average trip distance per aircraft for year y, by size s 

 

4.2.7 Freight aircraft 

Dedicated freight aircraft are also bought on a commercial basis in a highly competitive 
market. Any change in freight lifted and destinations (trip lengths) will have a direct effect on 
total vehicle numbers. As with the passenger aircraft module, freight aircraft numbers are 
assumed to depend on the ratio of the total annual vehicle kilometres (based on tonne-km 
from the TDM, which are divided by the average load factors from the scenario module) and 
the average number of kilometres per plane and year. 

Domestic and international air freight demand is mapped onto the three freight aircraft size 
categories included in the model (Table 11). The reference scenario assumes that the input 
parameters shown in Table 11 stay constant over the modelling horizon. The parameter 
figures were derived from reviewing some of the literature and calibrating the model to 
national transport statistics (CAA, 2017; Chapman, 2007; DfT, 2017) for 2015. These 
assumptions can be modified for simulation of alternative scenarios. 

 

Table 11: The main freight aircraft demand modelling assumptions (1) 

Demand 
segment 

Aircraft size 
category 

Average 
capacity 
(AvgCap), 
tons/plane 

Average 
load 
(AvgLF) 

Average 
annual trips 
per aircraft 
(AvgAnnTrips) 

Average 
distance 
per trip 
(AvgTripDis
t), km 

Domestic Short 
distance 

18 60% 185 500 

International, 
medium haul / 
Europe 

Medium 
distance 

35 65% 936 1,500 

International, 
long haul / 
intercontinental 

Long 
distance 

90 65% 546 4,500 

Notes: (1) the figures shown are for the year 2015. The reference scenario assumes that these 
parameters stay constant over the modelling horizon. 

 

Total vehicle-km travelled and total vehicle stock are derived for each freight aircraft size 
category using Equation 17 and Equation 18, similar to the passenger aircraft model. 
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4.2.8 Passenger and freight trains 

In contrast to other models, the number of new trains that will enter the population is 
determined by the national investment in motorised rail rolling stock (i.e. locomotives and 
motorised carriages). In TEAM this is achieved for each of the four passenger rail categories 
and the rail freight category shown in Table 4. The user has the option to alter this 
assumption for the testing of policies including, for example, large-scale investment in rail 
stock. Thus, the overall number of vehicles is calculated as the sum of previous vehicles, 
minus scrapped, plus new vehicles, as shown in Equation 19. 

 

Equation 19: Total rail rolling stock 

                                          

where 

 𝑁𝑉𝑦,𝑣 =
𝐴𝑛𝑛𝑅𝑜𝑙𝑙𝑖𝑛𝑔𝑆𝑡𝑜𝑐𝑘𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑦,𝑣

𝐴𝑣𝑔𝑅𝑜𝑙𝑙𝑖𝑛𝑔𝑆𝑡𝑜𝑐𝑘𝑃𝑟𝑖𝑐𝑒𝑦,𝑣
 

 

Note with this approach it could easily happen that if investment were too low (and 
scrappage would continue at historic rate) total rail traction stock would decline over time, 
with the added effect that the average annual distance travelled by rail traction stock would 
increase (provided demand stays the same). 

As for the calculation of total train-km, the TDM produces the number of passenger/tonne-
km for four passenger rail categories and the rail freight category demand segments, which 
are mapped onto the appropriate train size categories (Table 12). Vehicle capacities, load 
factors and average rolling stock prices were derived from calibrating the model to national 
transport statistics (DfT, 2016, 2017), which also provide annual rolling stock investment for 
various segments of the national rail rolling stock.  

 

Table 12: The main train demand model assumptions (data shown are for 2015) 

Vehicle size 
category 

Average 
capacity, 
pass./train 
or tons/train 

Average load Average 
annual 
vehicle 
distance 
travelled 

Average 
Rolling Stock 
Price, 
£million per 
train 

Annual 
Rolling Stock 
Investment, 
£million 

Light rail, 
underground 

468 41.0% 67,041 2.5 78.8 

Regional rail 250 43.2% 70,000 5.0 865.2 

Intercity rail 447 45% 200,000 10 182.0 

High speed rail 750 60% 275,000 20 65.0 

Rail freight 380 70% 100,000 10 247.8 

 

vyvyvyvy SVNVV ,1,1,,   MvYy  ,
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These parameters feed into the calculation of total vehicle-km travelled by each train size 
category, as shown in Equation 20. 

 

Equation 20: Train traffic by vehicle size category 

𝑉𝐾𝑀𝑦,𝑣=5,𝑠 =
𝑃𝑇𝐾𝑀𝑦,𝑣=5,𝑑

𝐴𝑣𝑔𝐶𝑎𝑝𝑠 × 𝐴𝑣𝑔𝐿𝐹𝑠
 

where: VKMy,v=5,s  = vehicle-km for year y, by size s  

 PTKMy,v=5,d = passenger/tonne-km for year y, by demand segment d 

 AvgCaps = average capacity (in passengers/tons per vehicle), by size s 

 AvgLFs  = average load factor (in % of capacity), by size s 

 

4.2.9 Freight shipping 

In absence of any better data the number of freight ships in the vehicle population is 
assumed to remain constant, and new ships will enter the population only as replacements 
for ships that are scrapped (Equation 21). This is clearly a gross simplification, which could be 
modified as a later refinement of the VSM. The user has the option to alter this assumption 
for the testing of policies including, for example, large-scale investment in canal or port 
infrastructure. 

 

Equation 21: Total shipping stock 

𝑁𝑉𝑦,𝑣=6,𝑠 = 𝑆𝑦−1,𝑣=6,𝑠 

 

where: NVy,v=6,s = new vehicle stock for year y, by ship size s  

Sy-1,v=6,s  = scrapped ship stock, by ship size s  

 

The demand model provides projections of demand for three freight shipping demand 
segments (domestic inland, domestic coastal, international maritime), which are mapped 
onto the appropriate ship size categories (Table 13). The limited amount of appropriate data 
on ship capacities and load factors were based on UK domestic waterborne freight statistics 
(DfT, 2018a) and adjusted to TEAM categories to ensure internal consistency within the 
model. These parameters feed into the calculation of total vehicle-km travelled by each ship 
size category, as shown in Equation 20. Note international maritime statistics were not 
available across the parameters; therefore, maritime / international freight has not been 
included in this version of TEAM. 

 



53 

 

Table 13: The main shipping demand model assumptions (2015 data) 

Vehicle size category Average capacity, 
tons/ship 

Average load  Average annual 
vehicle distance 
travelled 

Inland / river 2,418 0.5 3,405 
Coastal  23,200 0.5 18,575 
Maritime / international 46,329 0.5 41,262 

 

Equation 22: Shipping traffic by vehicle size category 

𝑉𝐾𝑀𝑦,𝑣=6,𝑠 =
𝑇𝐾𝑀𝑦,𝑣=6,𝑑

𝐴𝑣𝑔𝐶𝑎𝑝𝑠 × 𝐴𝑣𝑔𝐿𝐹𝑠
 

 

where: VKMy,v=6,s  = vehicle-km for year y, by ship size s  

 TKMy,v=6,d = tonne-km for year y, by demand segment d 

 AvgCaps = average capacity (in tons per vehicle), by size s 

 AvgLFs  = average load factor (in % of capacity), by size s 

 

4.3 Vehicle scrappage 

4.3.1 Approach 

Vehicles are scrapped at the end of their usable life. This can occur for the following reasons: 

 insurance ‘write-off’ following an accident; 

 bodywork deterioration beyond economic repair; 

 engine or other mechanical deterioration beyond economic repair; 

 voluntary scrappage due to price incentives; 

 prescribed scrappage due to legislation. 

 

Cars 

Within a saturated car market, where the number of cars per person remains constant (a 
state not yet reached in any market in the world), the rate of vehicle scrappage is crucial to 
the rate of deployment of new technologies.  Within the UK car market, where rates of 
growth in car ownership are assumed to decline as saturation levels are approached, vehicle 
scrappage rates are extremely important in determining the turnover of technologies within 
the vehicle fleet. 

With the improving build quality of modern vehicles, the average lifespan of vehicles may 
increase, decreasing stock turnover and slowing the introduction of new vehicle 
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technologies. Possible options for introducing new propulsion or emissions control 
technologies include replacing the engine, engine management systems and/or exhaust 
systems in older vehicles rather than scrapping them altogether when their propulsion 
technology fails or becomes obsolete. Other options include incentives for scrapping vehicles 
over a certain age (a.k.a. scrappage schemes, see e.g. Brand et al. (2013)). In addition, as 
tailpipe emissions from vehicles are reduced, the environmental impacts of vehicle 
construction and disposal will start to form a larger proportion of their overall life cycle 
impact – this is profound in the case of zero (tailpipe) emissions vehicles such as battery EVs.  
Encouraging longer lifespans could be a strategy for reducing this effect. 

Other vehicles 

For vehicles other than cars (particularly commercial vehicles) the life is more often 
determined in advance, and the investment in the vehicle is depreciated over a certain time 
period – usually four years. The expected resale value at that stage becomes an important 
factor. Scrappage of commercial vehicles takes place when they are considered “life expired” 
by their owners.  This will be a commercial decision, based on the needs of the business, 
rather than (necessarily) because the vehicle can no longer perform a function at all.  In many 
cases vehicles have a set life, over which they will be depreciated by the organisation that 
owns them.  Once they are fully depreciated they may have some years of useful life left, or 
they may be scrapped to make way for a more modern vehicle that provides an improved 
level of service to the organisation. 

To estimate the scrappage rate of vehicles a series of S-shaped life curves have been used in 
TEAM. These are somewhat different for each vehicle type (for example the average life of a 
train is far higher than that of a commercial truck).  Apart from the vehicle type average life 
expectancy (probably the single largest explanatory factor), the average life expectancy might 
also be related to: 

 scrappage incentives; 

 inspection and maintenance standards; 

 investment policy (public transport); 

 safety requirements; 

 World trade levels (for shipping). 

 

The variables used in TEAM for modelling vehicle scrappage are: 

 average vehicle lifespan; 

 financial incentives/disincentives for scrappage; 

 changing real price of vehicles. 

4.3.2 Model specification 

The decommissioning of vehicles from the vehicle stock due to scrappage is modelled using a 
modified Weibull distribution. The Weibull distribution is often used to model the likelihood 
of component failure with age (see e.g. de Jong et al., 2004). 
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The scrappage function is based on two parameters: failure steepness, which is the rate at 
which the likelihood of vehicles being scrapped increases with age, and the characteristic 
service life. The approach closely follows the FOREMOVE model (Zachariadis et al., 1995). 

The calculation of scrappage of vehicles is carried out in the same manner for all vehicle 
types, but the scrappage parameters vary by vehicle type.  The characteristic service life 
varies by technology and can be changed by the technical user to take account of policy 
options such as the introduction of long term scrappage incentives (that may or may not 
have an effect on average service lives) or, conversely, the encouragement of buying vehicles 
with a longer life (e.g. battery EVs). 

The first function  shown in Equation 23 provides the share of vehicles of a specific type v 

that remain operating A years after first registration (i.e. A is the age of the vehicle). is a 
sigmoid function (S-shaped curve) defined by the failure steepness and the characteristic 
service life. 

 

Equation 23: Modified Weibull distribution 

  

 

where: Av,y = age of vehicle type v in year y 

 d = failure steepness for vehicle type v 

g = characteristic service life for vehicle type v 

 

The scrappage probability function  can then be specified as a ratio of the share of vehicles 
of a specific age remaining in the current year to the share of vehicles one year younger 
being present in the population: 

 

Equation 24: Scrappage probability function 

  

 

where  provides the probability of vehicles of each type and age to be scrapped in a 

specific year (i.e. ). 

 

This probability is finally multiplied by the number of vehicles present in the previous year to 
provide the total number of vehicles scrapped. This calculation is performed first for each 
vehicle type, age and year, and then filtered through to all vehicle technologies: 
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The parameters used are dependent on the type of vehicle and the country, based on data 
used in the model described in FOREMOVE (Zachariadis et al., 1995). For the model to 
perform effectively (and for calibration of the parameters used) a detailed age breakdown of 
the fleet in the base year is required. National vehicle licensing statistics (DfT, 2009) were 
used to calibrate the UK figures for failure steepness and characteristic service life. The 
parameters are listed in Table 14 for the main vehicle types in TEAM. 

Table 14: Scrappage parameters by vehicle type 

Vehicle type Characteristic service life Failure steepness 

Passenger vehicles 

Motorcycle  14 5 

Car 21 7 

Bus & coach 25 7.5 

Passenger train 40 10 

Passenger aircraft 38 15 

Freight vehicles 

Panel & side vans 20 7 

Car derived vans 21 7 

Pickup & 4x4 vans 22 7 

Drop & tip vans 20.5 7 

Box, Luton, ins. van 20.5 7 

Other vans 23 7 

Medium and heavy trucks 15 5 

Freight train 40 10 

Ships 30 6.5 

Freight aircraft 38 15 

Source: scrappage parameters derived from UK Vehicle Licensing Statistics (ONS, 2018), with 
van type differentiation based on age distribution obtained from the MOT database 
(Chatterton et al., 2015). 

 

The shapes of the sigmoid curves are illustrated for a selection of vehicle types in Figure 10. 
This shows that motorcycles and HGV live shorter ‘lives’ than, say, trains and planes. 

GgZzAaMvYyVS gzvyagzvya   ,,,,,,,1,1,,,, 
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Figure 10: Scrappage probability function for selection of vehicle types 

 

Source: scrappage probability functions based on vehicle licensing data for the UK 

4.4 Calculation of the total new vehicle stock 

As already indicated earlier the number of new vehicles needed to enter the fleet in any 
given year is simply derived by taking the difference between the number calculated as 
remaining from the previous year (Vy-1 – Sy-1) and the total number of vehicles calculated to 
meet demand in the current year Vy (Equation 25). The number of vehicles remaining from 
the previous year is obtained as the difference between the vehicle stock of the previous 
year minus the vehicles scrapped at the end of the previous year. 

 

Equation 25: Number of new vehicles needed 

                                           

 

where  represents the number of new vehicle needed for the current year y,  and 

 represent, respectively, the vehicle stock of the current and the previous year and 

 represents the number of vehicles scrapped. 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30 35 40

sc
ra

p
p

ag
e

 p
ro

b
ab

ili
ty

vehicle age

Cars

Motorcycles

Buses

Passenger rail

Aircraft

Panel and side vans

Pickup and 4x4 vans

Other vans

HGV

 vyvyvyvy SVVNV ,1,1,,   MvYy  ,

yNV yV

1yV

1yS



58 

 

Equation 25 is the same for each vehicle type and is applied for each year. Note, however 

that for shipping vessels ( ) the assumption made is that  (see above). 

4.5 Disaggregation of the total number of new vehicles by size or type 

4.5.1 Passenger cars  

The car model is the most disaggregated, with the new car fleet modelled by size/category 
(defined by three car types/sizes), ownership (private and fleet/company) and six consumer 
segments. This distinction makes it possible to simulate policies affecting different market 
(e.g. company car tax, scrappage rebate for private buyers) and consumer segments. 

The new car market is first segmented into private and company/fleet markets, then into 
three vehicle segments according to the UK definitions of car segment and size (segments 
A/B – size ‘small’, C/D – ‘medium’, E/F/G/H – ‘large’) (SMMT, 2014). The same private 
consumer split applies across each vehicle segment, but the private/fleet sales split and 
annual mileages vary across vehicle segments. Using UK data to illustrate the segmentation, 
Figure 11a shows the sales by vehicle ownership and segment/size, highlighting the 
significance of the fleet/company market (52.5% of all new cars) (SMMT, 2018). 

Figure 11: (a) Car market shares by vehicle ownership (private or fleet/company) and vehicle 
segment/size; (b) Car market shares by vehicle ownership (private or fleet/company) and 
consumer segment in the UK market (2015 data) 

 

Source: Adapted from SMMT (2018) and ETI (ETI, 2013). 

