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A B S T R A C T

Demand electrification, system flexibility and energy demand reduction (EDR) are three central tenets of most
energy system decarbonisation pathways in the UK and other high-income countries. However, their combined
impacts on local energy systems remain understudied. Here, we investigate the impact of different UK energy
demand future scenarios on the loading of local electricity networks, and the ability of electrified demand to
act flexibly in (i) mitigating the need for network reinforcement and (ii) shifting demand around according
to variable tariffs reflecting wider system needs. These scenarios are used to drive spatially- and temporally-
explicit technology uptake and energy demand modelling for heating and transport in a localised context, for
application to a local electricity network. A particular case study energy network in Scotland, representative
of many networks in the UK and Northern Europe, is selected to demonstrate the method. On the basis of the
presented case study, which considered a typical winter demand day, energy futures based on EDR policies
were found on average to reduce evening transformer loading by up to 16%. Further reductions of up to
43% were achieved with flexible smart charging and up to 69% with the use of vehicle-to-grid. Therefore, we
find that policies focused on EDR can mitigate the need for reinforcement of electricity networks against the
backdrop of demand electrification. However, flexibility in electricity demand contributes a larger difference
to a network’s ability to host electrified heat and transport than relying solely on EDR. When used in tandem,
policies that simultaneously pursue EDR and electricity system flexibility are shown to have the greatest
benefits. Despite these benefits, peak electricity demand is very likely to increase significantly relative to the
current baseline. Therefore, widespread reinforcement is required to local electricity networks in the net-zero
transition and, accordingly, urgent investment is required to support the realisation of the UK’s legally-binding
climate goals.
1. Introduction

Whilst several independently developed pathways have been pro-
posed to meet the UK’s legally-binding net-zero greenhouse gas emis-
sions target (e.g. [1–4]), they are generally in agreement on three
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points. Firstly, that mass electrification of heating and transport de-
mand is the most cost-effective way to shift demand away from fos-
sil fuel use. Secondly, that reducing energy demand – by improv-
ing conversion efficiencies and managing the proliferation of high-
consumption activities, e.g. flying – will reduce the scale of invest-
ment needed for net-zero and de-risk our reliance on technologies
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Fig. 1. High-level overview of the methodology developed to investigate the impact of future demand scenarios on flexibility and infrastructure.
that remain to be demonstrated at scale [5]. Thirdly, that time- and
space-based flexibility in the electricity demand can avoid or defer
the need for network reinforcement and is key to supporting the
variable renewables-dominated electricity system needed for decarbon-
isation [6].

In high-income countries like the UK, energy demand reduction
(EDR) can help to mitigate climate change by reducing the amount
of fossil fuels burned [7] whilst simultaneously leading to positive
improvements in well-being [8]. These demand reductions can arise
from avoiding unwanted or unnecessary sources of demand, such as
having to drive long distances to access basic services or having to heat
poorly-insulated homes; shifting demand to a more effective means of
energy delivery, such as mode shift from private car to public transport
or replacement of a gas boiler by a heat pump (HP); or by improving the
efficiency of the devices that convert final energy into its useful form,
such as the substitution of internal combustion engine-powered cars for
electric cars or an improvement in boiler efficiency. This Avoid-Shift-
Improve hierarchy of EDR, as detailed in [9], can be used to quantify
routes to EDR as a means of climate change mitigation and well-being
improvement.

Whilst recognising that there has been a wealth of research on quan-
tifying the impacts of demand electrification on electricity systems, as
evidenced through the literature review in Section 2, there remains a
knowledge gap in how different futures regarding demand for energy
services will impact network infrastructure and subsequently, inform
the value proposition for local flexibility.

This paper aims to fill this gap by addressing the question of
what impact does different future energy demand narratives have on
local electricity systems and demand flexibility? via the following
contributions (as summarised by Fig. 1):

1. Existing demand scenarios, as developed by the Centre for Re-
search in Energy Demand Solutions (CREDS) in their Positive
Low Energy Futures (PLEFs) [7], are used to drive (i) spatially
explicit modelling of the uptake of electrified transport and
heating; and (ii) temporally explicit modelling of the electricity
demand of these technologies for a local geography.

2. A model of a real electricity distribution network that serves
households in the given local geography is used as the basis to
examine the impacts of varying demand scenarios on electricity
system infrastructure. An optimal power flow (OPF) model of
a three-phase electricity network with realistic distributions of
loading among the three phases is used to investigate the impact
of these demand scenarios on the potential of flexibility in
electricity demand.

3. Results are reported in terms of loading of that network under
the different scenarios, with and without flexible demand (from
electric vehicles). These results are used as evidence of the
2

potential benefits of policies that support EDR and flexibility.
The remainder of the paper is organised as follows. Section 2
provides a review of the related literature; Section 3 describes the
PLEFs; Section 4 describes the spatial uptake modelling for both heat
and transport; Section 5 describes the temporal modelling for both
heat and transport; Section 6 describes the distribution network and
domestic demand modelling; Section 7 describes the unbalanced OPF
and flexibility modelling; Section 8 describes the case study area, the
case studies and their modelling methods; Section 9 presents the results
from the study; Section 10 discusses the results in the context of future
implications for energy infrastructure and policy; Section 11 presents
conclusions from the research and recommendations for further work.

2. Literature review

Two observable trends on energy demand are that:

1. Growth in wealth leads to growth in demand for energy
services: over the time period 1971–2018, each percentage
point of growth in global gross domestic product (GDP) led to
an increase in 0.68% of energy demand [10];

2. Improvements in conversion efficiencies alone do not lead
to reductions in energy consumption: the evidence for this has
been consistently revisited in the literature as an application of
the Jevons paradox [11–13].

There is a growing body of literature on the potential for EDR to
contribute towards climate ambitions, and this is generally presented
not only as a vital part of climate mitigation strategies. Grubler et al.
present a global energy consumption scenario whereby total demand is
reduced by 40% by 2050 relative to today’s levels [14]. The Interna-
tional Energy Agency’s pathway to global net-zero emissions by 2050
stresses the importance of measures to limit energy demand, including
behavioural changes and resource efficiency, stating that global energy
demand can be reduced by approx. 90% versus the counterfactual base-
line by 2050 [15]. Van Vuuren et al. use integrated assessment models
to construct alternative models to meeting the 1.5 ◦C target of the Paris
Agreement and, in doing so, support wide-ranging reductions in energy
demand from switches in mobility to improvements in building thermal
efficiency [16].