Notes: (a) Car segment and size are denoted by A/B – ‘small’, C/D – ‘medium’, and E/F/G/H – 
‘large’. (a/b) Private car market denoted by blue patterned pie segments; fleet/company 
market denoted by green patterned pie segments. (b) Consumer segments denoted by four 
private and two fleet/company segments, with further details in Table 15 below. Percentage 
shares correspond to market shares for each segment. 
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Consumer acceptance, defined as the readiness to consider purchasing or using an 
alternative fueled vehicle (AFV), varies across consumers, with the majority of private 
consumers not accepting as sufficiently advanced the capability of current AFV models. For 
example, reliability, safety and battery degradation issues, as well as uncertainty regarding 
residual values, contribute to consumers’ reluctance to purchase BEVs. Building on the 
consumer study of 2,729 UK car buyers (Anable et al., 2016; Brand et al., 2017; ETI, 2013), 
the private buyer market was simplified from the eight segments found in Anable et al. 
(2016) into four segments and extended to include company-owned vehicles (Table 15 and 
Figure 11b). This takes into account that among company-owned cars, some are chosen by 
private individuals (termed ‘user-choosers’) – for whom the same purchase criteria as private 
cars apply – while the rest are selected by a decision maker within an organisation (‘fleet 
managers’) who generally have different decision making criteria than private buyers. 

Table 15: Consumer segmentation across private and company/fleet markets 

Private 
(47.5%) 

‘Enthusiasts’ 
(15%) 

Driven by innovativeness and prepared to pay a premium for 
AFVs. While they represent most of the early adopters of AFVs, 
they only account for a small fraction of car buyers 

‘Aspirers’ 
(15%) 

Interested in AFVs but concerned by their  technical 

limitations. AFV adoption by this group improves with the 

increased availability of AFV models from trusted brands and 
the provision of market incentives that address both cost and 
technical barriers 

‘Mass market’ 
(50%) 

While AFV have no particular interest or symbolic meaning to 
this group, they are followers of social norms and are likely to 
become more receptive to AFV as their numbers increase 

‘Resistors’ 
(20%) 

Unlikely to buy AFVs as they strongly reject their symbolism 
(the perceived status and social acceptability of owning an 
AFV). This group’s receptiveness to AFVs will change only once 
AFVs have lost their current connotations, i.e. only once 
already widely adopted 

Fleet/ 
company 
(52.5%) 

‘User-
choosers’ 
(38%) 

Consider company-car ownership as primarily an individual 
purchasing behavior, hence utility calculations are similar to 
those for private buyers 

‘Fleet 
managers’ 
(62%) 

More likely to consider the total cost of ownership (TCO) and 
practical issues (such as technical suitability) and are less 
concerned with the brand and image 

Note: Values in brackets show the UK segment size for the year 2015 

 

The UK new car size split has been evolving slightly in favour of small and large cars, with 
small cars in segment A/B taking up around 41% of the market, medium (C/D) 27% and large 
(E+) 22%. Vehicle size split is a scenario input variable so can be changed for future years for 
sensitivity analysis or exploration of scenario variants, such as banning the sale of large (E+) 
cars from a specified date. 
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4.5.2 Vans and trucks 

The new van and truck market is first segmented into private and business markets, then into 
eight vehicle segments. Six van types were developed for TEAM based on UK registration 
data obtained from the MOT tests and results database for 2012 (DfT, 2019). This database 
allowed us to model the private/business sales split and different annual mileages, energy 
use and emissions rates vary across vehicle segments (see Table 9).  

Using UK data to illustrate the segmentation, Figure 12 shows van/truck market shares by 
vehicle ownership (a: private = 49.3%, b: business = 50.7%) and vehicle segment/size, 
highlighting the dominance of panel and side vans in both private and business markets. 
Vehicle size split is a scenario input variable so can be changed for future years for sensitivity 
analysis or exploration of scenario variants, such as taxing heavy trucks or banning the sale of 
larger vans from a specified date. 

Figure 12: (a) Private van/truck market shares by vehicle segment/type; (b) Business van/truck 
market shares by vehicle segment in the UK (2015 data) 

 

4.5.3 Other vehicle types 

The ‘reference’ size distributions for new buses and ships are assumed to remain constant 
over the time horizon. In other words, the proportion of vehicles of each size obtained from 
the most recent statistics determines the split of sizes of new vehicles in each of the 
following modelled years. Crucially, size split is a scenario variable and can be modified by the 
user to simulate, say, ‘banning’ one vehicle size from entering the total vehicle fleet. 
Similarly, in a future where consumers prefer smaller cars over larger ones, the availability of 
large cars can be phased out over time. 

The size distribution of new trains is dependent on the investment in rail rolling stock, which 
is disaggregated by vehicle size and a key policy input variable. So for example, if High Speed 
Rail 2 went ahead in earnest the UK would have to invest heavily in high speed rail rolling 
stock in the latter part of the period between 2015 and 2035. 
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The approach for new aircraft stock assumes a constant size distribution of the aircraft fleet, 
identical with the size distribution obtained from the most recent statistics. Size split is a 
scenario variable and can be modified by the user. Within each size category, however, the 
user can change the capacity of aircraft. In one exogenous scenario of the TEAM, aircraft 
capacity is assumed to increase slowly over time while average load factors stay constant.  

4.6 Vehicle technology availability 

For each year a number of alternative vehicle technologies will be available in the market 
place, both for privately owned and commercial vehicles. The drivers of the availability of 
different technologies are: 

 make and model availability; 

 consumer demand; 

 legislation on fuel type, vehicle emissions, energy consumption, safety and noise; 

 differential taxation (by technology/fuel), on either fuel or vehicle; 

 technological breakthrough. 

Different scenarios within TEAM clearly have different pathways of technological 
development. The default values developed here are included in the reference scenario. Note 
that any policies can of course alter these development pathways. All vehicle technologies 
have been specified in terms of technological and economic characteristics that are relevant 
to the modelling of vehicle technology choice, including: 

 propulsion technology (fuel type, hybridisation, vintage/innovation technology); 

 purchase price, purchase tax, vehicle road tax (VED in the UK); 

 fuel price and fuel tax; 

 (non fuel) operation and maintenance costs, e.g. fixed insurance and maintenance 
costs, depreciation costs for commercial vehicles; 

 other vehicle taxation such as Benefit-in-Kind (paid by private buyers of a company 
car) and national insurance contribution benefits (C1NIC) paid by the fleet 
manager/employer; 

 expected vehicle life (e.g., higher expected life for EVs?); 

 discount rate (private, fleet, commercial) for calculating annuities. 

This module is common to both parts of the VSM (cars and other vehicles). It determines the 
vehicle technologies available in any given year, and contains the variables that describe the 
vehicles, to enable them to be selected through the vehicle choice modules. 

The main technology characteristics used in the VSM are: 

 price excluding tax; 

 taxation levels (affected by policy users) for fuels, vehicle purchase, annual vehicle 
ownership, emissions levy or carbon tax; 
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 costs of operation, per vehicle-km, including fuel used, road pricing charges, parking 
charges, pre tax fuel price. 

Table A4 in Appendix A lists the 1246 vehicle technologies included in TEAM (v2.5), including 
first and last year of availability and the average purchase price. 

4.7 Vehicle technology choice 

The purpose of the technology choice module is to split the demand for new vehicles (in 
terms of numbers) among the different available technologies, for any specific vehicle type 
(such as medium-sized, C/D class cars, panel & side vans, urban buses or international middle 
range aircraft). 

Technology choice is a complex decision making process, particularly with regard to the 
private consumer. The choices made by the private consumer are much less likely to be 
driven by business-focused types of considerations. To the private individual a car represents 
much more than a means of travelling from A to B. The individual is likely to buy the most 
expensive vehicle they can afford (i.e. they will set a capital budget at the outset of the 
choice process), and within that price range seek to satisfy a number of personal desires, 
‘needs’ and ‘wants’. 

In contrast, commercial organisations procure vehicles that will provide the best return on 
their investment. Thus they must balance the total lifetime benefits of a particular vehicle 
against the total lifetime cost. To model their decisions accurately it would therefore be 
necessary to model both the differences in benefits provided by different technologies, and 
also the differences in cost. However too little is known about the benefits side of this 
equation to provide a model of the way different organisations would assess marginally 
different technologies. Therefore a simplifying assumption was made, that the different 
technologies available for the same vehicle mode and size offer the same level of utility to 
the organisation - i.e. the only difference may lie in the expected costs of purchase, 
operation, maintenance and resale. In addition to costs, market availability, infrastructure 
availability, vehicle performance and technology preference of a commercial organisations 
have been included within a discrete choice modelling framework. 

4.7.1 Passenger cars 

Car choice model – overview 

The TEAM’s car choice model is a discrete choice model that estimates the purchase choice 
probability based on an assessment of overall vehicle ‘attractiveness’ (or ‘utility’) from 
amongst a set of vehicle choices (or ‘alternatives’), each with their own financial and non-
financial ‘attributes’. The weighting of attributes varies across consumer segments, because 
consumers’ opinions on the importance of different vehicle attributes (e.g. running costs) 
vary. The model therefore reproduces the variation in utility of different vehicles across 
consumer segments, and the variation over time as vehicle attributes improve. Figure 13 
gives an outline of the car choice model including key inputs and outputs. 
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Figure 13: Outline of the car choice model within the TEAM modeling framework 

 

Notes: This is a simplified illustration of the model flow. Dark grey shading indicates input and 
output parameters linked to other TEAM modules. Light grey shading indicates key 
parameter sets within model, with key parameters in text boxes shown underneath. – 
WTP=willingness to pay; O&M=operating and maintenance; AFV=alternative fuel vehicle; 
ASC=alternative specific constant (latent variable depicting technology preference not 
captured elsewhere). 

 

Car choice model – private buyers 

For private buyers the utility and market share equations are simply: 

Equation 26: Car choice model, utility function for private buyers 

𝑼𝒊 = ∑ 𝜷𝒋 ∗ 𝑨𝒕𝒕𝒓𝒊𝒃𝒖𝒕𝒆𝒊,𝒋 + 𝑨𝑺𝑪𝒊𝒋   

Equation 27: Car choice model, market share for private buyers 

𝑴𝒂𝒓𝒌𝒆𝒕 𝒔𝒉𝒂𝒓𝒆𝒊 =
𝒆𝑼𝒊

∑ 𝒆𝑼𝒌𝒌
     

where: Ui is the total utility of alternative i; βj is the weighting factor for attribute j; and ASCi is 
the so-called Alternative Specific Constant for alternative i.  

The Alternative Specific Constants (ASCi) are used to represent the specific technology 
preference (positive or negative) not captured by the attributes. It depicts the acceptance of 
the technology that varies across consumer segments; from Enthusiasts, who are willing to 
pay a premium, to Resistors, who exhibit a strong rejection of the technology. The βj and ASCi 
values used for this study were based on stated preference data obtained from a recent 
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consumer and vehicle choice study (Anable et al., 2016; Anable et al., 2011b; ETI, 2013) and 
given further below. 

It should be noted that the consumer segments are only relevant to the UK market. Since 
attitudes to and technology preferences of EV technology may change significantly over time, 
the technology preference values revealed in 2011 may well change over the modelling 
horizon. We have therefore taken into account changes in preference values based on 
uptake rates and ‘consumer learning’, as explained further below. 

Based on previous market research reported in Element Energy (2013) and Greene et al. 
(2014) the key vehicle attributes concerning private buyers were:  

 vehicle price; 

 running costs; 

 access to charging/refueling infrastructure; 

 charging/refueling time; 

 driving range; 

 model/brand supply, and; 

 consumer ‘receptiveness’ (i.e. technology preference). 

Almost all of these attributes (the exceptions being running costs and access to overnight 
charging infrastructure) currently present a barrier to plug-in vehicle and other AFV adoption. 
All ‘enablers’ and ‘barriers’ were monetized, i.e. put on a ‘perceived’ basis; this does not 
mean that they represent actual costs. The choice model weighting factors βj were based on 
stated preferences of the choice experiment conducted for the ETI study (Anable et al., 2016; 
Element Energy, 2013). Table 16 summarizes the key attribute values and weighting factors 
for the Reference case. 

Table 16: Vehicle attributes taken into consideration in the car choice model for private and 
fleet buyers 

Attribute  Value (reference case) – varies with time Weighting factors βj OR value of penalty 
– constant with time 

Vehicle 
price  

Price of vehicle + existing policy price 
signals (e.g. first year VED, plug-in 
vehicle grant, scrappage rebate), incl. 
VAT 

Price coefficient (βj = Cp) based on 
revealed UK price elasticity: -0.0003521 
for private consumers. ($),(1) 

Running 
cost 

Fuel costs (varies by fuel) + existing 
policy price signals (e.g. VED, BIK, ECA) 
+ insurance and maintenance costs 

The βj vary across consumer segments 
(Supplementary Material), from high 
weighting for ‘Enthusiasts’ (βj=7*Cp) to 
low weighting for ‘Resistors’ (βj=2*Cp). 
($),(1) 

Access to 
overnight 
charging 

70% of private buyers have access to 
overnight off-street charging up to 
2050. 25% of fleet buyers have 
certainty of access in 2015, rising to 
40% by 2030 

Overnight charging: pre-requisite for 
BEVs; 
Day charging: value of access for BEVs 
(£2,000) and 4 year fuel savings 
(variable) for PHEVs. (2) 
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Charging/ 
refuelling 
time 

Average energy used for recharging 
(varies by fuel type, vehicle segment 
and hybridization) divided by power 
rate (e.g. BEV/PHEV: 3kW in 2015) 

Based on stated preference, value of 
£250/h is assumed to decrease over 
time by taking the highest charging 
rate available to calculate the charging 
time. Charging time coefficient: -
0.088025. (3) 

Driving 
range 

Real world range, varies by vehicle 
segment and powertrain, from 110km 
(BEV, 2015) increasing to 400km for 
large cars by 2030 

Decreasing slope function of approx. 
£30/km, from approx. £3,000 at 150km 
to zero at ‘ideal range’ (from which 
there is no perceived penalty) at 
370km. (3) 

Model/ 
brand 
supply 

Low supply, varies by vehicle segment 
and powertrain: 

𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = 𝟐
𝟑⁄ ∗

ln(𝑠ℎ𝑎𝑟𝑒 𝑜𝑓 𝐴𝐹𝑉)

𝐶𝑝
 

Supply penalty is quantified as per the 
technique first developed by Greene in 
the U.S., i.e. based on the share of AFV 
models for sale. Values range between 
£0 (equal availability) to £10,484 (only 
1 model available in medium size 
segment). (4) 

Notes: ($) In line with the price elasticity reported in the Eftec (2008) and Tanaka et al. (2014) 
studies. Running cost coefficients are set to reproduce the willingness to pay (WTP) for 
running cost savings which differs for each consumer segment, see Supplementary Material 
S1.  BIK = Benefit-In-Kind, graded by CO2, with tax payable by individuals with a fleet car 
(‘user-choosers’); VED = CO2-graded Vehicle Excise Duty (road tax); PC = price coefficient; ECA 
= Enhanced Capital Allowance, benefit to company in ‘fleet manager’ case. 

Sources: (1) Eftec (2008); (2) Lin and Greene (2010) and Element Energy (2013); (3) 
Dimitropoulos (2011), Hidrue et al. (2011) and Stephens (Stephens, 2013); (4) Greene (1998; 
2001). 

 

The running cost coefficients are set to reproduce the willingness to pay (WTP) for running 
cost savings (Table 17). This varies from a WTP of £7 upfront to save £1 annual for 
‘Enthusiasts’ to a WTP of only £2 for ‘Resistors’. This can be interpreted as ‘payback time 
horizon’: for a vehicle with a capital cost premium over the incumbent (gasoline internal 
combustion engine vehicle), the running costs savings must offset the premium over 7 years 
for ‘Enthusiasts’ (for the market share to reach 50% in the case of a comparison between two 
technologies). This time period is reduced to 2 years for ‘Resistors’. Another way to interpret 
the WTP for running cost savings is to translate them into discounting rates: the range is 7% 
for Enthusiasts to 48% for Resistors. The overall weighted average discounting rate of private 
buyers is 25%, which is in line with our previous work on this issue (Brand et al., 2013). 
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Table 17: Running cost price coefficients 

Consumer segment Price coefficient Cp Willingness to pay for £1 in 
running cost savings ($) 

Resistor  -0.0007042  £2 
Mass  -0.0017605  £5 
Aspirer  -0.0017605  £5 
Enthusiast  -0.0024647  £7 
User chooser  -0.0014084  £4 

Source: Element Energy (2013) 

Access penalty (overnight charging) 

As the certainty of access to charging facilities is a key decision factor for potential BEV 
owners, it was assumed that only consumers with such access will consider purchasing a BEV. 
Without the provision of extensive public infrastructure, only overnight charging can provide 
this certainty of access.4 For PHEVs, while access to recharging equipment is necessary to 
realise running cost savings, it is not essential for mobility. Therefore, all private car buyers 
(privately registered cars and 40% of cars registered as company cars) were assumed in the 
model to be able to consider purchasing PHEVs. However, for the portion without access to 
infrastructure, the perceived running costs are based on the use of conventional fuel only, 
and an associated penalty equivalent to the loss of four years of fuel savings (four years being 
the average ownership period of new cars). Given their motivation to reduce costs, it is 
assumed that fleet managers consider PHEVs only if they have certainty of access to charging 
facilities, as this provides the only route to fuel cost reduction. 

Access penalty (day charging) 

Even for private car buyers (and company car ‘user choosers’) with access to home charging, 
the lack of opportunity to charge in the day translates into a disutility for BEVs (commonly 
referred to as ‘range anxiety’). Lin and Greene (2010) valued the corresponding penalty, 
based on observed U.S. travel patterns, to be worth up to £4,000 (for the lowest mileage 
drivers, the figure is estimated at around £1,000; converted using 1GBP = 1.2USD). For this 
study, the model uses a lower value of £2,000, in line with the findings from the choice 
experiment conducted on UK new car buyers. However, based on observed UK purchase 
behaviour, the modelling assumes that the ‘Enthusiast’ segment does not perceive a penalty 
related to any lack of day infrastructure. For PHEVs, as in the case of access to overnight 
charging, the perceived running costs reflect the level of access to recharging; not having 
access to recharging is, therefore, set at the equivalent of four years of fuel savings. 

Being depot/work based, it is assumed that fleet managers only consider BEVs if they have 
access to overnight charging and their vehicle application operation is compatible with the 
vehicle’s range. Therefore, access to a (rapid) network increases the share of fleet managers 
who can consider BEVs, but any lack of public day charging infrastructure does not represent 
a penalty for fleet managers. For fleet cars, as data on usage pattern was not readily 

                                                                 

4 Work place charging involves some competition for the charging socket; furthermore it is not 
accessible 7 days a week. Also note that 50% of cars are not used for commuting at all (UK National 
Travel Survey 2012 data). 
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available, it was assumed that there is more variety in usage; as a result, range compatibility 
(before provision of day infrastructure) was set to 30% in 2020 and 40% in 2030. 

Driving range penalty 

Dimitropoulos et al. (2011) reported an average value for EV range of £30/km. This means 
consumers would be willing to pay £3,000 to add 100 km to the driving range of a BEV. 
Alternatively, if the maximum range of a BEV is 100 km less than the ideal range consumers 
would like, the range penalty is valued as £3,000. The incremental value of range decreases 
as the maximum range increases. In this study, this decrease in penalty was reproduced 
(from £30/km at 150 km), assuming that the ‘ideal range’ of 370 km was the limit over which 
no more penalty is perceived (i.e. value of driving range penalty over 370 km was zero). 

Alternative specific constants 

Further to attribute values and weighting factors provided in Table 16, the ASCi (technology 
preference) values used in this study were based on regression analysis of the empirical data 
(attitudinal survey and choice experiment) obtained from the ETI segmentation study (Anable 
et al., 2016) as reported in Element Energy (2013). Table 18 shows the monetized and 
normalized ASCi for plug-in vehicles for private and ‘user-chooser’ consumer segments.5 The 
data show that all attitudinal segments consider PHEVs more favorably than BEVs due to the 
performance characteristics of the respective technologies, and there is no clear bias towards 
owning a PIV as a second car in the household (Anable et al., 2016). Mass market buyers 
strongly reject BEVs but not PHEVs (as much). 

We modelled ‘consumer learning’ and the neighbor effect by assuming that the technology 
bias encapsulated in the technology preference parameter (ASCi) decreased linearly with 
increasing sales from 100% of the ASCi value at no sales to 0% when sales reach 25% and 
above. (This modeling behaviour can be switched on or off for sensitivity analysis; the user 
interface provides a handy switch on the Run Model form.) 

                                                                 

5 ASC values were monetized using the revealed UK price elasticity for private consumers Cp = -
0.0003521, and normalized against the ‘Aspirer’ consumer segment. The conversion was done by 
dividing the utility term by the price coefficient. 
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Table 18: Default technology preference (ASCi) values for plug-in vehicles 

Consumer segment Technology i ASCi
 ($) Perceived cost (+) 

(in GBP) 

Resistor PHEV -4.436 12,600 
Resistor BEV -9.436 26,800 
Mass PHEV -1.338 3,800 
Mass BEV -5.282 15,000 
Aspirer PHEV 0 0 
Aspirer BEV 0 0 
Enthusiast PHEV 1.373 -3,900 
Enthusiast BEV 0.986 -2,800 
User chooser PHEV -1.338 3,800 
User chooser BEV -5.282 15,000 

Notes: (+) Perceived cost values were derived from the ASCs using the revealed UK price 
elasticity of -0.0003521 for private consumers. ($) ASC and perceived cost values were 
normalized against the ‘Aspirer’ consumer segment. 

Sources: Hidrue et al. (2011); Hoen and Koetse (2012); Batterbee and Lidstone (2013); 
Element Energy (2013). 

Car choice model – fleet manager segment 

In contrast to private buyers, fleet managers are assumed to approach potential vehicle 
purchase based on a rational assessment of TCO (Total Cost of Ownership), model/brand 
supply and technology suitability (charging access, driving range compatibility). Equation 26 
simplifies to: 

Equation 28: Car choice model, utility function for fleet manager segment 

𝑼𝒊 = 𝜶 ∗ 𝑻𝑪𝑶𝒊 + 𝜷 ∗ 𝑺𝑷𝒊     

where: Ui is the total utility of alternative i; TCO is the total cost of ownership over 4 years; α 
is the price coefficient for TCO (varies by vehicle segment); and β is the price coefficient for 
supply penalty SPi. The TCO includes depreciation costs (capital cost - resale value of 40% * 
discount factor, at a 10% discount rate) and 4-year running costs (discounted, including 
existing company/fleet car price signals). 

The price coefficients for the ‘fleet manager’ consumer segments were derived from the 
elasticity in demand as per Greene et al. (2004). They vary by vehicle segment and are 
provided in Table 19. 

Table 19: Baseline price coefficients for fleet managers (based on 2012 ICE cars) 

Number of makes/models 
in each segment  

TCO (£GBP) Average market 
share 

Price 
elasticity ($) 

Implied price 
coefficient 

Small (A/B) 75 14,433 0.013 -15.71 -0.001103 
Medium (C/D) 98 22,461 0.010 -15.71 -0.000707 
Large (E to I) 255 33,397 0.004 -15.71 -0.000472 

Source: Element Energy (2013), Greene et al. (2004) 
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Notes: ($) The elasticity is based on the willingness to pay data of fleet manager as collected 
during primary research reported in Element Energy (2013). This is higher than the price 
elasticities reported in, for example, Greene et al. (2004), reflecting the higher price 
sensitivity (and highly elastic demand) of the UK fleet manager market. 

Car choice model – decision process 

The choice model takes into account two important pre-conditions to be met for AFVs to be 
part of the choice set. 

1. First, all buyers must be aware of AFVs and their incentives. The reference case 
assumes a sigmoid increase in awareness from low (10%) to moderate (50%) levels by 
2030; this can be changed for scenario analysis. 

2. Second, private buyers must have access to overnight charging (for BEV and HFCV) – 
this is assumed to stay constant at 70% over the time horizon. Also, fleet buyers must 
have certainty of access to charging/refueling and the range must meet the duty cycle 
requirement, in consistence with their technical suitability approach. For BEV, for 
instance, the reference case assumes low deployment of a rapid charging network so 
that only 25% of fleet buyers meet the range compatibility condition in 2015, rising to 
40% by 2030 and then staying constant.  

The decision process and choice model are run for each vehicle segment and consumer 
segment, with the share of vehicle and consumer segments being kept constant in the 
Reference case.  

4.7.2 Vans and trucks 

Van and truck choice model – overview 

The van and truck technology choice model is similar if somewhat simpler than the car 
model. Again it is based on a discrete choice model that estimates the purchase choice 
probability based on an assessment of overall vehicle ‘attractiveness’ (or ‘utility’) from 
amongst a set of vehicle choices (or ‘alternatives’), each with their own financial and non-
financial ‘attributes’. The weighting of attributes varies across consumer segments (private, 
business), because consumers’ opinions on the importance of different vehicle attributes 
(e.g. running costs) vary. The model therefore reproduces the variation in utility of different 
vehicles across consumer segments, and the variation over time as vehicle attributes 
improve. Figure 14 gives an outline of the van and truck choice model including key inputs 
and outputs. 
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Figure 14: Outline of the van and truck choice model within the TEAM modeling framework 

 

Notes: This is a simplified illustration of the model flow. Dark grey shading indicates input and 
output parameters linked to other TEAM modules. Light grey shading indicates parameter 
sets within model, with parameters in text boxes shown underneath. – WTP=willingness to 
pay; O&M=operating and maintenance. 

 

Van and truck choice model – private buyers 

For private buyers the utility and market share equations are simply: 

Equation 29: Van and truck choice model, utility function for private buyers 

𝑼𝒊 = ∑ 𝜷𝒋 ∗ 𝑨𝒕𝒕𝒓𝒊𝒃𝒖𝒕𝒆𝒊,𝒋𝒋   

Equation 30: Van and truck choice model, market share for private buyers 

𝑴𝒂𝒓𝒌𝒆𝒕 𝒔𝒉𝒂𝒓𝒆𝒊 =
𝒆𝑼𝒊

∑ 𝒆𝑼𝒌𝒌
     

where: Ui is the total utility of alternative i; βj is the weighting factor for attribute j. 

It should be noted that the buyer segments may only be relevant to the UK market. Since 
technology preferences of AFV technology may change significantly over time, the 
technology preference values revealed in 2011 may well change over the modelling horizon. 
We have therefore taken into account changes in preference values based on uptake rates 
and ‘buyer learning’, as explained further below. 

As with cars, and based on market research reported in Element Energy (2013) and Greene et 
al. (2014) the key vehicle attributes concerning private buyers were: vehicle price; running 
costs; access to charging/refueling infrastructure; charging/refueling time; driving range; 

Vehicle attributes Consumer WTP for 
attributes

Multinomial logit model
to calculate market share 

probability of each 
powertrain for both buyer 

segments

Sale volumes for each 
powertrain

Share of buyer segments

Refuelling infrastructure

Socio-economic influences captured 
through separate buyer coefficients 

for both segments

Private buyer (vans only)
- Year 1 costs
- Annual O&M costs
- Access to home/public charging
- Charging/refuelling time 
- Driving range
- Model/brand supply

Business/fleet buyer
- Total cost of ownership (4 years)
- Model/brand supply
- Certainty of access to charging
- Charging/refuelling time
- Driving range

Van/truck ownership model (road 
freight supply & demand, scrappage)

Policy incentives, regulation, 
standards

Socio-economics, 
demographics

Buyer survey of cars and vans, plus 
intel from MOT database produced 

two segments for vans:
Private and business/fleet

Total sales
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model/brand supply; and consumer ‘receptiveness’ (i.e. technology preference). Almost all of 
these attributes (the exceptions being running costs and access to overnight charging 
infrastructure) currently present a barrier to plug-in vehicle and other AFV adoption. All 
‘enablers’ and ‘barriers’ were monetized, i.e. put on a ‘perceived’ basis; this does not mean 
that they represent actual costs. 

The βj coefficients used for TEAM were based on stated preference data obtained from a 
recent consumer and vehicle choice study (Anable et al., 2016; Anable et al., 2011b; Element 
Energy, 2013; ETI, 2013). Table 20 summarizes the key attribute values and weighting factors 
for the Reference case. 

Table 20: Vehicle attributes taken into consideration in the van and truck choice model for 
private and fleet buyers 

Attribute  Value (reference case) – varies with time Weighting factors βj OR value of penalty 
– constant with time 

Vehicle 
price  

Price of vehicle + existing policy price 
signals (e.g. first year VED, plug-in 
vehicle grant, scrappage rebate), incl. 
VAT for private buyers 

Price coefficient (βj = Cp) based on 
revealed UK price elasticity: -0.0003521 
for private consumers. ($),(1) 

Running 
cost 

Fuel costs (varies by fuel) + existing 
policy price signals (e.g. VED, BIK for 
private, VED, C1ANIC for business 
buyers) + insurance and maintenance 
costs 

The βj vary across consumer segments 
(Supplementary Material), from high 
weighting for ‘Enthusiasts’ (βj=7*Cp) to 
low weighting for ‘Resistors’ (βj=2*Cp). 
($),(1) 

Access to 
overnight 
charging 

70% of private buyers have access to 
overnight off-street charging up to 
2050. 22% of fleet buyers have 
certainty of access in 2012, rising to 
40% by 2030, then staying constant 

Overnight charging: pre-requisite for 
BEVs. 
Day charging: value of access for BEVs 
(£2,000) and 4 year fuel savings 
(variable) for PHEVs. (2) 

Charging/ 
refuelling 
time 

Average energy used for recharging by 
van/truck type, fuel type and 
hybridization (e.g. 60 and 6.6 kWh for 
BEV and PHEV vans) divided by power 
rate (e.g. BEV/PHEV: 3kW ‘home 
charging’) 

Based on stated preference, value of 
£250/h is assumed to decrease over 
time by taking the highest charging 
rate available to calculate the charging 
time. Charging time coefficient: -
0.088025. (3) 

Driving 
range 

Real world range, varies by vehicle 
segment and powertrain, from 220km 
(BEV vans, Euro 5) increasing over time 
to 400km for BEV vans (by 2025) and 
medium BEV trucks (by 2035) 

Decreasing slope function of approx. 
£30/km, from approx. £3,000 at 150km 
to zero at ‘ideal range’ (from which 
there is no perceived penalty) at 
370km. (3) 

Model/ 
brand 
supply 

Low supply, varies by vehicle segment 
and powertrain: 

𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = 𝟐
𝟑⁄ ∗

ln(𝑠ℎ𝑎𝑟𝑒 𝑜𝑓 𝐴𝐹𝑉)

𝐶𝑝
 

Supply penalty is quantified as per the 
technique first developed by Greene in 
the U.S., i.e. based on the share of AFV 
models for sale in each segment. 
Values range between £0 (equal 
availability) to £6,837 (only 1 out of 37 
models available as BEV in panel van 
segment). (4) 
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Notes: ($) In line with the price elasticity reported in the Eftec (2008) and Tanaka et al. (2014) 
studies. Running cost coefficients are set to reproduce the willingness to pay (WTP) for 
running cost savings.  BIK = Benefit-In-Kind, graded by CO2, with tax payable by private 
buyers; VED = CO2-graded Vehicle Excise Duty (road tax); PC = price coefficient; C1ANIC = 
class 1A national insurance contribution, paid by business buyers. 

Sources: (1) Eftec (2008); (2) Lin and Greene (2010) and Element Energy (2013); (3) 
Dimitropoulos (2011), Hidrue et al. (2011) and Stephens (Stephens, 2013); (4) Greene (1998; 
2001). 

 

The running cost coefficient for private van buyers is meant to reproduce the willingness to 
pay (WTP) for running cost savings. The coefficient for vans was based on the ‘user-chooser’ 
car segment with a value of -0.0014084 (Anable et al., 2016; Element Energy, 2013). 
Assuming a price coefficient for private buyers of -0.00035210 (see car choice model above), 
the van coefficient equates to a WTP of £4 upfront to save £1 annually. This can be 
interpreted as ‘payback time horizon’: for a vehicle with a capital cost premium over the 
incumbent, the running cost savings must offset the premium over 4 years (for the market 
share to reach 50% in the case of a comparison between two technologies, with everything 
else equal). Another way to interpret the WTP for running cost savings is to translate them 
into a discounting rate. This comes out at about 25%, which is in line with our previous work 
on this issue (Brand et al., 2013). 