Increasingly, studies frame the contribution of EDR in meeting
climate targets at the national – rather than international – level. In
a UK context, Barrett et al. use a suite of whole energy systems models
and scenario development through expert stakeholder engagement to
investigate the potential role of EDR in supporting and ‘de-risking’
pathways to net-zero emissions [7]. By examining trade-offs between
varying levels of technology adoption and behavioural change, they
conclude that energy demand can be reduced by up to 52% by 2050,
compared to 2020 levels, without compromising on citizens’ quality
of life. The Climate Change Committee (CCC), the UK government’s
independent statutory advisor on climate and energy policy, has a

significant focus on EDR in their analysis of possible pathways to the
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UK meeting its net-zero target [2]. In the CCC’s ‘balanced’ pathway to
net-zero, which represents the mid-point between technology change
and behaviour change, there is significant focus on the contribution
of EDR both through efficiency improvements (e.g. increased rates
of retrofitting leading to a 12% reduction in domestic heating en-
ergy demand) and behaviour change (e.g. reductions in per-capita car
kilometres by 17% and per-capita meat consumption by 34%). Brand
et al. [17] explored the roles of lifestyle change and socio-cultural
norms vs. electrification and phasing out of conventional fossil fuel
vehicles, suggesting that lifestyle change alone can have a comparable
and earlier effect on transport carbon and air quality emissions than a
transition to electric vehicles (EVs) with no lifestyle change. Yet, both
strategies have limits to meeting legislated carbon budgets, which may
only be achieved with a combined strategy of radical change in travel
patterns, mode and vehicle choice, vehicle occupancy and on-road
driving behaviour with high electrification and earlier-than-planned
phasing out of conventional fossil fuel vehicles. However, while the
study in [17] was carried out at a national level with zero spatial detail,
these measures can vary significantly by local area and so there is a
need to examine the effects of these policies at finer geographical and
political boundaries.

There is a largely separate body of literature that has looked to
quantify the impacts of the electrification of heat and transport on elec-
tricity system infrastructure. These studies typically generate temporal
demand profiles based on the electrification of energy services such as
heat and transport and superimpose these profiles onto a model of a
distribution network.1 These profiles are usually derived either from
ata captured from real EV chargers or HPs, typically from government-
ponsored trials, as in [19–23], or from data collected from incumbent
echnologies, such as internal combustion vehicles (ICVs) or gas-fired
oilers, to understand energy service demand and extrapolate to the
lectricity demand of meeting these same services, as in [24–27].

Whereas [19–27] focus on the electrification of one particular en-
rgy service (generally heat or transport), studies that focus on the
ggregate effects of combined heat and transport electrification on
etwork infrastructure are less commonplace. One study is provided
y Navarro-Espinosa et al. [28], who employ a Monte Carlo technique
o sample from HP and EV demand profiles, generated from heating
emand data and EV trial data respectively, assigning them to UK
istribution feeder models in assessing the voltage and thermal impacts
f the uptake of these technologies.

The potential for both EVs and HPs to act as providers of system
lexibility in the context of a high-renewables power system with em-
edded communications has been well-researched. Edmunds et al. [29]
resent a study on the potential for controlled EV charging to maximise
he available capacity in allowing maximal HP penetration for a given
evel of network reinforcement. Venegas et al. [30] identify and analyse
otential frameworks for the active integration of EVs to the power
ystem at various temporal and spatial scales, concluding that there
s significant value in flexibility of distributed demand at the scale of
istribution systems. Backe et al. [31] present a local (‘community’)
nergy system model to assess the potential to use HP and EV flexibility
o manage variance in demand and supply in the Norwegian power
ystem. The authors estimate that by using HPs and EVs as providers
f flexibility, the average European electricity cost could reduce by
% and the expansion rate of the transmission network could reduce
y 0.4%. Salpakari et al. [32] present a similar study to that in [31],
ut rather than the objective function of the optimisation being over
wide area, a control model is presented to optimise the provision

1 The literature tends to focus on the impact of electrification of heat and
ransport on distribution networks. Indeed, Crozier et al. [18] present analyses
f the impacts on distribution and transmission infrastructure using a common
nalysis method and find that distribution networks are at higher risk of having
heir operational limits compromised as a result of demand growth.
3

of flexibility from EVs and HPs at the scale of a microgrid. On the
basis of a single house, the study suggests that a consumer can save
33% on energy costs through the optimal coordination of flexibility,
given their energy demand requirements. Aside from saving costs and
quantifying the level of network reinforcement required, studies have
shown that flexibility can reduce the emissions intensity of electricity
delivered in a region, as demand can be scheduled for periods of
high renewable availability. For instance, Gunkel et al. [33] present a
modelling framework to compare the total carbon emissions resulting
from a power system spanning much of Northern and Central Europe
before and after the introduction of flexibility from EVs. They estimate
that between 2020 and 2050, the addition of flexibility from EVs can
save up to 23 MtCO2e without any changes to the generation mix: in
context, that is around 4% of the UK’s current economy-wide emissions.

Whilst there is demonstrably a considerable body of literature on
the impacts of electrification on electricity system infrastructure and
potential of demand flexibility, none of the above cited studies consider
the future evolution of energy service demand as a result of shifting
societies, evolving technologies and policies that actively support EDR
in the name of climate change mitigation and promotion of human
well-being. This is identified as a considerable research gap; to the
authors’ knowledge, there has been no work on linking pathways in
energy demand futures – such as those presented in [7] – to the
potential impacts on infrastructure and the value proposition of flex-
ibility. Thus, the work of this paper will translate narratives on energy
demand futures in heating and transport to impacts on local electricity
systems, enabling quantification of the stress placed on key infrastruc-
ture and the ability of those demands to act ‘flexibly’ in supporting
the renewables-dominated generation mix necessary to achieve energy
system decarbonisation at pace.