EV charging access penalty  

In terms of access to overnight charging, all private van/truck buyers were assumed in the 
model to be able to consider purchasing PHEVs. For PHEVs the perceived running costs 
reflect the level of access to recharging; not having access to recharging is, therefore, set at 
the equivalent of four years of fuel savings. The value of access to overnight charging was 
£3,000 for BEVs, £3,750 for hydrogen FCVs and 4-year fuel savings (variable, between £3,000 
and £4,120) for PHEVs. 

Given their motivation to reduce costs, it is assumed that business/fleet buyers consider 
PHEVs only if they have 100% certainty of access to charging facilities, as this provides the 
only route to fuel cost reduction. 

In terms of access to day charging, even for private van buyers with access to home charging, 
the lack of opportunity to charge in the day translates into a disutility for BEVs (commonly 
referred to as ‘range anxiety’). Lin and Greene (2010) valued the corresponding penalty, 
based on observed U.S. travel patterns, to be worth up to £4,000 (for the lowest mileage 
drivers, the figure is estimated at around £1,000; converted using 1GBP = 1.2USD). The 
reference case in TEAM uses a mid-range value of £3,000, in line with the findings from the 
choice experiment conducted on UK new van buyers (Element Energy, 2013) and the 
observation that vans travel more miles than cars. For PHEVs, as in the case of access to 
overnight charging, the perceived running costs reflect the level of access to recharging; not 
having access to recharging is, therefore, set at the equivalent of four years of fuel savings. 

Being depot/work based, it is assumed that business/fleet buyers only consider BEVs if they 
have access to overnight charging and their vehicle application operation is compatible with 
the vehicle’s range. Therefore, access to a (rapid) network increases the share of fleet 
managers who can consider BEVs, but any lack of public day charging infrastructure does not 
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represent a penalty for business/fleet buyers. For business vans and trucks, as data on usage 
patterns was not readily available, it was assumed that there is more variety in usage; as a 
result, range compatibility (before provision of day charging infrastructure) was set to 25% in 
2015, rising to 40% in 2030 then staying constant. This is a scenario variable, so higher (or 
lower) range compatibility values can be set to test future expansions of day charging 
networks. 

Van and truck choice model – business/fleet buyer segment 

In contrast to private buyers, business/fleet buyers are assumed to approach potential 
vehicle purchase based on a quasi-rational assessment of TCO (Total Cost of Ownership), 
model/brand supply and technology suitability (charging access, driving range compatibility):  

Equation 31: Van and truck choice model, utility function for business/fleet buyer segment 

𝑼𝒊 = 𝜶 ∗ 𝑻𝑪𝑶𝒊 + 𝜷 ∗ 𝑺𝑷𝒊     

where: Ui is the total utility of alternative i; TCO is the total cost of ownership over 4 years; α 
is the price coefficient for TCO (varies by vehicle type); and β is the price coefficient for 
supply penalty SPi. The TCO includes depreciation costs (capital cost - resale value of 30% * 
discount factor, at a 10% discount rate) and 4-year running costs (discounted, including 
existing business vehicle price signals). 

The price coefficients for the business/fleet buyer segment were derived from the elasticity 
in demand as per Greene et al. (2004). They vary by vehicle segment and are provided in 
Table 21. 

Table 21: Baseline price coefficients α for business buyers (based on 2015 diesel vehicles) 

Number of makes/models in each 
segment  

TCO (£GBP) Marginal 
market share 

Price 
elasticity ($) 

Implied price 
coefficient α 

Panel & side vans 37  49,969  0.027 -12.39 -0.0002549 
Car derived vans 37  47,328  0.027 -12.39 -0.0002691 
Pickup & 4x4 vans 20  48,405  0.050 -12.39 -0.0002695 
Drop & tip vans 20  49,587  0.050 -12.39 -0.0002630 
Box, Luton, insulated vans 15  52,171  0.067 -12.39 -0.0002545 
Other vans 20  47,140  0.050 -12.39 -0.0002767 
Medium trucks 25  179,481  0.040 -12.39 -0.0000719 
Heavy trucks 25  279,222  0.040 -12.39 -0.0000462 

Source: Element Energy (2013), Greene et al. (2004) and own calculations 

Notes: ($) The elasticity is based on the willingness to pay data of business/fleet buyers as 
collected during primary research reported in Element Energy (2013). This is higher than the 
price elasticities reported in, for example, Greene et al. (2004), reflecting the higher price 
sensitivity (and highly elastic demand) of the UK business/fleet buyer market. 

Van and truck choice model – decision process 

The choice model takes into account two important pre-conditions to be met for AFVs to be 
part of the choice set. 
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1. First, all buyers must be aware of AFVs and their incentives. The reference case 
assumes a sigmoid increase in awareness from low (10%) to moderate (50%) levels by 
2030; this can be changed for scenario analysis. 

2. Second, private buyers must have access to overnight charging (for BEV and HFCV) – 
this is assumed to stay constant at 70% over the time horizon. 

3. Third, business/fleet buyers must have certainty of access to charging/refueling and 
the range must meet the duty cycle requirement, consistent with their technical 
suitability approach. For BEV, for instance, the reference case assumes low 
deployment of a rapid charging network so that only 25% of business/fleet buyers 
meet the range compatibility condition in 2015, rising to 40% by 2030 and then 
staying constant.  

The decision process and choice model are run for each vehicle type (e.g. panel and side van, 
medium truck) and buyer segment (private, business), with the share of vehicle and buyer 
segments being kept constant in the Reference case.  

4.7.3 Other vehicle types: motorbikes, buses, trains, shipping vessels, aircraft 

For all other vehicle types, the choice model is somewhat simplified. A vehicle of technology i 
(see Appendix A) is chosen with probability (probi) which is related to cost and non-cost 
factors of the vehicle using that technology. Cost factors are simulated by calculating the 
equivalent annual cost EACi for each technology i. Non-cost factors are simulated by a 
preference and performance parameter, Pi, which is an aggregate function of perceived 
performance (perf), market presence (pres) and consumer preference (pref) of the vehicle 
technology. From the mathematical point of view, the probability is modelled as a linear 
function of the preference and performance parameter and a multinomial logit function 
(commonly used in behavioural modelling, see e.g. Train, 2009) of the cost factors, as shown 
in Equation 32. 

Equation 32: Technology choice probability function 
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where Pi = preference and performance parameter for vehicle technology i 
 EACi = equivalent annual cost of vehicle technology i 
 c = modelling constant (preset value of c=10 used for model calibrations) 
 m = number of vehicle technologies available in modelling year 
 perfi  = perceived performance of vehicle technology i 
 presi = market presence at maturity of vehicle technology i 
 prefi = consumer preference for vehicle technology i 
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The price and non-price factors underpinning Equation 32 are described in more detail as 
follows. 

Price Factors 

The equivalent annual cost EACi is the cost per year of owning and operating a vehicle over its 
entire (economic) lifespan (Equation 33). It is the sum of the annuity of owning the vehicle 
over its economic lifetime and any annual operating and maintenance costs (e.g. fuel, road 
user charging, circulation taxes, insurance, maintenance and depreciation) to the consumer 
or operator. The annuity represents the annual payment of paying off a loan for all up-front 
costs (purchase price, purchase taxes and rebates). The applied discount (or interest) rate 
can vary by vehicle type (car, van, aircraft, etc.) and, to avoid a purely static approach, by 
year. Implicitly the EAC can vary by scenario (e.g. via changes in pre-tax fuel price) and policy 
(via e.g. changes in fuel duty).6 

Equation 33: Annual cost of ownership and operation 

𝐸𝐴𝐶𝑖 = −𝑃𝑀𝑇(𝐷𝑅𝑎𝑡𝑒𝑖, 𝐴𝑣𝑔𝐸𝑐𝑜𝑛𝐿𝑖𝑓𝑒𝑖 , 𝐼𝑛𝑣𝐶𝑜𝑠𝑡𝑖) + 𝐴𝑛𝑛𝐹𝑖𝑥𝐶𝑜𝑠𝑡𝑖 + 𝐴𝑛𝑛𝑉𝑎𝑟𝐶𝑜𝑠𝑡𝑖  

where: EACi   = equivalent annual cost of owning a vehicle of technology i  
PMT()  = the payment for an annuity  
DRatei  = discount (or interest) rate for technology i 
AvgEconLifei = average economic lifetime of vehicle technology i 
InvCosti = net investment or upfront cost of owning a vehicle technology i 
AnnFixCosti  = annual fixed costs 
AnnVarCosti  = annual variable costs. 

 

Net ownership costs are simply the vehicle purchase price (after tax, incentives, rebates, etc.) 
calculated as an annuity over the economic lifetime of the vehicle. Fixed costs are costs of 
insurance, maintenance, depreciation, VED, etc. Variable costs are mainly determined by fuel 
costs, plus variable taxes such as road pricing and congestion charges. Specifically, annual 
fuel costs are calculated according to Equation 34.     

Equation 34: Annual fuel costs  

𝐴𝑛𝑛𝐹𝑢𝑒𝑙𝐶𝑜𝑠𝑡𝑦,𝑖 = (𝑅𝑒𝑠𝐶𝑜𝑠𝑡𝑦,𝑖 + 𝐹𝑢𝑒𝑙𝐷𝑢𝑡𝑦𝑦,𝑖) × 𝑉𝐴𝑇 × 𝑆𝐹𝐶𝑖 × 𝐴𝑣𝑒𝐴𝑛𝑛𝐾𝑀𝑦,𝑖 

where: AnnFuelCosty,i = estimated annual fuel costs for technology i 
 ResCosty,i = pre-tax fuel price for technology i 
 FuelDutyy,i = transport fuel duty for technology i 
 VAT  = Value Added Tax rate (e.g. 1.2 for current 20% UK VAT rate) 
 SFCi  = specific fuel consumption for technology i, in litres per 100km 
 AveAnnKMy,i = average annual distance travelled per vehicle technology i 

 

                                                                 

6 EACi is also the basis for calculating relative transport costs (RC in Equation 1) which feeds back from 
the VSM to the TDM. 
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To populate the model, and to ensure that the full spectrum of the vehicle range is reflected 
in the purchase decisions, a detailed price distribution is needed. The variables needed for 
such an approach are: 

 Distribution of vehicles purchased, by annuitized lifetime cost (by year); 

 Purchase price of the new vehicle, including any taxes imposed (by year, vehicle type, 
size, engine type, fuel type); 

 Running costs of the new vehicle, based on: 

o fuel price, with tax; 

o annual taxes such as vehicle excise duty (VED); 

o insurance and maintenance costs; 

o any other charges imposed by the policy maker (e.g. parking charges, road 
pricing differentiated by technology); 

o average annual mileage (by technology); 

 Average vehicle life (by technology). 

The key variables are specified in the vehicle technology tables, summarised in Appendix A. 
The default discount rate for commercial buyers of planes, ships and so on was assumed to 
be 10%, simulating lower cost of capital and investment risk than for private buyers of, say, 
cars and motorbikes. 

Non-price Factors 

The P factor is an aggregate of three key factors that can influence purchasing decisions, 
based on market research by the UK Energy Saving Trust (2008). First, the factor of perceived 
performance perf is an aggregate of perceived safety and security, speed, acceleration, range 
between refuelling, space available and comfort. Secondly, the market presence factor pres 
represents the potential market presence of the vehicle technology at market maturity, 
including factors such as availability of and access to fuel as well as market coverage (i.e. is 
the technology widely available across the different market segments such as ‘super mini’, 
‘small family’, executive’ and ‘multi-purpose vehicles’?). Thirdly, the consumer preference 
factor pref simulates non-cost factors that cannot be explained by cost, performance and 
market factors, e.g. vehicle colour, style and ‘technology loyalty’. 

The obvious challenge of defining P has been approached in two different ways. First, in the 
case where the vehicle technology is an established one, with a consolidated market share 
such as gasoline and diesel cars, P can be derived using Equation 32 on the basis of observed, 
historical data such as the UK’s Vehicle Licensing Statistics (ONS, 2018). Since the values of P 
are not constant, but could change over time, it is necessary to verify their trends on the 
basis of observed data. In TEAM, this verification process was performed for the base year 
and subsequent modelling years where licensing statistics exist (from 2012 to 2016).  

Secondly, for new and alternative vehicle technologies, neither cost nor preference and 
performance data are well established or can be observed directly. In addition, both cost and 
non-cost factors may change more radically in future years than for their conventional 
counterparts. Costs may decrease as production achieves economies of scale, technological 
developments cut intrinsic costs and vehicle life increases. Similarly, vehicle performance 
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may increase as technological developments improve utility and public perceptions change. 
Perceptions will be influenced by information such as marketing and technology 
demonstration, and also by the number of vehicles already in use. Market potentials may 
increase by the market providing larger ranges of models across the vehicle classes (e.g. fully 
electric buses may in future be available more widely across the market segments). Thus for 
each new and alternative vehicle technology the change in P over time is modelled as an S-
curve using a logistic function (Note: this is distinct from the S-curve of market penetration, 
i.e. vehicle numbers.). 

We assume that the new technology improves from a market entry year Tentry to a product 
maturity year Tmaturity, reaching a maximum level P at maturity (Figure 15). Tentry is defined as 
the entry year for the first commercially available vehicles (albeit these may also be regarded 
as commercial prototypes, likely to be used primarily in demonstration projects). Tmaturity is 
the year when the vehicle technology performance and consumer preference are expected 
to level off (or at least become parallel with the trend line for conventional technologies).7 P 
is estimated based on the expected relative market share of the new vehicle technology (in 
terms of new vehicle sales) in year T2, compared to some specified conventional comparator, 
that might be anticipated if the annualised costs of the conventional and new technologies 
were the same. Figure 15 illustrates this by showing four hypothetical curves comparing an 
existing reference technology to three new vehicle technologies with three different entry 
years, maturity years and levels of preference and performance. 

Figure 15: Comparison of four hypothetical preference and performance parameter curves, 
other vehicle types (motorcycles, buses, trains, ships, aircraft, etc.) 

 

                                                                 

7 Note Tmaturity is not the date when market penetration (share of new vehicle sales) levels off for the 
new technology. Growth in new vehicle sales may lag behind the rise in P, as the number of sales will 
also be critically dependent on differences in technology costs and taxes. 
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Notes: P = preference and performance at market maturity; Tentry = expected entry year for 
the first commercially available vehicles; Tmaturity = expected maturity year i.e. year when the 
preference for and performance of the new vehicle technology are expected to level off (or 
at least become parallel with the trend line for existing technologies).  

Vehicle technology 1 represents a rather slowly progressing conventional technology where 
market entry happened in the past and maturity is expected in 2015, e.g. an urban HEV bus. 
Vehicle technologies 2 and 3 represent future technologies (with market entries of 2013 and 
2019), with comparatively faster rates and at maturity higher expected performance and 
preference than technology 1. Technology 3 takes only 6 years to mature and even outstrips 
the reference technology. 

Clearly the specification of future vehicle costs and P parameter curves are crucial to the 
medium to long term outcomes of the vehicle technology choice module. While default 
values for cost and non-cost parameters have been developed based on best available 
knowledge in the literature and in consultation with policy and industry experts, TEAM users 
can modify them according to their market expectations or for simple ‘what-if’ analysis. 

The set of P parameters, Tentry and Tmaturity for the reference scenario are given in Appendix A. 

4.7.4 Technology distribution of the new vehicle fleet 

Taking the total number of new vehicles from Equation 25, the technology distribution of 
new vehicles is simply derived using Equation 35. 

Equation 35: Distribution of new vehicles by technology  

𝑁𝑉𝑡,𝑦,𝐴=0 = 𝑁𝑉𝑦,𝐴=0 × 𝑝𝑟𝑜𝑏𝑡,𝑦,𝐴=0 

for all years y, technologies t that are available in that year, and age A = 0 (i.e. new). 

4.8 Main outputs and links to other models 

4.8.1 Vehicle fleet distributions 

This module first combines the remaining vehicle population (disaggregated by vehicle age, 
size and technology) with the new vehicle population (disaggregated by size and technology) 
to provide a total population distribution, in each year (disaggregated by vehicle age, size and 
technology). The output tables are large in size, containing typically around 40 to 80 
thousand records for a single scenario run. Table 22 shows the number of new (N), scrapped 
(S) and total (T) vehicles for technology ID 322 (i.e. “Road - Car - Medium - Gasoline – ‘Euro 7’ 
(2020-24) – Passenger Transport – Hybrid EV”) for policy package ‘REF’, exogenous scenario 
‘CC’, region ‘UK’ and year 2024. The vehicle distributions are exported to the DEEM and 
LCEIM. 

Table 22: Sample entry in output table Interface_VSM_NumVeh 

Policy 
package 

Scenario Region Year Technology Vehicle 
Category 

Number of 
Vehicles 

... ... ... ... ... ... ... 

REF CC UK 2024 322 New 54,732 
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REF CC UK 2024 322 Scrapped 24,532 

REF CC UK 2024 322 Total 675,501 

... ... ... ... ... ... ... 

4.8.2 Vehicle traffic distributions 

The final stage of the vehicle supply model provides one of the three main outputs required 
for calculating emissions levels, namely the total vehicle-kilometres disaggregated by vehicle 
type, year, age, size, engine type and fuel type. In its current version, the model takes the 
vehicle-kilometres computed by vehicle type and journey segment type (e.g. urban car travel) 
from the TDM and splits each vehicle type according to the proportion of vehicle stock of that 
vehicle type in each technology category, modified to take account of factors such as age and 
technology. For cars it is known that the distribution of vehicle-km by age is skewed towards 
newer cars (ONS, 2007). The basic pro rata formula is shown in Equation 36. 

Equation 36: Vehicle-km distribution by technology, vehicle type, size, fuel type and age  

𝑉𝐾𝑀𝑦,𝑡,𝑣,𝑠,𝑎,𝑓𝑡 = 𝑉𝐾𝑀𝑦,𝑣,𝑠 ×
𝑉𝑦,𝑡,𝑣,𝑠

𝑉𝑦,𝑣,𝑠
 

where: VKM = vehicle-km 
 V = total number of vehicles 

y = year 
t  = technology 
v  = vehicle type 
s  = vehicle size 

 

The relationship between car age and mileage is taken into account using an age, size and 
fuel type dependent scaling factor, as shown in Equation 37. The annual percentage change 
in mileage as car ages is assumed to be between 2.8% p.a. (small gasoline cars) and 5.7% p.a. 
(medium diesel cars) in the reference case (Figure 16). The model normalises to the total 
vehicle-km before final outputs are written to the database. 

Equation 37: Car vehicle-km distribution by technology and age 

𝑉𝐾𝑀𝑦,𝑡,𝑣=2,𝑠,𝑎 = (1 + 𝜀 × (
𝐴𝑣𝑒𝐸𝑐𝑜𝑛𝐿𝑖𝑓𝑒𝑣=2,𝑦

2
− 𝑉𝑒ℎ𝐴𝑔𝑒𝑦,𝑡,𝑣=2,𝑎)) × 𝑉𝐾𝑀𝑦,𝑣=2,𝑠

×
𝑉𝑦,𝑡,𝑣=2,𝑠

𝑉𝑦,𝑣=2,𝑠
 

 

where: VKM  = vehicle-km 
 e  = annual percentage change in mileage as car ages 
 AveEconLife = characteristic vehicle service life 

y  = year 
t   = technology 
v   = vehicle type (v=2 is cars only) 
a  = vehicle age (0=new, 1 year old, …, 40 years old) 
s   = vehicle size 
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Figure 16: Scaling factor for simulating fuel, size and age dependence of car vehicle-km 

 

4.8.3 Feedback to TDM – changes in generalised costs by mode of transport 

Ownership and operating and maintenance costs of vehicles affect the ‘generalised travel 
costs’ that are traditionally used to determine modal split and journey distances in demand 
modelling. 

The choices of vehicle technologies, taxation changes, and other related costs of supplying a 
passenger-km or tonne-km, are fed back into the mode choice model to affect the modal 
split. As presented earlier these generalised costs are computed as the relative change 
compared to the previous modelling year of the average annual transport costs per 
passenger/tonne-km (RC in Equation 1), weighted over the vehicle-km driven each year.  For 
instance, increasing the fuel costs for 50% of the car fleet by 5% will increase the average-
weighted transport costs by 2.5%, resulting in a relative cost factor of 1.025. If there is no 
cost increase for motorcycle, bus, rail and domestic air, the model will calculate (a) a 
reduction in total passenger transport demand and (b) modal shift from car to the other 
modes based on assumed cross elasticities. 
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5. Direct Energy and Emissions Model 

5.1 Overview 

The TDM and VSM provide vehicle-kilometres and average trip lengths, disaggregated by 
passenger/freight, vehicle type, size, propulsion technology and ‘route segment types’ (such 
as urban, rural and motorway for road, urban/light and high speed for rail, and take-off and 
cruise for air). From this, the DEEM calculates direct (i.e. tailpipe, at source) fuel and energy 
consumption as well as carbon and regulated air quality pollutant emissions arising from the 
operation of vehicles by using the established emissions factor method. Apart from direct 
energy use, the emissions types included in the DEEM are the direct greenhouse gases (GHG) 
carbon dioxide (CO2) and methane (CH4) as well as the indirect GHG carbon monoxide (CO), 
sulphur dioxide (SO2), nitrogen oxides (NOX), non-methane volatile organic compounds 
(NMVOC) and particulates (PM).8 Further pollutants are covered in the life cycle and 
environmental impacts model (Chapter 6). 

The DEEM is able to model the combined effects of different fleet compositions, different 
sets of emission factors, traffic characteristics, cold starts, fuel quality and driver behaviour. 
The DEEM interfaces with other modelling components in TEAM as illustrated in Figure 17. 

Figure 17: Interfacing of the DEEM and TNM models within TEAM 

 

                                                                 

8 Nitrous oxide (N2O), the other direct GHG, is accounted for in the LCEIM. 
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5.2 Model specification, data sources and calibration 

The basis for all calculations of energy consumption and exhaust emission are disaggregate 
sets of emission factors (e-factors) based on the results of large scale vehicle emissions 
testing programmes. For road transport, speed distributions for each vehicle type (car, 
motorcycle, van, HGV) and route segment type (urban, rural, motorway) are used to calculate 
the energy consumption and emissions, based on average speed-emissions curves developed 
in previous research and emissions inventories such as COPERT (EEA, 1998, 2000, 2012, 
2017), MEET (Hickman et al., 1999), HBEFA (Chen and Borken-Kleefeld, 2014; INFRAS, 2004, 
2009) and NAEI (NETCEN, 2003). These datasets provide a base set of emissions factors 
(mostly for conventional ICE and some HEV vehicle technologies), which is mapped onto 
TEAM vehicle technologies and then scaled for future technologies – thus providing the 
default set of emissions factors for TEAM. The user can change both mapping and scaling to 
simulate effects of policy such as fuel efficiency standards. 

Emissions factors for road vehicles at normal operating temperatures (often called ‘hot’) are 
a polynomial function of average speed, with up to ten coefficients for each pollutant. The 
TEAM base emissions factors are based on HBEFA (INFRAS, 2004, 2009) coefficients, which 
were originally calibrated in extensive vehicle emissions testing. The road transport module 
also takes account of cold start effects. Cold start emissions mainly depend on ambient 
temperatures and trip distances. 

The default speed distributions are based on observed data for Great Britain (DfT, 2014a, b, 
c). To take account of effects such as congestion and speed limits the user can alter the 
speed distributions. 

For all other modes, average emissions factors are used to calculate energy use and 
emissions. For air, emissions factors are split into the different flight stages ‘landing/take-off’ 
(LTO) and ‘cruise’. The share of the LTO phase compared to the total flight distance is 
estimated based on the international CORINAIR/SNAP classification (code 08 05), where the 
flight distance up to an altitude of 1000 metres – about 30 km –is allocated to airport traffic. 

5.2.1 Functional linkages for road transport 

The dependencies of variables are outlined in two schematic overviews. First, Figure 18 
shows the functional linkages for calculating road traffic volumes. Secondly, Figure 19 
illustrates the main functional linkages for calculating energy consumption and exhaust 
emissions for road transport. 
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Figure 18: Schematic overview of the functional linkages for road traffic 

 

Notes: ‘fl’ stands for mileage; IO = urban traffic, AO = rural traffic, BAB = motorway and dual 
carriageway traffic; NV = local traffic, FV = long distance traffic 
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Figure 19: Schematic overview of the functional linkages for energy consumption and exhaust 
emissions from road transport 

 

Notes: ‘fl’ stands for mileage; IO = urban traffic, AO = rural traffic, BAB = motorway and dual 
carriageway traffic; NV = local traffic, FV = long distance traffic; MJ = Megajoule, PJ = 
Petajoule; ‘vm’ stands for ‘mean velocity’ or ‘average speed’ 

5.2.2 Speed-emissions curves 

The speed dependence of ‘hot’ e-factors for all road vehicle types is managed by polynomial 
regression up to a maximum degree of 9th order, as shown in Equation 38.  
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Equation 38: Dependence of energy use and emissions on average speed 

9

9,,

2

2,,1,,0,,, *** jjijjijjijiji ScScSccEF  
 

where EFi,j = energy use or emissions factor for pollutant i and vehicle type j 
 Sj = average speed for vehicle type j 
 ci,j,x = polynomial coefficients (x=0,…,9) for pollutant i and vehicle type j 

 

As mentioned above all emissions factors used in TEAM are based on a set of base or primary 
emissions factors which are parameterised according to Equation 38. An example is shown in 
Figure 20. 

 

Figure 20: View and edit ‘base’ emissions factors in DEEM 

 

Note: PKW (“Personenkraftwagen”) = passenger car; selected base technology is ‘PKW1DKE3’ 
= passenger car, small size (A/B segment), diesel (primary fuel), EURO 3 standard. UKTCM=UK 
Transport Carbon Model. 

 

Examples of the resultant speed emissions curves are shown in Figure 21 for two medium 
sized petrol car technologies (conventional ICE and hybrid electric EV). The somewhat flatter 
curve at lower average speeds for HEV cars is a result of better fuel economy and CO2 
emissions at lower, urban speeds. 
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Figure 21: Base speed-emissions curves for fuel use and NOX emissions for small petrol cars  

 

Note for non-road modes of transport (air, rail, shipping) speed independent e-factors are 
used. This implies that only the constants (coefficients c0) are used in the above equation. 

 

5.2.3 Speed profiles 

The other key component in the methodology is the use of speed profiles disaggregated by 
vehicle type and road type (urban, rural, motorway/dual carriageway). The default speed 
profiles are based on observed distributions of average (as opposed to free flow) traffic 
speeds, which in the UK case were taken from GB national statistics (DfT, 2014a, b, c). The 
default or reference scenario speed profiles are given in Appendix B and illustrated in Figure 
22.  

More than half of all cars travel on motorways at speeds higher than the current speed limit 
(70 mph). Alternative speed profiles for cars on motorways/dual carriageways have been 
developed for policy analysis, e.g. limiting or increasing the speed limit or better enforcement 
of existing laws (Anable and Brand, 2011). Figure 23 shows one alternative scenario for cars 
on motorways/double carriageways. The blue distribution represents currently observed 
data; the red distribution represents one possible distribution if the speed limit would be 
enforced more effectively.  
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Figure 22: Reference road speed profiles for cars, buses and trucks 

 

Source: Road traffic speed distribution (DfT, 2014a, c) 

Figure 23: Example speed profiles for cars on motorways/double carriageways 

 

Source: Road traffic speed distribution (DfT, 2014a, c), and own assumptions for enforced 
speed limits. 

5.2.4 Integration 

By using scaling factors and cross-referencing between ‘base’ and ‘actual’ e-factor databases 
(as illustrated in Figure 24 and Figure 25) the DEEM can handle any new technology the 
policy maker may wish to examine. If the ‘base’ vehicle technology did not exist it can be 
added and specified in terms of speed emissions characteristics (ideally the full functional 
relationship between mean speed and ‘hot’ and cold start emissions).  
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Figure 24: Cross referencing and scaling of energy use and emissions factor datasets in the 
TEAM 

 

Figure 25: Variable linkages for modelling energy consumption and emissions 

 

Notes: sf = scaling factor; v_5-15 indicates share of vehicle traffic in speed bracket ‘5-15 kph’; 
efp = emissions factor (primary emissions type i.e. fuel use, CO2, etc.); ‘warm’ and ‘cold’ stand 
for ‘hot’ and ‘excess cold’ emissions factors respectively; pct = percentage. 

Figure 26 provides average fuel consumption factors (in grams of fuel per vehicle-km) for a 
range of gasoline car technologies at average speed 50 kph, disaggregated by propulsion 
technology (ICE, HEV, PHEV) and vintage (EURO 4, 5, 6, etc). This set of factors represents 
only a fraction of the vehicle technologies currently modelled in TEAM. Similar figures exist 
for other vehicle types and technologies. 
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Figure 26: Fuel consumption for petrol cars at 50 kph average speed 
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Road - P - CAR - Small - Gasoline (petrol) - Euro 2 (incl. catalyst)  - vintage  1996 to  2000

Road - P - CAR - Small - Gasoline (petrol) - Euro 3 (incl. catalyst)  - vintage  2000 to  2005

Road - P - CAR - Small - Gasoline (petrol) - Euro 4 (incl. catalyst)  - vintage  2005 to  2010

Road - P - CAR - Small - Gasoline (petrol) - Euro 5 (2009-14)  - vintage  2009 to  2015

Road - P - CAR - Small - Gasoline (petrol) - Euro 6 (2015-19)  - vintage  2015 to  2020

Road - P - CAR - Small - Gasoline (petrol) - Euro 7 (2020-24)  - vintage  2020 to  2025

Road - P - CAR - Small - Gasoline (petrol) - Euro 8 (2025-29)  - vintage  2025 to  2030

Road - P - CAR - Small - Gasoline (petrol) - Euro 9 (2030-34)  - vintage  2030 to  2035

Road - P - CAR - Small - Gasoline (petrol) - Euro 10 (2035-39)  - vintage  2035 to  2040

Road - P - CAR - Small - Gasoline (petrol) - Euro 11 (2040-44)  - vintage  2040 to  2045

Road - P - CAR - Small - Gasoline (petrol) - Euro 12 (2045-50)  - vintage  2045 to 2050

Road - P - CAR - Small - Gasoline (petrol) - Euro 5 (2009-14)  - PHEV - vintage  2009 to  2015

Road - P - CAR - Small - Gasoline (petrol) - Euro 6 (2015-19)  - PHEV - vintage  2015 to  2020

Road - P - CAR - Small - Gasoline (petrol) - Euro 7 (2020-24)  - PHEV - vintage  2020 to  2025

Road - P - CAR - Small - Gasoline (petrol) - Euro 8 (2025-29)  - PHEV - vintage  2025 to  2030

Road - P - CAR - Small - Gasoline (petrol) - Euro 9 (2030-34)  - PHEV - vintage  2030 to  2035

Road - P - CAR - Small - Gasoline (petrol) - Euro 10 (2035-39)  - PHEV - vintage  2035 to  2040

Road - P - CAR - Small - Gasoline (petrol) - Euro 11 (2040-44)  - PHEV - vintage  2040 to  2045

Road - P - CAR - Small - Gasoline (petrol) - Euro 12 (2045-50)  - PHEV - vintage  2045 to 2050

Road - P - CAR - Medium - Gasoline (petrol) - Conventional (no catalyst)  - vintage  1980 to  1992

Road - P - CAR - Medium - Gasoline (petrol) - Euro 1 (incl. catalyst)  - vintage  1992 to  1996

Road - P - CAR - Medium - Gasoline (petrol) - Euro 2 (incl. catalyst)  - vintage  1996 to  2000

Road - P - CAR - Medium - Gasoline (petrol) - Euro 3 (incl. catalyst)  - vintage  2000 to  2005

Road - P - CAR - Medium - Gasoline (petrol) - Euro 4 (incl. catalyst)  - vintage  2005 to  2010

Road - P - CAR - Medium - Gasoline (petrol) - Euro 5 (2009-14)  - vintage  2009 to  2015

Road - P - CAR - Medium - Gasoline (petrol) - Euro 6 (2015-19)  - vintage  2015 to  2020

Road - P - CAR - Medium - Gasoline (petrol) - Euro 7 (2020-24)  - vintage  2020 to  2025

Road - P - CAR - Medium - Gasoline (petrol) - Euro 8 (2025-29)  - vintage  2025 to  2030

Road - P - CAR - Medium - Gasoline (petrol) - Euro 9 (2030-34)  - vintage  2030 to  2035