3. Energy demand futures: re-introducing the CREDS positive low
energy futures

CREDS was established as part of the UK Research and Innovation’s
Energy Programme in April 2018, to ‘‘make the UK a leader in under-
standing the changes in energy demand needed for the transition to a secure
and affordable, net-zero society ’’ [34]. This was based on the premise
that the ongoing displacement of fossil fuels is not proceeding at a
rate that aligns with the UK’s 2035 emission reduction goal. Therefore,
in order to ensure that reductions in fossil fuel usage occur at the
necessary pace to achieve the UK’s climate objectives, there is a need
for both an acceleration in the deployment of renewable energy sources
and for rapid substantial reductions in energy demand. With this,
the CREDS PLEFs (shown in Table 1) that represent detailed energy
demand scenarios were developed as part of a significant programme
of research aimed at quantifying the potential of demand reduction
policies to assist the realisation of the net-zero GHG emissions target
in the UK. Unlike other future scenarios, the PLEFs are unique in that
they are solely focused on the potential contribution of EDR, this makes
the PLEFs the most comprehensive set of scenarios currently available
that informs on the future of energy demand in the UK.

The PLEFs were developed by compiling narratives written by var-
ious experts across a range of fields in industry, academia, policy and
civil society. These narratives are underpinned by seven observable
underlying trends in wider society that have impacted energy demand
to date, and/or are likely to do so in the time horizon under consid-
eration (to 2050). The seven observable trends are (i) digitalisation,
(ii) sharing and circular economies, (iii) energy efficiency, (iv) healthy
societies, (v) environmental awareness, (vi) globalisation and (vii) work
and automation. A full description of the scenario development process
and full details of the sectoral implications of the scenarios are available
in the 2021 CREDS report [34]. In this paper, the PLEFs are taken as
a starting point and used to develop scenarios for technology uptake
(Section 4) and energy service demand (Section 5) for both heating and

transport.
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Table 1
Summaries of CREDS positive low energy futures.
Source: Reproduced from [7].

Scenario Description

Ignore Identifies levels of energy demand up to 2050 assuming only existing UK government climate policy instruments are implemented (as of 2018). This
includes existing policy for delivery of emission reductions but not climate targets or ambition.

Steer Adopts the more ambitious legislated target of net-zero GHG emissions by 2050 but falls just short of meeting it. Uses the same energy service-demand
projections as the Ignore scenario but implements a wide range of energy efficiency options.

Shift Adopts the net-zero greenhouse gas (GHG) emissions target. Significant shift in the attention given to energy demand strategies providing an ambitious
programme of interventions across the whole economy describing what could possibly be achieved with currently available technologies under current
social and political framings.

Transform Adopts the net-zero GHG emissions target. Considers transformative change in technologies, social practices, infrastructure and institutions to deliver
both reductions in energy but also numerous co-benefits such as health, improved local environments, improved work practices, reduced investment
needs, and lower cumulative GHG emissions.
Fig. 2. Schematic highlighting agent-based heating technology uptake model workflow.
4. Spatial technology uptake modelling in heat and transport

This section describes the uptake modelling for both heat and
transport and how, from this, future technology penetration levels for
heating and transport are obtained for each of the PLEFs.

4.1. Heat technology uptake model and application of PLEFs

Prevalent options for exploring energy transitions have limited
treatment of societal actors and socio-political dynamics, and are
typically poor at representing the co-evolving nature of society and
technology, tending to overlook spatial and within-sector detail [35,
36]. Therefore, a spatially explicit, place-based, agent-based2 heating
technology diffusion modelling approach was used in this study to
address these concerns. Whilst detailed descriptions of the modelling
approach are provided in [37,38], a brief overview is presented here.

2 In agent-based modelling, a collection of autonomous decision making
entities called agents are used to model a system. These entities follow
a predefined set of rules, interacting with each other and their dynamic
environment [37]. For this work, the ‘agents’ depict households that have
the following attributes: output area, residential area-based classification,
tenure type, behaviour classification, heating system size, annual heat demand,
existing heating option, ground-source heat pump availability and hydrogen
heating availability. The reader is referred to [37] for further information on
these attributes.
4

The high-level agent investment decision process, and thus the abstract
modelling workflow, is illustrated in Fig. 2. The modelling workflow
repeats on an annual basis over the modelling period for all households
that are ‘triggered’ to undergo the investment process.

The agent-based model (ABM) considers the point at which ex-
isting owner-occupied households choose between either upgrading
their existing heating system to the same technology with modern
performance parameters or retrofitting a low-carbon heating option.
A heterogeneous set of agents are modelled with bounded rationality,
and a high degree of spatial and within-sector detail is obtained while
having national coverage. This allows both the impact of different
incentives and regulations on heating technology investment decisions
to be explored at local, regional and national scales, and also allows for
strategic last-mile energy infrastructure planning activities to capture
projected heat system change. The model is calibrated and validated
against actual heating technology uptake statistics. For this study, the
PLEFs (Table 1) were input into the heating technology uptake model
as detailed in Fig. 3.

4.2. Transport technology uptake modelling and application of PLEFs

This work presents the development of a high-resolution EV uptake
model and describes the application of the PLEFs to this model. The
model combines an adaptation of the vehicle stock model (VSM) car
module in the Transport Energy Air pollution Model (TEAM), an exist-
ing transport-energy systems model originally presented in [39], with
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Fig. 3. Scenario matrix showing changes in consumer attitudes (horizontal axis) and
policy ambitions (vertical axis).

a car ownership prediction model based on artificial neural networks
originally presented in [40].

TEAM is a strategic transport, energy, emissions and environmental
impacts systems model, covering a range of transport-
energy-environment issues from socio-economic and policy influences
on EDR through to lifecycle carbon and local air pollutant emissions
and external costs.

Based on its precursor model, the UK Transport Carbon Model
(UKTCM) [41], TEAM has been developed over the last decade to
undertake policy analysis (e.g. [42], which examined the implications
of the EU ‘Dieselgate’ scandal in the UK by exploring unaccounted
and future air pollutant emissions and energy use for Britain’s cars,
and [43], which explored the energy and emissions implications of the
UK Government’s 2018 Road to Zero strategy [44]) and exploration of
possible future transport pathways [17].

TEAM was used for the mobility sector level modelling in devel-
oping the PLEFs. Therefore, for consistency with the CREDS scenario
development framework, TEAM is considered to be more applicable for
use in this work in comparison with other alternative transport-energy-
environment models which are also typically proprietary and lack the
detail to simulate policy decisions against a backdrop of contextual
changes. The part of TEAM used for this study was the car choice
module of the VSM, which projects the disaggregation of the car market
(for both private and company/fleet owners) by technology and by
year, taking into account established scrappage rates, vehicle buyer be-
haviour, consumer segmentation as well as market response to vehicles
attributes, price signals and incentives (financial and otherwise). It is
beyond the scope of this paper to describe the VSM in detail; the reader
is referred to [39,45] for full details. The car module of the TEAM
VSM was translated into the Python for use in the modelling framework
developed in this study [46].