Road - P - CAR - Medium - Gasoline (petrol) - Euro 10 (2035-39)  - vintage  2035 to  2040

Road - P - CAR - Medium - Gasoline (petrol) - Euro 11 (2040-44)  - vintage  2040 to  2045

Road - P - CAR - Medium - Gasoline (petrol) - Euro 12 (2045-50)  - vintage  2045 to 2050

Road - P - CAR - Medium - Gasoline (petrol) - Euro 4 (incl. catalyst) - HEV - vintage  2005 to  2010

Road - P - CAR - Medium - Gasoline (petrol) - Euro 5 (2009-14) - HEV - vintage  2009 to  2015

Road - P - CAR - Medium - Gasoline (petrol) - Euro 6 (2015-19) - HEV - vintage  2015 to  2020

Road - P - CAR - Medium - Gasoline (petrol) - Euro 7 (2020-24) - HEV - vintage  2020 to  2025

Road - P - CAR - Medium - Gasoline (petrol) - Euro 8 (2025-29) - HEV - vintage  2025 to  2030

Road - P - CAR - Medium - Gasoline (petrol) - Euro 9 (2030-34) - HEV - vintage  2030 to  2035

Road - P - CAR - Medium - Gasoline (petrol) - Euro 10 (2035-39) - HEV - vintage  2035 to  2040

Road - P - CAR - Medium - Gasoline (petrol) - Euro 11 (2040-44) - HEV - vintage  2040 to  2045

Road - P - CAR - Medium - Gasoline (petrol) - Euro 12 (2045-50) - HEV - vintage  2045 to 2050

Road - P - CAR - Medium - Gasoline (petrol) - Euro 5 (2009-14)  - PHEV - vintage  2009 to  2015

Road - P - CAR - Medium - Gasoline (petrol) - Euro 6 (2015-19)  - PHEV - vintage  2015 to  2020

Road - P - CAR - Medium - Gasoline (petrol) - Euro 7 (2020-24)  - PHEV - vintage  2020 to  2025

Road - P - CAR - Medium - Gasoline (petrol) - Euro 8 (2025-29)  - PHEV - vintage  2025 to  2030

Road - P - CAR - Medium - Gasoline (petrol) - Euro 9 (2030-34)  - PHEV - vintage  2030 to  2035

Road - P - CAR - Medium - Gasoline (petrol) - Euro 10 (2035-39)  - PHEV - vintage  2035 to  2040

Road - P - CAR - Medium - Gasoline (petrol) - Euro 11 (2040-44)  - PHEV - vintage  2040 to  2045

Road - P - CAR - Medium - Gasoline (petrol) - Euro 12 (2045-50)  - PHEV - vintage  2045 to 2050

Road - P - CAR - Large - Gasoline (petrol) - Conventional (no catalyst)  - vintage  1980 to  1992

Road - P - CAR - Large - Gasoline (petrol) - Euro 1 (incl. catalyst)  - vintage  1992 to  1996

Road - P - CAR - Large - Gasoline (petrol) - Euro 2 (incl. catalyst)  - vintage  1996 to  2000

Road - P - CAR - Large - Gasoline (petrol) - Euro 3 (incl. catalyst)  - vintage  2000 to  2005

Road - P - CAR - Large - Gasoline (petrol) - Euro 4 (incl. catalyst)  - vintage  2005 to  2010

Road - P - CAR - Large - Gasoline (petrol) - Euro 5 (2009-14)  - vintage  2009 to  2015

Road - P - CAR - Large - Gasoline (petrol) - Euro 6 (2015-19)  - vintage  2015 to  2020

Road - P - CAR - Large - Gasoline (petrol) - Euro 7 (2020-24)  - vintage  2020 to  2025

Road - P - CAR - Large - Gasoline (petrol) - Euro 8 (2025-29)  - vintage  2025 to  2030

Road - P - CAR - Large - Gasoline (petrol) - Euro 9 (2030-34)  - vintage  2030 to  2035

Road - P - CAR - Large - Gasoline (petrol) - Euro 10 (2035-39)  - vintage  2035 to  2040

Road - P - CAR - Large - Gasoline (petrol) - Euro 11 (2040-44)  - vintage  2040 to  2045

Road - P - CAR - Large - Gasoline (petrol) - Euro 12 (2045-50)  - vintage  2045 to 2050

Road - P - CAR - Large - Gasoline (petrol) - Euro 4 (incl. catalyst) - HEV - vintage  2005 to  2010

Road - P - CAR - Large - Gasoline (petrol) - Euro 5 (2009-14) - HEV - vintage  2009 to  2015

Road - P - CAR - Large - Gasoline (petrol) - Euro 6 (2015-19) - HEV - vintage  2015 to  2020

Road - P - CAR - Large - Gasoline (petrol) - Euro 7 (2020-24) - HEV - vintage  2020 to  2025

Road - P - CAR - Large - Gasoline (petrol) - Euro 8 (2025-29) - HEV - vintage  2025 to  2030

Road - P - CAR - Large - Gasoline (petrol) - Euro 9 (2030-34) - HEV - vintage  2030 to  2035

Road - P - CAR - Large - Gasoline (petrol) - Euro 10 (2035-39) - HEV - vintage  2035 to  2040

Road - P - CAR - Large - Gasoline (petrol) - Euro 11 (2040-44) - HEV - vintage  2040 to  2045

Road - P - CAR - Large - Gasoline (petrol) - Euro 12 (2045-50) - HEV - vintage  2045 to 2050

Road - P - CAR - Large - Gasoline (petrol) - Euro 5 (2009-14)  - PHEV - vintage  2009 to  2015

Road - P - CAR - Large - Gasoline (petrol) - Euro 6 (2015-19)  - PHEV - vintage  2015 to  2020

Road - P - CAR - Large - Gasoline (petrol) - Euro 7 (2020-24)  - PHEV - vintage  2020 to  2025

Road - P - CAR - Large - Gasoline (petrol) - Euro 8 (2025-29)  - PHEV - vintage  2025 to  2030

Road - P - CAR - Large - Gasoline (petrol) - Euro 9 (2030-34)  - PHEV - vintage  2030 to  2035

Road - P - CAR - Large - Gasoline (petrol) - Euro 10 (2035-39)  - PHEV - vintage  2035 to  2040

Road - P - CAR - Large - Gasoline (petrol) - Euro 11 (2040-44)  - PHEV - vintage  2040 to  2045

Road - P - CAR - Large - Gasoline (petrol) - Euro 12 (2045-50)  - PHEV - vintage  2045 to 2050

Fuel consumption (grams of fuel per km) for petrol cars at 50 kph average speed, by technology
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5.3 Scenario and policy modelling in the DEEM 

The DEEM is able to model scenario and policy options relating to: 

 Improved fuels with lower content of key pollutants (CO2, NOX, PM2.5, NMVOC) 

 Speed and congestion modelling 

 Driver behaviour 

 Cold start influence 

 Any time dependency of e-factors. 

This functionality has been implemented by incorporating into the modelling chain a complex 
set of scaling factors which are applied to the calibrated TEAM fuel use and emissions factors 
from the previous Section. 

For instance, in order to model alternative scenarios/policies that affect average speeds and 
levels of congestion the user has the option to define alternative speed profiles. Congestion 
can be modelled at the national level by shifting the distribution to lower speed brackets. 
While speed profiles are defined by vehicle type and road type, all technologies belonging to 
the specified class of vehicle types are affected by the settings. Figure 27 shows a screenshot 
of the user forms relevant to speed/congestion modelling in DEEM. 

Figure 27: Screenshot of the DEEM user forms for speed/congestion modelling 

 

Changes in driver behaviour can be simulated by applying a set of scaling factors that allow to 
consider how specific emissions change (in this case decrease) over time as a result of, say, a 
national eco-driving programmes (Figure 28). 
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Figure 28: User set up for driver behaviour change  

 

5.4 Model calibration 

As the methodologies used in the DEEM differ slightly from those used to derive national 
statistics and accounts, the DEEM needs to be calibrated at the levels of travel demand, 
traffic and energy use and emissions to national statistics for each year between the base 
year (i.e. 2012 in this version) up to the most recent year where a full set of stats are 
available (usually two years prior to the current year). This can be done by applying scaling 
factors in table EF_timebehav to the DEEM energy use and emissions factors shown above. A 
couple of SQL queries have been setup in the TEAM user interface database for exactly this 
purpose. 
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6. Life Cycle and Environmental Impacts Model 

6.1 Approach 

As far as the transport sector is concerned the basic principle of life cycle analysis (LCA) is to 
take into account all relevant up- and downstream processes within a defined system 
boundary. Based on a typical environmental life cycle assessment framework (Holland et al., 
2016; ICO, 2006; Rabl and Holland, 2008), the Life Cycle and Environmental Impacts Model 
(LCEIM) comprises: 

1. A life cycle inventory model, and; 

2. An environmental impacts assessment model. 

The life cycle inventory model calculates indirect energy use and emissions (including primary 
energy and land use) for: 

 the manufacture, maintenance and disposal of vehicles; 

 the construction, maintenance, and disposal of infrastructure, and; 

 the supply of energy (fuels). 

The environmental impacts assessment model then provides an assessment of the damage 
caused by calculating impact indicators (e.g. global warming potential, GWP) and external 
costs. 

The life cycle inventory model uses the ‘hybrid approach’ of process-chain analysis and input-
output analysis developed by Marheineke et al. (1998; 1996; Strømman et al., 2009). Process 
chain analysis is used for the main supply paths, and aggregated values for complete process 
chains are used within the model. For additional upstream processes, considered to be 
second or third-order effects, input-output analysis is used. This hybrid approach is seen as 
appropriate as much of the evidence in the literature suggests that, in most cases, over the 
lifetime of a vehicle, vehicle operation produces the vast majority of energy use and GHG 
emissions (Lane, 2006; MacLean and Lave, 2003). While for conventional vehicles the fuel 
supply and vehicle manufacture stages account for about 20% of total lifetime GHG emissions 
– being roughly equal in magnitude – vehicle maintenance and disposal account for a much 
smaller share (ibid.). Of course, EVs, H2FCVs and biofuel-powered vehicles have different 
shares of emissions, with the majority of EV and H2FCV emissions coming from vehicle 
manufacture and generation of electricity/hydrogen.  

The environmental impacts assessment model converts direct (from the DEEM) and indirect 
(from the life cycle inventory model) emissions into impacts, which include a number of 
common impact indicators and external costs. Impact indicators are a means to describe 
environmental damage and to compare different pollutants with respect to a certain impact 
using different weighting factors. For example, the GWP100 (100-year Global Warming 
Potential) describes the warming impact of emissions over the next 100 years, and the POCP 
(Photochemical Ozone Creation Potential) refers to the formation of photochemical oxidants. 
The methodology for determining external costs is based on an evaluation of marginal 
effects. To estimate marginal effects an Impact Pathway Approach has been used, building on 
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previous research on the European ExternE project and subsequent studies (Bickel et al., 
2003; EC, 2005; Holland et al., 2018; Rabl et al., 2014). 

The LCEIM allows the user to simulate the effects on energy use and emissions of e.g. adding 
new infrastructure (e.g. high speed rail), changes in the electricity generation mix and an 
alternative set of impact potentials (IPCC, 2018: for current climate change impact 
potentials). 

6.2 What the user can and ‘should not’ change 

There are six parameter sets in the current version of the LCEIM that may be edited/defined 
by the user. For all other life cycle or environmental impact data, user access is not 
recommended. This is due to the fact that most of the model data inputs are generated 
elsewhere in the modelling chain. Hence, it is simply not possible for the user to define their 
own data at this point, since the user data would not be consistent with other model data. 

The parameters that the user can edit/define via the graphical user interface (Figure 29) of 
the TEAM are: 

 additional transport infrastructure including high speed rail lines, roads and airports 
(this parameter will exclusively be defined by the user; there are no default/reference 
data for this parameter); 

 future electricity generation mixes (in 10 year intervals to 2100); 

 accident costs (monetary values for fatalities, minor and serious casualties); 

 average accident rates (fatalities, minor and serious casualties); 

 impact potentials (e.g. GWP100 figures for CH4 and N2O; HCA figures for NOX and 
PM2.5), and; 

 population density for spatial demand segments (urban | motorway | intercity rail | 
etc.). 

Figure 29: LCEIM user interface, definition of model alternatives and policies 
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In addition the user has the option to change the default data sets that are internal to the 
LCEIM and that were produced off-line using separate databases and/or by using other 
models. These include: 

 indirect emissions, primary energy demand and land use change for the production, 
maintenance, and scrappage of vehicles; 

 indirect emissions, primary energy demand and land use for the construction, 
maintenance, and disposal of infrastructure; 

 energy use and emissions factors for electricity generation by generation technology; 

 indirect emissions, primary energy demand and land use for the production and 
supply of all 15 fuels considered in TEAM; 

 the VOC-split of exhaust emissions from conventional and alternative fuelled vehicles, 
and; 

 external cost and monetary valuation rates for the various impact categories, 
accidents and pollutant and noise emissions. 

6.3 Modelling methodology 

6.3.1 Life Cycle Inventory Model 

The necessary data sets for LCA such as emission factors for the provision of materials and 
the provision of energy carriers are modelled in TEAM as aggregated values for an entire 
process chain. The LCEIM is directly connected in terms of data flow (i.e. interface databases) 
to the VSM, the DEEM and the TEAM User Interface, as illustrated in Figure 30.  

Figure 30: Life Cycle Inventory Model Linkages 

 

TEAM-EIM

TEAM-LCM
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Vehicle Manufacture, Maintenance and Scrappage 

Life cycle analysis of vehicles includes the manufacture, maintenance and scrappage of 
vehicles. The preceding TEAM component models feed into the LCA model, which converts 
technology ownership and use data (i.e. number of vehicles) to LCA data (i.e. mass of 
materials needed). The calculation of indirect emissions from the manufacture, maintenance 
and disposal of vehicles follows two main steps: 

1. First, each vehicle type (e.g. medium sized internal combustion car) is broken down 
into its components in terms of mass of materials needed to manufacture the vehicle 
and for vehicle maintenance (e.g. tyres, lubricants etc.). At present over 15 materials 
are modelled for each vehicle type, including alkyd resin varnish, aluminium, glass, 
polypropylene, rubber and three types of steel. Based on the material decomposition, 
emissions, primary energy use and land use changes embedded in each kg of material 
are derived, for up to 25 emissions categories including embedded CO2, N2O, ‘land 
use conversion from undeveloped to cultivated’ (in metre square/kilogram of 
material) and ‘crude oil’ (in kilogram of oil/kilogram of material). 

2. Secondly, the energy use and emissions for the processes involved in manufacturing, 
maintenance and disposal are derived by multiplying energy requirements for each 
process category with process emissions factors. 

For step one, for example, the embedded CO2 emissions factors for unalloyed, low-alloy and 
high-alloy steel are 1.61, 1.97 and 5.28 kg of CO2 per kg of material respectively. For 
aluminium this is even higher at 9.97 kg of CO2 per kg of material. 

To perform this conversion the technologies considered in TEAM needed to be classified by 
mass category (essentially vehicle size) and by material category. Two different categories are 
used since two technologies may be of different weight but have the same percentage of 
materials. The disaggregation level of the mass classification of vehicles is such that all types 
of vehicles are clearly distinguished concerning emissions and energy demand for vehicle 
manufacture. The disaggregation level of the material structure of vehicles is such that all 
main components of vehicles are considered, including the battery for EVs. 

Another crucial point is the temporal system boundary for life cycle analysis of vehicles – 
temporal with regards to the vehicle fleet which is subject to evolution and continuous 
change. New vehicles are added and old vehicles are scrapped. Although energy 
requirements and emissions related to the manufacture of a vehicle can be seen as values 
that should be distributed over the whole lifetime of the vehicles, TEAM allocates all 
manufacturing emissions to the year of first registration. This was deemed the most feasible 
method for the following reasons: 

 Independent modelling of a certain year will be possible. 

 A direct evaluation of new technologies is possible as all effects (including LCA) are 
considered in one year and it is not necessary to compare discounted values over a 
time horizon of about 10 years. 

Infrastructure Construction and Maintenance 

Data availability or data procurement is a fundamental issue concerning infrastructure 
construction and maintenance. Detailed infrastructure modelling would require an 
infrastructure-demand model to consider the following effects: 
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 changes in infrastructure may have a considerable influence on congestion; 

 heavy duty vehicles for example cause by far more damage to roads than cars; 

 a higher transport demand does not necessarily lead to new infrastructure. 

However, appropriate data and an infrastructure demand model were not available. Hence 
the modelling of these effects was deemed to be beyond the scope of TEAM. Nevertheless, it 
is desirable for TEAM to allow an analysis of significant changes in modal split or the 
introduction of new transport technologies (such as a High Speed Train network). To consider 
this, the user has the option to specify any additional infrastructure to the existing 
infrastructure network. Although modelled separately, the relevant LCEIM assumptions on 
additional infrastructure need to be consistent with the assumptions made in the TDM. 

The calculation of indirect emissions for the construction, maintenance and disposal of 
additional infrastructure follows the same methodology as for life cycle assessment of 
vehicles. The underlying data are based on a number of life cycle studies, where available 
based on UK context, including more generic inventories on fuels and powertrains (Brinkman 
et al., 2005; DTI, 2000; JEC, 2014; Joint Research Centre, 2006) and vehicle manufacturing 
and disposal (Lane, 2006; Schäfer et al., 2006; Zamel and Li, 2006) as well as more specific 
ones on vehicle materials (International Iron and Steel Institute, 2002), infrastructure 
materials (e.g. cement, Nemuth and Kreißig, 2007) and process emissions (e.g. freight 
transport, Höpfner et al., 2007). 

The allocation of emissions from additional infrastructure is weighted by vehicle-km, which 
presents a simplification as, for example, heavy duty vehicles (doing fewer miles than cars 
overall) are responsible for a much larger share of the damage. Double counting within the 
hybrid life cycle inventory was avoided as much as possible following Strømman et al. (2009).  

In addition to energy consumption and emissions caused by infrastructure construction the 
corresponding land use impacts are derived as an impact indicator. 

Fuel and Energy Supply 

Emissions from fuel and energy supply are calculated by converting energy and fuel use 
provided by the DEEM into emissions using well-to-tank emissions factors. The fuels and 
energy carriers covered are: 

 Gasoline (petrol) and advanced gasoline, 

 Diesel (DERV) and advanced diesel, 

 LPG (liquefied petroleum gas), 

 Bio-ethanol petrol blend (E85), 

 Bio-diesel (from woody biomass) (B100), 

 CNG (compressed natural gas), 

 Electricity, 

 GH2 (gaseous hydrogen), 

 LH2 (liquid hydrogen), 

 Kerosene (Jet-A aviation fuel) and 

 Bio-kerosene. 

The fuel supply emission factors used in the life cycle inventory model are pre-determined 
based on an extensive literature review (Brinkman et al., 2005; Frischknecht et al., 1997; JEC, 
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2014; JRC and CONCAWE EUCAR, 2006). For example, the indirect CO2 emissions factors for 
the above fuels are provided in Table 23 below. 

Table 23: Transport fuel specifications and indirect CO2 emissions factors from fuel supply 

Fuel type Embedded 
CO2 

Unit Density 
(kg/litre) 

Cal. Value 
(MJ/litre) 

Gasoline (petrol) 540 kg/ton 0.75 32.18 
Diesel (DERV) 612 kg/ton 0.83 35.86 
Liquefied Petrol Gas 400 kg/ton 0.54 24.80 
Bioethanol-petrol blend (E85) -15108 kg/TJ 0.79 29.26 
Biodiesel (B100) 2nd gen. -55930 kg/TJ 0.89 33.11 
Compressed Natural Gas (1) 5170 kg/TJ 0.16 7.72 
Compressed Bio Gas (1) -38490 kg/TJ 0.16 7.72 
Gaseous Hydrogen (2) 8000 kg/TJ 0.06 7.00 

Liquefied Hydrogen (3)  552 kg/ton 0.08 9.20 
Aviation fuel (BP Jet A-1) 561 kg/ton 0.80 34.69 
Bio jet fuel (100%) -55930 kg/TJ 0.79 34.00 

Notes: (1) At 200 bar (20 MPa) pressure. (2) At 600 bar (60 MPa) pressure. (3) At -253 deg C 
(20 K). 

Sources: primarily JRC and CONCAWE EUCAR (JEC, 2014; 2006), supplemented by Brinkman 
et al. (2005) and Gover et al. (1996). 

Other emission species and categories are covered as well, as shown in Table 24 for diesel 
fuel supply. 

Table 24: Embedded emissions factors for fuel supply – example of diesel (DERV) 

Emission Species Embedded emissions Unit  

CO2 612 kg/ton 
CO 0.2 kg/ton 
CH4 0 kg/ton 
NMVOC 4.465 kg/ton 
PM2.5 0.024 kg/ton 
NOX 1.556 kg/ton 
N2O 0 kg/ton 
SO2 2.05 kg/ton 
C6H6 0.0094225 kg/ton 
C2H4 0.027833 kg/ton 
HCHO 3.41167E-04 kg/ton 
PM10 0.024 kg/ton 
PM>10 0.108 kg/ton 
LUC II-III 6.42 m2/ton 
LUC II-IV 4.03 m2/ton 
LUC III-IV 6.5 m2/ton 
LIGNITE 18.5 kg/ton 
COAL 22.9 kg/ton 
NAT.GAS 3.05 m3/ton 
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OIL 1.1 kg/ton 
URANIUM 0.00127 kg/ton 
HYDRO 0.0000855 TJ/ton 
BIOMASS 9.58776 MJ/ton 

In the case of biofuels, the DEEM calculates direct (or tank-to-wheel) emissions, while the 
LCEIM calculates well-to-tank emissions, which in the case of GHG may be negative (when 
growing the crops takes up more GHG from the atmosphere than fuel harvesting, production 
and distribution emits back into it). 

For electricity as a transport fuel, the LCEIM uses upstream emissions factors by generation 
fuel, taking into account the national electricity generation mix, transmission and distribution 
losses (around 10%) and imports from other countries (for the UK this is mainly France and 
the Netherlands). In 2015, on an electricity supplied basis, 39% was generated by gas-fired 
power stations, 17% from coal, 19% from nuclear, 21% from wind and 4% from hydro and PV. 
This results in a CO2 content of electricity of 363 gCO2/kWh end-use (including transmissions 
and distribution losses). For the UK, TEAM incorporates default projections of the generation 
mix based on central Government projections to 2030 and gradual decreases to 2070, after 
which no changes are assumed to 2100 (Figure 31).  These can be changed by the user for 
scenario analysis. The complete list of emissions species covered in LCEIM is provided in 
Table 26 below. 

Figure 31: CO2 content of electricity on supply basis (incl. losses), reference scenario for the UK 

 

6.3.2 Environmental Impact Assessment Model 

Environmental impact assessment in the TEAM involves the provision of several impact 
quantities including impact indicators (e. g. global warming potential etc.) as well as 
monetary valuation of transport related damages (i.e. external costs). The linkages with other 
TEAM modules are illustrated in Figure 32. 
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Figure 32: Environmental Impact Assessment Model Linkages 

 

Damage Types 

TEAM models a range of damage types. With regards to airborne emissions these are: 

 impacts on human health, 

 damages to buildings (e.g. by soiling, corrosion etc.), 

 damages to crops (i.e. yield losses), 

 damages to forests and 

 global climate change. 

Further damages are accidents, fatalities, and injuries (Krewitt et al., 1996a). The damage 
types considered within the Environmental Impact Assessment Model are shown in Table 25. 

Note on effects on forests 

Effects on forests are not considered within the LCEIM for the following reasons. Fuel cycle 
impacts on forests have been the subject of much controversy. There is now consensus that 
pollutants are capable of damaging trees at concentrations previously thought to be safe. 
Recent evidence suggests that pollutants are also capable of improving forest growth, 
principally through fertilisation with nitrogen. Hence, effects of pollution on natural 
ecosystems are acknowledged but not quantified. There is very little information available for 
assessment of pollution effects on such systems over time and place other than critical loads. 
Therefore, forest damage were not assessed within TEAM. 

Table 25: Damage types covered by the Environmental Impact Assessment Model 

Damage type Description 

 

Life-Cycle Emissions/Energy Impacts External Costs 

Life-Cycle 
Inventory Model 

UKTCM-LCM 

Direct Energy & 
Emissions Model 

UKTCM-VEEM 

UKTCM-EIM 
 

Impact Evaluation 

Monetary Valuation (Emissions, Noise, Accidents) 

Environmental 
Impacts Model 

UKTCM-

Export results 
Excel | CSV | SQL 

Direct Emissions/Energy Indirect Emissions/Energy 

TEAM-LCM TEAM-DEEM

TEAM-EIM

TEAM results
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Global climate 
change 

Greenhouse gas emissions from each fuel cycle are relatively well known 
and, for surface transport at least, dominated by CO2 emissions. The 
impacts of global warming affect a huge range of receptors. They are 
complex, scenario dependent, very uncertain, long term and potentially 
very large. Estimation of the impacts is rendered difficult by poor 
understanding of the likely regional variation in climatic change. 
Quantification is therefore difficult. Monetary valuation is even more 
problematic, because of the macro-scale of the impacts and interactions 
between them. The most comprehensive assessments of the impacts by 
the IPCC suggest impact values for different pollutant types relative to 
CO2 based on their relative global warming potentials (e.g. 1 for CO2, 23 
for CH4, 296 for N2O). The quantification of global warming impacts in 
terms of monetary values ‘low’ and ‘high’ estimates of the social cost of 
carbon (Nordhaus, 2017; Tol, 2008; Watkiss et al., 2005) have been 
included in the LCEIM.  

Public health 
Impacts 

The most important effects on the general public are likely to arise from 
exposure to air pollution. The approach adopted here follows a no-
threshold model, based on the results of a large number of 
epidemiological studies. Noise potentially affects both human health and 
amenity where hearing damage occurs only at high noise levels. 
Occupational health impacts are not considered in the TEAM. 

Direct 
transport 
related health 
impacts 

Direct transport related health impacts in particular result from accidents. 
Hence a monetary valuation of accidents, fatalities, and injuries are 
applied where the valuation of fatalities will be expressed by the Value of 
Statistical Life. This approach of using the number of accidents, fatalities 
and serious/minor injuries is implicitly used as a measure of safety. 

Effects on 
agriculture 

Direct effects of sulphur dioxide (SO2) on wheat, barley, oats, rye, peas 
and beans are assessed, while other major crops like potatoes, oilseed 
rape etc. are assumed to be tolerant of SO2. Dose-response functions are 
used which estimate both fertilizational and deleterious effects. 

Effects on 
building 
materials 
 

Material surfaces are mostly affected by SO2 or wet acid deposition. 
Increased maintenance costs to natural stone, mortar, rendering, zinc, 
galvanised steel and paintings on European dwelling houses are 
evaluated. The dose-response functions to acid attack are derived from 
an expert assessment of the relevant literature. They consider only 
uniform corrosion over the whole surface, which is often, but not always 
the dominant damage mechanism. The rates of corrosion are converted 
into a repair or replacement frequency using expert judgements and the 
repair is valued using market prices. 

Emission species 

The selection of emission species for the LCEIM was based on the significance of the 
pollutants with respect to environmental impacts, in particular health effects. Some of these 
species cannot be modelled ‘directly’ in terms of technology specific emission factors (within 
the DEEM). For example, some volatile organic compounds (VOC) are derived in TEAM from 
total VOC emissions (from DEEM) using corresponding VOC-split factors. 
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Human health is affected by particulates (measured as PM2.5 and PM10, the fraction of air-
borne particulate matter with a diameter less than 2.5 µm or 10 µm respectively) with a wide 
range of chronic and acute (i.e. immediate) health impacts, ranging from major events that 
require admission to hospital to lesser effects such as shortness of breath in asthmatics. 
Health effects of sulphur dioxide (SO2) and nitrogen oxides (NOx) are only included in so far as 
they contribute to particulate levels through the formation of sulphate and nitrate aerosols 
(secondary particulates). Damage costs of the direct effects of exposure to NO2 have been 
included based on the most recent UK guidance and impact pathway modelling (COMEAP, 
2010; DEFRA, 2015a, 2017a). The species of VOC that are included are benzene, ethylene and 
formaldehyde.  

All other impact indicators are covered by including further pollutants including carbon 
dioxide, methane and nitrous oxide (global warming), methane, non-methane VOC, benzene 
(photochemical ozone creation), and nitrogen oxides, sulphur dioxide (acidification and 
nitrification). The emission species and their main impacts are listed in Table 26. 

Table 26: Pollutants and their main environmental impacts 

Pollutant Impact on 

CO2 global warming 
CO human health 
CH4 global warming, photochemical ozone creation 
NMVOC agriculture, human health, photochemical ozone creation 
Particulates: PM2.5, 
PM10, PM>10 

human health 

NOx human health, agriculture, building materials, acidification, 
nutrification 

N2O global warming 
SO2 human health, agriculture, building materials, acidification 
C6H6 (benzene) human health, photochemical ozone creation 
C2H4 (ethylene)  human health 
HCHO (formaldehyde)  human health 

In addition to the pollutant emissions listed above, any significant land use changes resulting 
from changes in transport demand as well as changes in primary energy demand are 
calculated in the LCEIM. With regards to land use this includes:  

 land use conversion from undeveloped to cultivated, 

 land use conversion from undeveloped to built up, and 

 land use conversion from cultivated to built up. 

With regards to primary energy demand this includes: 

 crude lignite before extraction, 

 crude hard coal before processing, 

 crude natural gas, 

 crude oil, 

 uranium (ore), 

 hydro energy (in terms of potential energy of water), and 

 biomass. 
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Impact indicators 

Impact indicators are a means to describe environmental damage and to compare different 
pollutants with respect to a certain impact using different weighting factors. For example, the 
GWP (global warming potential) describes the greenhouse effect, while the POCP 
(photochemical ozone creation potential) refers to the formation of photochemical oxidants. 
These impact indicators can be determined using a set of weighting factors for different 
pollutants. Table 27 gives an overview of the impact indicators included in LCEIM. 

Table 27: Impact indicators 

Abbreviation Impact Description 

GWPx Global Warming Potential for different integration time horizons 
x=20, 100 and 500 years 

AD Abiotic Depletion (i.e. crude oil, natural gas, coal, etc.) 
POCP Photochemical Ozone Creation Potential 
HCA Human Toxicological Classification (Air) 
AP Acidification Potential 
NP Nutrification Potential 

 

Monetary valuation 

The use of energy causes damage to a wide range of receptors, including human health, 
natural ecosystems and the built environment. Such damages are referred to as external 
costs, as they are not reflected in the market price of energy. 

The methodology of determining external costs is based on an evaluation of marginal effects. 
To estimate marginal effects, the Impact Pathway Approach developed within the EU project 
ExternE (EC, 2005) and further developed and applied in UK economic appraisal (DEFRA, 
2015b, 2017b; IGCB, 2007) takes into account technology specific emission data (e.g. diesel 
vehicle EURO 5 NOX emissions per mile) for individual locations (e.g. traffic in urban, rural and 
motorway locations). The Impact Pathway Approach is based on a step-by-step analysis, 
starting with the release of burdens from the fuel cycle, and moving through their interac-
tions with the environment to a physical measure of impact and, where possible, a monetary 
valuation of the resulting welfare losses. 

Based on the concepts of welfare economics, monetary valuation of environmental impacts 
follows the approach of Willingness To Pay (WTP) for improved environmental quality or 
Willingness To Accept (WTA) for environmental damage (Krewitt et al., 1996a). This approach 
implies underlying premises including: 

 the philosophy that the value is measured by the aggregation of human preferences, 

 that WTP and/or WTA is an adequate measure of preference, and 

 that the values of environmental quality can be substituted by other commodities. 

The techniques of monetary valuation fall broadly into three categories: 

 Valuation through the use of market prices: 

o can be used where the receptors are commodities traded in normal markets, 
like crops or timber. 
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 Indirect valuation via hedonic prices and the travel cost method: 

o typically used for valuing impacts to amenity and recreational sites, where a 
public good is affected, and therefore behaviour in a related market is 
observed. 

 Contingent Valuation Method (CVM): 

o valuation of goods like natural ecosystems and biodiversity which are not 
related to any real market using hypothetical markets. 