The Spatial-Temporal Engine for Vehicle fleet Evolution (STEVE) com-
ines the car stock model of TEAM (as described above) with a spatial
ar ownership prediction model as a way of providing insights on the
patial variation in electricity demand from EVs. The car ownership
rediction model was developed based on artificial neural networks
hat use historical car registration data and projections of key socio-
conomic indicators available at the local level, including household
isposable income, economic activity, demographic and population
ensity. The model is described in detail in [40].

In this work, for application of the PLEFs to the EV uptake mod-
lling, STEVE was used to simulate possible futures for transport elec-
rification at a local level. Firstly, the spatial regression approach
5

described previously was used to characterise the business-as-usual
evolution of the UK car fleet by lower super output area, UK Census
geographies containing on average 300–700 households, based on fore-
casted changes in independent variables that have been consistently
shown to influence car ownership [47]. This business-as-usual trajec-
tory is then taken to represent the Ignore and Steer scenarios; they are
altered to produce UK car fleet trajectories for the Shift and Transform
scenarios using the uptake scenario results in the PLEFs [34]. Secondly,
the set of new cars – driven by an increasing ‘demand’ for private
cars, as well as the scrappage of old ones – is disaggregated into a
set of technologies (covering size, powertrain, fuel, engine type and
capacity) according to a discrete choice modelling framework (within
the VSM), in which vehicle technology uptake is modelled amongst a
heterogeneous consumer market represented by four private and two
fleet UK market segments. For full details on the discrete choice model
used in STEVE, the reader is referred to [39]. The PLEFs are then input
as a set of modellable levers into STEVE which covers, amongst other
things, consumer awareness, access to charging, subsidies of technolo-
gies, sale bans of certain technologies (e.g. the ban of sale of internal
combustion vehicles after a certain date), and fuel taxation. For full
details on the levers as applied to STEVE, the reader is referred to [34].
From this, the rate of EV uptake for different local areas is obtained
which supports a more representative network impact assessment in
comparison with using simple fixed uptake assumptions that fail to
consider local attributes.

5. Temporal energy demand modelling in heat and transport

This section describes the temporal demand modelling approaches
for both heat and transport, and where applicable describes how the
influence of the different PLEF scenarios are captured in the modelling.
From this, daily temporal demand profiles for the heating and transport
technologies are obtained.

5.1. Heat modelling

5.1.1. Electricity demand from heat pumps
The method developed in [48] is used to model household HP

demand. In [48], the relationship between the Scottish Index of Mul-
tiple Deprivation (SIMD) and gas consumption is explored and from
this, representative gas consumption cumulative distribution functions
(CDFs) for each individual SIMD decile are derived. Two established
approaches of converting gas demand to equivalent electrical heat
demand are then employed, the Heat Demand Magnitude Localisation
Model and the Electrical Heat Demand Shape Model developed in [49].
These are combined to construct locally sensitive half-hourly electrical
heat demand profiles where the developed relationships between gas
demand and social deprivation are used as inputs to the modelling. A
brief description of each model component is provided in the following
subsections. For detailed descriptions the reader is referred to [49,50].

The Heat Demand Magnitude Localisation Model transforms the CDF
sampled gas demand into a daily demand magnitude that is reflective
of the local factors influencing heat demand e.g. local building, cli-
mate, and behavioural parameters. Firstly, a gas conversion efficiency
(𝜂𝑔𝑎𝑠) is applied to convert the raw annual gas demand (𝐷𝑎𝑛𝑛𝑢𝑎𝑙

𝐺 ) into
n equivalent annual direct heat demand (𝐷𝑎𝑛𝑛𝑢𝑎𝑙

𝐻 ) through (1). For
his study, a fixed gas boiler efficiency of 80% was used, which was
btained by averaging over 2000 different mains gas boiler models
ith efficiencies ranging from 55% to 90.3% [51]. 𝐷𝑎𝑛𝑛𝑢𝑎𝑙

𝐻 is then
ransformed into a daily heat demand (𝐷𝑑𝑎𝑖𝑙𝑦

𝐻 ) through (2) and (3),
ssuming that heat demand follows a sinusoidal pattern throughout
he year that corresponds to seasonal temperature variation. 𝐷𝑎𝑛𝑛𝑢𝑎𝑙

𝐻
rovides the area under the sinusoid, which defines the amplitude
nd offset parameters and, as a result, the daily demand variation
hroughout the year and 𝑥 corresponds to day of year.

𝑎𝑛𝑛𝑢𝑎𝑙
𝐻 =

𝐷𝑎𝑛𝑛𝑢𝑎𝑙
𝐺 (1)

𝜂𝑔𝑎𝑠



Applied Energy 360 (2024) 122836C. McGarry et al.

𝐷

◦

o
d
e

𝐷𝑎𝑛𝑛𝑢𝑎𝑙
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365

0
𝐷𝑎𝑚𝑝 sin(

2𝜋
365

𝑥 + 𝜙) +𝐷𝑜𝑓𝑓 𝑑𝑥 (2)

𝐷𝑑𝑎𝑖𝑙𝑦
𝐻 = 𝑓 (𝑥) = 𝐷𝑎𝑚𝑝 sin

(

2𝜋
365

𝑥 + 𝜙
)

+𝐷𝑜𝑓𝑓 (3)

𝑑𝑎𝑖𝑙𝑦
𝐸 =

𝐷𝑑𝑎𝑖𝑙𝑦
𝐻

𝐶𝑂𝑃
(4)

The default amplitude (𝐷𝑎𝑚𝑝) and offset (𝐷𝑜𝑓𝑓 ) parameters have
been used for this work. These fit parameters were evaluated using the
30-min interval monitored gas meter data collected in 2010 as part of
the Energy Demand Research Project (EDRP) [52] and monitored HP
heat and electrical demand data from the Renewable Heat Premium
Payment (RHPP) dataset [53]. The daily heat demand is then converted
into a daily electrical demand (𝐷𝑑𝑎𝑖𝑙𝑦

𝐸 ) via a coefficient of performance
(COP) through (4). HP COPs in the RHPP dataset typically range from
2 to 4 [53], which is consistent with the air and ground source HP
COPs presented in [54]. However, as with gas boiler efficiency, COP is
temperature-sensitive and varies based on the specific installation and
manufacturer’s model. From the typical COP range, a fixed COP of 3
was used for this paper [54].

The Electrical Heat Demand Shape Model, developed in [49], is used
to transform daily electrical demand into a set of half-hourly values that
are sensitive to local temperature. The model includes HP data from the
RHPP dataset and is verified using demand data from the Low Carbon
London (LCL) HP trials [55]. The research in [49] identified common
recurring electrical heat demand patterns in the RHPP dataset, despite
variations in the underlying geographical and demographic conditions.
These use-patterns were normalised for a 0 ◦C ambient temperature.3
The normalised patterns are then used to form HP daily load profiles
and are sampled accordingly.

5.1.2. Electricity demand from electric storage heaters
As identified in [29], the smart meter data recorded during the LCL

trial contained households that had a high overnight demand which can
be attributed to storage heating. These households tend to have a large
spike in demand at midnight which is consistent with storage heater
operation on an Economy 7 tariff [56]. These profiles have been used
to represent electric storage heaters (ESHs) where a similar process is
used as with domestic demand (described in Section 6.2) to create a
bank of half-hourly daily profiles representing households that have
an ESH in addition to generic domestic demand. These profiles are
separated from those with no ESH demand to prevent heat demand
being added twice if and when adding HPs. Note that any household
demand profile with a spike in demand greater than 6 kW at midnight
and lasting longer than one hour was considered to have an ESH.
Standard household appliances as represented in the CREST demand
model [57] are typically lower than 6 kW with the exception of a 9 kW
electric shower, though it is assumed that average shower duration
would typically be less than one hour.

5.1.3. Application of PLEFs to annual heat demand
Work by Canet et al. [58] is used to arrive at plausible percentage

reductions in annual household heat demands that align with the PLEF
narratives. More specifically, Canet et al. conduct statistical analysis
using Energy Performance Certificates (EPCs) for England and Wales,
where they generate annual heat demand reduction potentials given

3 Due to the limited availability of data for the operating region below 0
C in existing monitored datasets the model cannot reliably capture the effects
f HP demand below 0 ◦C. Furthermore, as conversion efficiency is reduced

in-line with a reduction in the COP in this operating region it would not be
uncommon for secondary resistive heating to be installed to support HP output
during colder conditions. This could further increase temperature dependent
electrified heating demand and would require additional modelling to capture
6

the demand characteristics of this behaviour.
the measures listed on EPCs and other factors, which are well aligned
to the drivers of heat demand reductions in [34]. The dataset in [58]
is first filtered to obtain the same classification of dwellings as that
found in the area of interest, and the range of heat demand reduction
potentials for the remaining dwellings are then characterised. Given
that the potential reductions as in [58] are based on meeting the UK’s
2050 net-zero target, they are scaled back to 2030 based on the same
rates of progress in the National Household Model (NHM)4 as used in
the CREDS work [34].

5.2. Transport modelling

5.2.1. Electric vehicle charging model
Opportunities for EV owners to plug in their vehicles for charging

depend on when they start and finish their journeys and what the
destinations are. These journeys also dictate what the minimum amount
of energy in each charge will be. This then determines the temporal
and spatial pattern of demand for electricity for EV charging, necessary
for the modelling of future electricity demand. Therefore, to account
for EV utilisation by domestic consumers as part of this work, an EV
charge event model originally presented in [60] is used. The model,
a heuristic used to generate EV charge events from trip data (such as
those from the UK National Travel Survey (NTS)), has been used in
a number of studies [24,61,62]. This paper uses trip data from the
2019 UK NTS, which contains 210,717 car-based trips split between
13,863 cars. Accordingly, this study assumes that future EV drivers –
at a baseline, before the application of the PLEFs – will use their cars
in the same way as combustion engine car drivers, before the Covid-19
pandemic.

5.2.2. Application of PLEFs to electric vehicle charging
The EV charging schedules resulting from the heuristic described

above are modified by a stochastic process of adjustment according
to a consolidated set of changes in the number of trips and the trip
distance for each relevant PLEF scenario in Table 2.5 This applies
specifically to the Shift and Transform scenarios, which unlike Ignore
and Steer, consider policies focused on changes in behaviour in addition
to policies focused on technology uptake. These consolidated changes
are the net changes for each scenario where there are several factors
that influence – both positively and negatively – each trip type. For
example, four trends impacting the number of commuting trips for each
person are identified as: reduction due to more people in retirement;
reduction due to increased teleworking; increase due to gig and service
economy; reduction due to 4-day working week. Table 2 represents the
consolidation of the impacts of these trends for each trip type. The full
details for which are available in [34].

To apply these consolidated changes to the NTS travel diaries, the
following steps were taken.

• For the number of trips:

1. The set of car-based NTS travel diaries were split into
‘high-travel’ and ‘low-travel’ diaries according to whether
they took a car-based trip on all 7 days (‘high-travel’) or
not (‘low-travel’). This was to allow duplicate trips to be
added in a way that did not result in overlapping trips (by
adding them on days where there were no trips taken, to
the ‘low-travel’ diaries).

4 The National Household Model is an open-source analytical tool that was
eveloped to project the effects of policy and other legislative changes on the
nergy and emissions of the UK domestic housing stock [59].

5 Local leisure = social entertainment; sports; visiting friends and relatives
elsewhere. Distance leisure = visiting friends and relatives at home; holiday;

day-trip.
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Table 2
Change in number of trips and trip distance in 2030 and 2050 for Shift and Transform
scenarios relative to 2019 baseline (1.0 = no change).

Trip type Shift Transform

No. trips Trip dist. No. trips Trip dist.

2030 2050 2030 2050 2030 2050 2030 2050

Commuting 1.01 1.03 0.92 0.75 0.88 0.815 0.85 0.65
Business 0.9 0.75 0.95 0.85 0.85 0.65 0.9 0.83
School travel 0.95 0.95 0.9 0.85 0.95 0.95 0.85 0.75
Shopping 0.8 0.7 0.9 0.9 0.7 0.6 0.8 0.85
Personal business 0.95 0.95 0.95 0.9 0.9 0.9 0.9 0.85
Local leisure 1.15 1.25 0.95 0.9 1.15 1.3 0.9 0.85
Distance leisure 1.1 1.2 0.95 0.9 1.15 1.22 0.95 0.9

2. If the number of trips of a certain type (e.g. school travel)
were to be increased, then a random set (of size corre-
sponding to that proportional increase) of trips of that
type would be duplicated (including return trips) on days
where travel did not take place. This would be done for the
‘low-travel’ diaries.