A comprehensive analysis requires the assessment of all stages of the fuel cycle, all significant 
impacts and extending the impact analysis in space and time to capture all relevant effects. 
For instance, taking into account long range transport, chemical conversion of pollutants 
becomes an important issue. In particular the consideration of sulphate and nitrate aerosols 
subsequently produced from the emissions of gaseous PM and NOx has a major implication 
on the assessment of human health effects. In practice, a fully comprehensive analysis is not 
possible due to the number of impacts which could potentially be included. Priorities for an 
analysis were selected based on both literature review and expert judgement, with the 
objective of including the impacts with the largest damages. Based on previous studies, e.g. 
EC (1996), the population density as the main influence variable for human health effects 
seems to be the driving parameter for impact quantity. Thus, population density is one of the 
key variables within the LCEIM. 

As the methodology for monetary valuation – in particular dispersion modelling – is rather 
complex, each single step of this method is not followed directly within the TEAM. Instead, a 
‘building block’ methodology is employed using aggregated parameterised values for 
different processes and technologies. The ‘building blocks’ provide functionality between 
input parameters (such as emissions) and external costs. They also allow a transition from 
marginal to absolute effects. The derived external cost data are based on the following 
methodological steps: 

 atmospheric transport and chemical transformation modelling, 

 calculation of concentrations/depositions, and 

 application of dose-response relationships. 

6.4 Model Specification 

This Section describes the computational steps in the model as well as the functional 
relationships and the attributes of the model variables. 

6.4.1 Definitions 

Table 28 gives an overview of the variables used within the Life Cycle Inventory Model; and 
Table 29 gives an overview of the variables used within the Environmental Impacts 
Assessment Model. Two digit abbreviations indicate input or output variables. Three digit 
abbreviations indicate internal model variables. 
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Table 28: Abbreviations of variables used within the Life Cycle Inventory Model 

Abbreviation Variable Name 

AI Additional infrastructure 
ET Total (life cycle) emissions = direct plus indirect emissions 
ED Direct emissions (at source, tailpipe) 
EI Indirect emissions (upstream, downstream) 
EN Direct emissions except VOC (non-VOC) 
EV Direct VOC emissions 
GE Electricity generating mix 
KM Vehicle mileages (kilometres) 
LU Land use of infrastructure 
NN Number of new vehicles 
NS Number of scrapped vehicles 
NT Total number of vehicles 
PR Primary energy requirements 
QF Quantity of fuels 

AIT Additional infrastructure by technology 
EIF Life cycle emissions of fuel/energy supply 
EII Life cycle emissions of material supply 
FDT Total fuel/energy demand 
FIC Energy demand of infrastructure construction 
FIS Energy demand of material supply 
FVM Energy demand of vehicle manufacture 
FVS Energy demand of vehicle scrappage 
FVU Energy demand of vehicle maintenance (use) 
IDI Material demand for infrastructure construction 
IDM Material demand for vehicle manufacture 
IDT Total material demand 
IDU Material demand for vehicle maintenance 
LIC Land use of infrastructure construction 
NVU Number of vehicles under maintenance 
PFS Primary energy requirements of fuel/energy supply 
RVU Maintenance rate of vehicles 
VOC VOC split of direct emissions 
ZFS Emission factors for fuel/energy supply 
ZIC Emission factors for infrastructure construction 
ZIS Emission factors for material supply 
ZVM Emission factors for vehicle manufacture 
ZVS Emission factors for vehicle scrappage 
ZVU Emission factors for vehicle maintenance (use) 

 

Table 29: Abbreviations of variables used within the Environmental Impacts Assessment Model 
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Abbreviation Variable Name 

ET Total (life cycle) emissions = direct plus indirect emissions 
ED Direct emissions (at source, tailpipe) 
EI Indirect emissions (upstream, downstream) 
II Impact Indicators 
KM Vehicle mileages (kilometres) 
PR Primary energy requirements 
RA Rate of accidents 
RF Rate of fatalities 
RM Rate of minor casualties 
RS Rate of serious casualties 
VL Value of statistical life 
XT Total external costs 

AJR Assignment factors from journey segment types to receptor categories 
IPO Impact potentials 
MVA Monetary values for accidents 
MVD Monetary values (‘Building Blocks’) for direct emissions 
MVI Monetary values (‘Building Blocks’) of indirect emissions 
MVM Monetary values for minor casualties 
MVS Monetary values for serious casualties 
XED External costs of direct emissions 
XEI External costs of indirect emissions 
XVA External costs of vehicle accidents 

6.4.2 Modelling flow within the LCEIM 

Figure 33 provides the LCEIM modelling flowchart, illustrating the following three main 
modelling stages: 

1. In a first step, the demand for energy and materials is calculated from (a) the number 
of vehicles provided by the VSM and (b) from the fuel demand provided by the DEEM. 
For materials and energy the corresponding indirect (embedded) emissions and 
primary energy requirements are derived. The emissions that are directly related to 
the manufacture, maintenance, and scrappage of vehicles as well as to the 
construction of infrastructure are added. For any additional infrastructure defined by 
the user the corresponding land use and emissions are computed. The number of 
accidents, casualties, and fatalities are calculated by means of corresponding impact 
rates related to the vehicle mileage travelled. Direct vehicle emissions from the DEEM 
(disaggregated by demand segment types) are converted into emissions 
disaggregated by receptor categories by means of assignment tables. 

2. In the next step these emissions as well as the total life cycle emissions, accidents, 
fatalities, and casualties are assessed in terms of monetary valuation of the related 
damages using the Building Blocks described earlier. 

3. Finally, the main output indicators (direct, indirect and total life cycle emissions, 
primary energy demand, land use, impact indicators, and external costs) are passed to 
the view and export results module. 
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Figure 33: Detailed modelling flowchart of the LCEIM 
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6.4.3 Functional relationships 

This Section outlines the functional dependencies between the modelling variables. For 
detailed specification of the functions themselves see the following Section. Refer to Table 30 
for the LCEIM attribute names and subscript labels used in the relationships. 

Table 30: LCEIM attribute names and subscript labels 

Attribute labels Attribute name (disaggregation) 

S Scenario 

C Country/region (only one region is used in TEAM v1: the UK) 

Y Year (2012-2100) 

M Transport mode (road, rail, water, air) 

K Transport type (passenger, freight) 

V Vehicle type  

W Vehicle mass category or weight 

T Vehicle technology 

J Demand segment type 

F Fuel, final energy demand 

E Emission species 

P Primary energy 

I Material 

 

Life Cycle Inventory Model 

Direct emissions 

 ED S, C, Y, T, J, E = f E (EN S, C, Y, T, J, E , EV S, C, Y, T, J , VOC T, J, E ) 

 

Number of vehicles requiring maintenance 

 NVU S, C, Y, T = f (NT S, C, Y, T , RVU C, Y, T ) 

 

Additional infrastructure by technology 

 AIT S, C, Y, T = f (AI S, C, Y, M , KM S, C, Y, T ) 

 

Total material demand 

 IDT S, C, Y, T, I = f (NN S, C, Y, T , IDM C, Y, V, W, F, I , NVU S, C, Y, T , IDU C, Y, V, W, F, I , AIT S, C, Y, T 

, IDI I ) 

 

Total fuel and energy demand 

 FDT S, C, Y, T, F = f (QF S, C, Y, T, F , NN S, C, Y, T , FVM C, Y, V, W, F , NVU S, C, Y, T , FVU C, Y, V, W, F 

, 
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   NS S, C, Y, T , FVS C, Y, V, W, F , AIT S, C, Y, T , FIC F , IDT S, C, Y, T, I  , FIS C, Y, F, I ) 

 

Indirect emissions, material Supply (without energy demand related emissions) 

 EII S, C, Y, T, E = f (IDT S, C, Y, T, I , ZIS C, Y, E, I ) 

 

Indirect emissions, fuel/energy supply 

 EIF S, C, Y, T, E = f (FDT S, C, Y, T, F , ZFS C, Y, F, E ) 

 

Total indirect emissions 

 EI S, C, Y, T, E = f (NN S, C, Y, T , ZVM C, Y, V, W, F, E , NVU S, C, Y, T , ZVU C, Y, V, W, F, E , 

   NS S, C, Y, T , ZVS C, Y, V, W, F, E , AIT S, C, Y, T , ZIC E , EII S, C, Y, T, E , 

   EIF S, C, Y, T, E ) 

 

Total life cycle emissions 

 ET S, C, Y, T, E = f (ED S, C, Y, T, J, E , EI S, C, Y, T, E ) 

 

Primary energy requirements 

 PR S, C, Y, T, P = f F (FDT S, C, Y, T, F , PFS C, Y, F, P , GE S, C, Y ) 

 

Land use of infrastructure 

 LU S, C, Y, T = f (AIT S, C, Y, T , LIC ) 

 

Environmental Impact Assessment Model 

 

External costs of direct emissions 

 XED S, C, Y, T = f E (ED S, C, Y, T, J, E , AJR C, J , MVD C, Y, J, E ) 

 

External costs of indirect emissions 

 XEI S, C, Y, T = f E (EI S, C, Y, T, E , MVI C, Y, E ) 

 

External costs of vehicle accidents 

 XVA S, C, Y, T = f (KM S, C, Y, T , RA C, Y, V , MVA , RF C, Y, V , VL , RS C, Y, V , MVS , RM C, Y, V 

, 

   MVM ) 
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Total external costs 

 XT S, C, Y, T = f (XED S, C, Y, T , XEI S, C, Y, T , XVA S, C, Y, T ) 

 

Impact indicators 

 II S, C, Y, T = f E (IPO E, P , ET S, C, Y, T, E , PR S, C, Y, T, P ) 

 

 

6.4.4 Modelling equations 

The following modelling equations specify the functional relationships outlined above; the 
subscripts of variable disaggregation have been left out here for the sake of clarity.  

Life Cycle Inventory Model 

Equation 39: Direct Emissions 

ED EN

ED EV VOC

NVOC

VOC



   

Equation 40: Number of vehicles requiring maintenance 

NVU NT RVU   

Equation 41: Pro rata distribution by technology of additional infrastructure  

AIT AI
KM

KM
T

 


 

Equation 42: Total material demand 

IDT NN IDM NVU IDU AIT IDI     ( ) ( ) ( )  

Equation 43: Total fuel and energy demand 

FDT QF NN FVM NVU FVU NS FVS AIT FIC IDT FIS          ( ) ( ) ( ) ( ) ( )  

Equation 44: Life cycle emissions, material supply 

ELI IDT ZIS
I

  ( )
 

Equation 45: Life cycle emissions, fuel and energy supply 

ELF FDT ZFS
F

 ( )
 

Equation 46: Life cycle emissions 

ELFELIZICAITZVSNSZVUNVUZVMNNEI  )()()()(  

Equation 47: Total emissions 
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EIEDET
J


 

Equation 48: Primary energy requirements 

PR FDT PFS

PR FDT GE PFS

non electricity
F

electricity
PF

  

  





( )

( )
 

 

Environmental Impact Assessment Model 

Equation 49: Land use of infrastructure 

LU AIT LIC   

Equation 50: External costs of direct emissions 

XED ED AJR MVD
EJ

   ( )
 

Equation 51: External costs of indirect emissions 

)( 
E

MVIEIXEI

 

Equation 52: External costs of vehicle accidents 

 XVA KM RA MVA RF VL RS MVS RM MVM        ( ) ( ) ( ) ( )
 

Equation 53: Total external costs 

XVAXEIXEDXT   

Equation 54: Impact indicators 

II IPO EC

II IPO PR

E

P

 

 




 

6.4.5 Key data sources 

Given the uncertainty inherent in life cycle assessment, the differences in methods, 
assumptions and data used in these studies, default data were chosen for the LCEIM that 
represent ‘best estimates’, which can be changed by the user. 

The default values of aggregated emission factors in life cycle inventory model stems from 
environmental life cycle inventory studies from the 1990s (Frischknecht et al., 1997; Maibach 
et al., 1995). These have been augmented as described in the main body of text, including a 
number of sources on fuel supply emissions and embedded emissions in material supply 
(Gover et al., 1996; Höpfner et al., 2007; International Iron and Steel Institute, 2002; JEC, 
2008, 2014; Lane, 2006; Marheineke, 1996; Zamel and Li, 2006). 
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A number of European studies were used for the data requirements of the impact 
assessment model. “Building Block” data were derived from the EU projects ExternE (EC, 
2005) and other studies (EC, 1996; Loo and Banister, 2016; Ogden et al., 2004; Santos et al., 
2010; Schreyer et al., 2004). Additional data for monetary valuation was derived from the 
EcoSense model (Krewitt et al., 1996b). Impact indicators were computed using values for 
impact potentials from IPCC (2007) and Heijungs. et al. (1993). 

7. Summary and Outputs 

This Methodology Guide describes the overall approach, core methods, functional 
relationships and data sources of the TEAM modelling framework. 

TEAM has been developed to explore the full range of technological, fiscal, regulatory and 
behaviour change policy interventions to meet climate change, air quality and energy security 
goals within a scenario modelling framework. It comprises: 

 a detailed demand simulation model, unpicking demand by journey purpose, distance 
and mode; 

 a technology-rich, evolving stock model that simulates fleet renewal, vehicle 
ownership, vehicle technology choice and vehicle use; 

 a detailed energy and emissions model, simulating fuel quality/carbon content, cold 
starts, congestion, eco-driving, on-road driver behaviour, speed effects, and ‘real 
world’ emissions; 

 an analysis framework that covers a full range of environmental and cost 
consequences: pollutant emissions by source, by end user, domestic and 
‘international’, targets vs. cumulative, external costs, tax revenues, generalised costs 
of travel, and so on. 

 A flexible database system with a graphical user interface. 

TEAM arguably makes the output of traditional complex models much more accessible to the 
decision-maker. By combining several models in a single system, the model enables a more 
holistic approach to decision-making, with a diverse range of criteria being handled 
simultaneously. 

To make any modelling framework useful, it has to be applied for what it was developed for, 
i.e. scenario and policy analysis of future TEE systems. Three versions have been developed 
to date: 

1. a UK (national) version, TEAM-UK 

2. a Scottish (national) version, STEAM, and; 

3. a Scottish regional/local version, STEAM-LA. 

These versions have been applied and published in a range of scenario and policy modelling 
exercises, including: 

 investigating the ‘Dieselgate’ scandal by exploring unaccounted and future air 
pollutant emissions and energy use for cars in the UK: 
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o Brand, C. 2016. Beyond Dieselgate: Implications of unaccounted and future air 
pollutant emissions and energy use for cars in the United Kingdom. Energy 
Policy 97, October 2016, 1-12. 

 examining the timing, scale and impacts of the uptake of plug-in vehicles in the UK car 
market from a consumer segmentation perspective: 

o Brand, C., Cluzel, C., Anable, J., 2017 Modeling the uptake of plug-in vehicles in 
a heterogeneous car market using a consumer segmentation 
approach. Transportation Research Part A: Policy & Practice 97, 121-136. 

o ESRC Evidence Briefing: ESRC - Supporting large-scale transition to electric 
cars. https://esrc.ukri.org/files/news-events-and-publications/evidence-
briefings/supporting-large-scale-transition-to-electric-cars/  

 exploring the roles of lifestyle change and socio-cultural norms vs. electrification and 
phasing out of conventional fossil fuel vehicles in collaboration with the Scottish 
ClimateXChange and the Scottish government: 

o Brand, C., Anable, J. & Morton, C. (2019) Lifestyle, efficiency and limits: 
modelling transport energy and emissions using a socio-technical approach, 
Energy Efficiency 12 (1): 187. https://doi.org/10.1007/s12053-018-9678-9    

Key methods and ‘modules’ of the TEAM have also been used for scenario analysis in the 
Chinese context and to evaluate the potential for carbon emissions reductions from active 
travel interventions, which have been published in 2018: 

 Li, P., Zhao, P., Brand, C. (2018) Future energy use and CO2 emissions of urban 
passenger transport in China: A travel behavior and urban form based approach. 
Applied Energy, 211, 820-842. DOI: 10.1016/j.apenergy.2017.11.022. 

 Neves, A., Brand, C. (2018) Assessing the potential for carbon emissions savings from 
replacing short car trips with walking and cycling using a mixed GPS-travel diary 
approach. Transp. Res.: Part A: Pol. Practice. doi: 10.1016/j.tra.2018.08.022. 
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