3. If the number of trips of a certain type were to be decreased,
then a random set (of size corresponding to that propor-
tional decrease) of trips of that type would be removed
(including their corresponding return trip, if it existed).
This would be done for the ‘high-travel’ diaries.

• For the trip distance, if the distance of a trip of a certain type is
to be changed, then all trips of that type have their distance (and
thus energy expenditure) adjusted accordingly.

The resulting modified NTS travel diaries were then processed
hrough the aforementioned heuristic to produce charging schedules for
se in the EV demand flexibility modelling (Section 7.2).

. Distribution network and domestic demand modelling

.1. Distribution network modelling

The methodology used in this study to model ‘real’ electricity net-
orks for a given area (e.g. the case study described in Section 8.1) is
xtensively described in [63]. This methodology makes use of network
eographic information system (GIS) data made available to the authors
y the distribution network operator (DNO) for the north of Scotland.
his datum includes both spatial and technical information pertaining
o key network infrastructure installed across the entire licence area.

The method allows for place-based modelling by integrating the
etwork GIS data with external spatially linked datasets. These datasets
an provide valuable insight into the characteristics of specific areas
nd support detailed modelling of both electricity networks and local
nergy demand [63]. The method has been developed in Python with
se of the GeoPandas package [64] and the electrical network models
re developed in OpenDSS [65] using the Python COM-interface.

.2. Domestic demand modelling

Smart meter data from the LCL project collected between 2011 and
014 is used to model the domestic demand [66]. Following a similar
pproach as adopted in [29], over 1800 daily profiles for each day in
winter period between 01/12/2013 and 27/02/2014 are considered

o represent a winter demand scenario (under which heating-related
lectricity demand would be at its highest). For the LCL project, con-
umers were divided into three groups based on their socio-economic
tatus, as determined by the CACI Acorn Group classification [67]. This
lassification grouped consumers into ‘Affluent’, ‘Comfortable’ and ‘Ad-
ersity’ categories. For this work, the CACI Acorn groups are matched
o a decile scale of the SIMD, to ensure that the variations in energy
7

t

consumption among different groups of consumers are captured. This
considers consumers for SIMD decile 9–10 to be ‘Affluent’, 4–8 to be
‘Comfortable’ and 1–3 to be ‘Adversity’ where boundaries are defined
based on parallels between the Acorn classification and SIMD. From
this, a bank of half-hourly daily winter profiles for each Acorn category
is created allowing for stochastic iterative sampling and assignment
to individual consumers. Reiterating that the profiles in this bank are
purely domestic demand and separate from the profiles also containing
ESH demand.

7. Optimal power flow and flexibility modelling

In distribution networks, power or current flows need to be kept
within asset thermal ratings and the voltages at customers’ points
of connection need to be within defined limits. In order to know
that, a mathematical model – a power flow – needs to be used to
calculate what the power flows and voltages would be under different
circumstances. Whilst conventional power flow analysis is necessary for
understanding basic steady-state behaviour, an OPF is used to deter-
mine the optimal operating conditions of a network while adhering to
various operational constraints and objectives e.g. minimising network
losses in consideration of thermal and voltages limits. The open-source
python-based package with a three-phase unbalanced OPF model de-
veloped in [68] is used as the base model for this work. The equations
used to form the OPF model are derived from the current mismatch
method presented in [69]. This model is advantageous compared with
those used in studies which assume that loads on the three phases
are balanced, as it allows for consideration of the practicalities of
real distribution networks which typically have asymmetrical phase
distribution.

This section describes the key expressions used to define the OPF
model in the open-source optimisation modelling language, Pyomo,
according to [68]. It also describes the formulation of the smart charg-
ing and parametrised vehicle-to-grid (V2G) model originally published
in [61] which allows for multi-period optimisation of automated EV
charging in response to time-of-use pricing signals and the approach
taken for contingency load shedding. The application of these models
relative to the case studies considered in this work is described in the
proceeding section.

7.1. Base OPF formulation

7.1.1. Definition of nodal current injections
Derived from [69], the current mismatch equations are defined by

(5)–(9). These are used to relate the nodal voltage phasors with the
active and reactive power injections from each load and generating
asset in the network.

𝛥𝐼𝑠𝑘 = 𝐼𝑠𝑐𝑎𝑙𝑐𝑘 − 𝐼𝑠𝑠𝑝𝑘 (5)

𝑃 𝑠
𝑠𝑝𝑘

= ℜ(𝑉 𝑠
𝑘 )ℜ(𝐼𝑠𝑠𝑝𝑘 ) +ℑ(𝑉 𝑠

𝑘 )ℑ(𝐼𝑠𝑠𝑝𝑘 ) (6)

𝑠
𝑠𝑝𝑘

= ℑ(𝑉 𝑠
𝑘 )ℜ(𝐼𝑠𝑠𝑝𝑘 ) −ℜ(𝑉 𝑠

𝑘 )ℑ(𝐼𝑠𝑠𝑝𝑘 ) (7)

(𝐼𝑠𝑐𝑎𝑙𝑐𝑘 ) =
∑

𝑖∈𝛺

∑

𝑗∈𝜎𝑝

[𝐺𝑠𝑗
𝑘𝑖ℜ(𝑉 𝑗

𝑖 ) − 𝐵𝑠𝑗
𝑘𝑖ℑ(𝑉 𝑗

𝑖 )] (8)

ℑ(𝐼𝑠𝑐𝑎𝑙𝑐𝑘 ) =
∑

𝑖∈𝛺

∑

𝑗∈𝜎𝑝

[𝐺𝑠𝑗
𝑘𝑖ℑ(𝑉 𝑗

𝑖 ) + 𝐵𝑠𝑗
𝑘𝑖ℜ(𝑉 𝑗

𝑖 )] (9)

where

𝛺 set of network buses6

6 A bus in electrical terms is short for ‘busbar’ and refers to a junction or
ommon electrical point to which multiple electrical devices e.g. generators,
ransformers, and loads are connected.
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𝑘, 𝑖 ∈ 𝛺
𝜎𝑝 set of phases {a,b,c}
𝑠, 𝑗 ∈ 𝜎𝑝
𝐼𝑠𝑐𝑎𝑙𝑐𝑘 calculated (𝑐𝑎𝑙𝑐) current injections
𝐼𝑠𝑠𝑝𝑘 specified (𝑠𝑝) current injections
𝑉 𝑠
𝑘 , 𝑉

𝑎
𝑖 phase voltage at bus 𝑘

𝐺𝑠𝑎
𝑘𝑖 , 𝐵

𝑠𝑎
𝑘𝑖 conductance and susceptance from nodal admittance ma-

trix

In [68], load profiles are represented by a load composition in terms
f constant impedance (Z), constant current (I) and constant power (P)
.e. a ZIP model. For this work, as only constant power information is
vailable from the demand modelling previously carried out, Eqs. (10)
nd (11), used to calculate the specified active and reactive power
njections, 𝑃 𝑠

𝑠𝑝𝑘
and 𝑄𝑠

𝑠𝑝𝑘
respectively, are simplified to represent a

onstant power load model.
𝑠
𝑠𝑝𝑘

= 𝑃 𝑠
𝑔𝑘

− 𝑃 𝑠
𝑃𝑘

(10)

𝑄𝑠
𝑠𝑝𝑘

= 𝑄𝑠
𝑔𝑘

−𝑄𝑠
𝑃𝑘

(11)

where 𝑃 𝑠
𝑔𝑘
, 𝑄𝑠

𝑔𝑘
are the active and reactive power generation7 at bus 𝑘

and phase 𝑠 respectively, and 𝑃 𝑠
𝑃𝑘
, 𝑄𝑠

𝑃𝑘
are the active and reactive power

emand at bus 𝑘 and phase 𝑠, respectively. For reactive power, this
ork assumes a constant power factor of 0.95 (inductive/lagging) for

he domestic demand as in [70], and similarly, though conservatively,
or the HP and EV demand as used in [28].

.1.2. Equality constraints
There are two equality constraints that are enforced within this OPF

ormulation, the current mismatch constraint defined by (12) and slack
us constraint defined by (13).

𝐼𝑠𝑘 = 0 (12)

𝑠
𝑠𝑙𝑎𝑐𝑘 = 𝑉 𝑠

𝑠𝑝𝑠𝑙𝑎𝑐𝑘
(13)

he current mismatch constraint is used to force current deviations 𝛥𝐼𝑠𝑘
n (5) to zero and the slack bus constraint is used to force the slack bus
oltage 𝑉 𝑠

𝑠𝑙𝑎𝑐𝑘 to equal the specified value 𝑉 𝑠
𝑠𝑝𝑠𝑙𝑎𝑐𝑘

.

.1.3. Inequality constraints (network operational limits)
There are three inequality constraints that form part of this OPF

ormulation, the voltage limits constraint (14), the line thermal limits
onstraint (15) and the transformer rating limits constraint (16).

In (14), the magnitude of the steady-state voltage 𝑉 𝑠
𝑘 at bus 𝑘 must

onform to the respective upper and lower statutory limits, 𝑉𝑚𝑎𝑥𝑘 and
𝑚𝑖𝑛𝑘 according to the distribution network code. In the UK, the upper
nd lower statutory voltage limits are set at +10% and −6% respectively.

𝑚𝑖𝑛𝑘 ≤ 𝑉 𝑠
𝑘 ≤ 𝑉𝑚𝑎𝑥𝑘 (14)

n (15), the current flow 𝐼𝑠𝑙 at each phase 𝑠 on line 𝑙 must not exceed
he rated current capacity 𝐼𝑙𝑚𝑎𝑥 of the respective line as specified by the
anufacturer.
𝑠
𝑙 ≤ 𝐼𝑙𝑚𝑎𝑥 (15)

n (16), the total apparent power flow 𝑆𝑡𝑟𝑎𝑛𝑠
𝑛 across each transformer 𝑛

ust not exceed its maximum rating 𝑆𝑡𝑟𝑎𝑛𝑠
𝑚𝑎𝑥 as specified by the manu-

acturer.
∑

𝑛∈𝛹
𝑆𝑡𝑟𝑎𝑛𝑠
𝑛 ≤ 𝑆𝑡𝑟𝑎𝑛𝑠

𝑚𝑎𝑥 (16)

here 𝛹 is a set containing all transformers.

7 Generation in this context does not explicitly refer to generating technolo-
ies such as solar PV, rather the injection of power to the network at any given
us and phase.
8

7.2. Smart charging and parametrised vehicle-to-grid model

As EV charging and subsequent energy consumption is time-
coupled, 𝐸𝑒,𝑡, which is the energy storage content of an EV during
charge event 𝑒 at time 𝑡, is dependent on the energy storage content
of the EV at the previous time step and the change in energy, either
gained or lost, during 𝛥𝑡 as represented by (17).

𝐸𝑒,𝑡 = (𝜂𝑒𝑣𝑝
imp
𝑒,𝑡 − 1

𝜂𝑒𝑣
𝑝exp
𝑒,𝑡 )𝛥𝑡 + 𝐸𝑒,𝑡−1 (17)

here 𝜂𝑒𝑣 represents a fixed charging and discharging efficiency of 90%
this is in line with typical home charging efficiency values observed
n the literature [71,72]) and 𝑝imp

𝑒,𝑡 , 𝑝exp
𝑒,𝑡 represent the power imported

r exported by an EV during charge event 𝑒 at time 𝑡.
The EV’s battery energy content upon plug-out must be greater than

r equal to what it would have received under an uncontrolled charging
vent (18). The EV driver may not necessarily need this amount of
nergy content to complete their travel plans, and they may be able to
anage with a lower amount without any significant impact on their

chedule. Therefore, a relaxation of this constraint could bring further
enefits to the driver, such as increased revenue resulting from greater
lexibility potential. The EV’s energy content for each charge event 𝑒

is constrained by the capacity limits, i.e. between 0 and the battery’s
maximum capacity 𝐸max

𝑒 , ∀ 𝑡 ∈  (19).

𝐸𝑒,tout
𝑒

≥ Eend
𝑒 (18)

0 ≤ 𝐸𝑒,𝑡 ≤ Emax
𝑒 (19)

where  is the time horizon set comprised of half-hourly timesteps,
indexed by 𝑡, Eend

𝑒 is the energy storage content of EV at end of charge
event 𝑒 and tout

𝑒 is the plug-out time of EV for charge event 𝑒.
A typical constant current–constant voltage (CC–CV) charging pro-

file for lithium-ion batteries is used to constrain EV charging power [73,
74], where the maximum charging power equals the rated power 𝑃max

𝑒
for a battery state of charge up to 𝛾 (set at 0.8 [75]), after which it
linearly decreases to zero until a state of charge of 1 is achieved. The
charging power constraint is stated formally in (20), ∀ 𝑡 ∈  .

𝑝imp
𝑒,𝑡 ≤

⎧

⎪

⎨

⎪

⎩

Pmax
𝑒 , 𝜎𝑒,𝑡 ≤ 𝛾

(1 − 𝜎𝑒,𝑡
1 − 𝛾

)

Pmax
𝑒 , 𝜎𝑒,𝑡 > 𝛾

(20)

During an EV charge event 𝑒 at time step 𝑡, the battery’s state of charge,
𝜎𝑒,𝑡, is obtained from (21).

𝜎𝑒,𝑡 =
𝐸𝑒,𝑡

𝐸max
𝑒

(21)

For each EV, the active power discharged is constrained by (22).

𝑝exp
𝑒,𝑡 ≤ Pmax

𝑒 (22)

With V2G capability, it is necessary to constrain the battery such
that only either charging (power import) or discharging (power export)
can occur at any single time step i.e. if an EV’s import power at a given
time step is greater than zero, then its export power is zero (and vice
versa). This is achieved through the constraint (23).

𝑝imp
𝑒,𝑡 × 𝑝exp

𝑒,𝑡 ≤ 0 (23)

7.3. Load shedding method

To ensure network physical limits are satisfied within the OPF, load
shedding is introduced. Load shedding is typically a last resort measure
taken in extreme circumstances to maintain system operability e.g. use
of under frequency load shedding schemes [76]. In this work, load
shedding is modelled in terms of dynamic load curtailment, this ensures
that the OPF will always satisfy the defined network constraints and
that the OPF should always return a result, allowing for validation
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Table 3
Key attributes of study area versus Scotland mean values.
Source: Data from [77,78].

Attribute Insch Scotland (mean)

Gross disposable household income (£/year) 20,220 16,160
Cars per household 1.78 1.1
Proportion residents who report driving to work 67.6 49.3
Proportion of households with gas-fired heating 5.59 74.2
Proportion of households with electric heating 18.1 13.4
Proportion of households with oil heating 62.25 5.70
Proportion of households with solid fuel heating 4.42 1.10
Proportion of households with other heating 1.70 0.70

and testing. In practice, DNOs do not typically have the capability
or communications infrastructure to dynamically curtail demand con-
nected to existing low voltage (LV) networks. At LV, conventional
overcurrent protection in the form of fuses would typically be used to
disconnect overloaded parts of the network. Therefore, the idealised
load curtailment modelled in the OPF is a proxy for such action.

Should load curtailment be necessary, the value of lost load (VOLL)
is used as an associated cost within the optimisation and any curtail-
ment is constrained by (24) and (25) such that demand can only be
reduced and not increased

𝑝𝐻ℎ,𝑡 ≤ 𝑃𝐻
ℎ,𝑡 (24)

𝑝𝐷𝑑,𝑡 ≤ 𝑃𝐷
𝑑,𝑡 (25)

where 𝑝𝐻ℎ,𝑡, 𝑝𝐷𝑑,𝑡 is the active power drawn by heat pump ℎ and by
household base demand 𝑑 at time period [𝑡, 𝑡 + 1], 𝑃𝐻

ℎ,𝑡, 𝑃𝐷
𝑑,𝑡 is the

unconstrained active power drawn by heat pump ℎ and by household
ase demand 𝑑 at time period [𝑡, 𝑡+1]. Note that base demand refers to

all other non-EV and HP demand.

8. Case studies and modelling methods

The following subsections outline the selected case study area and
the case studies used to inform the analysis carried out in this work.
Each of the case studies require separate modelling methods which are
also described.

8.1. Case study area

To demonstrate the developed framework, as described in the pre-
vious sections, a data zone was selected that covers the settlement of
Insch, Aberdeenshire, in northeast Scotland. This area was chosen as
it has several characteristics that would be likely to aid the uptake of
EVs and HPs: a high gross disposable household income (GDHI), a high
number of cars per household, a low proportion of gas-fired central
heating systems, ubiquitous driveway parking, and a high proportion
of residents reporting that they drive to work (Table 3).

Applying the heating technology uptake model (Fig. 2) as described
in Section 4.1, the resulting heating mix for each PLEF scenario (Ta-
ble 1) for the case study area is shown in Fig. 4. This figure shows
that in 2030, for Ignore, Steer and Shift, the majority of households use
legacy oil fired heating and ESHs with only moderate uptake of HPs.
However, in the Transform scenario, HPs are the dominant technology
with significant uptake by comparison. In 2050, for Shift and Trans-
form, HP uptake dominates and all legacy heating is fully displaced.
For Steer, there remains a small portion of households with oil fired
heating and ESHs. In the Ignore scenario, there is no change in heating
technology between 2030 and 2050. The technology uptake figures
in Fig. 4 provide the respective technology penetrations necessary to
simulate the different future demand scenarios in the case studies
outlined in the following sections.

The comparative reductions in annual heating demand for the PLEF
9

scenarios in 2030 and 2050 for the case study area are shown in Fig. 5.
Fig. 4. Breakdown of the heating mix for each year and positive low energy future
scenario for the case study area.

Fig. 5. Heating demand reductions for each year and positive low energy future
scenario for the case study area.

These are used to simulate improvements in building efficiency (e.g.
improvements in building fabric) and improvements in heating system
efficiency under the different future scenarios. The figure shows that
under the Transform scenario greater reductions in heating demand
are achieved than in Ignore, Steer and Shift. For the Ignore scenario,
the observed reductions are lower in 2050 than in 2030, this aligns
with the CREDS report [34] for EDR in the residential sector. In the
CREDS narratives, changes in the long term can act against efficiency
improvements.

In terms of transport, the results of applying the PLEFs to the car
stock model STEVE (as described in Section 4.2) for the case study
are shown in Fig. 6. This figure shows the total cars and proportion
of EVs by scenario for the study area. The figure highlights that a
reduction in the total number of cars is observed for both the Shift
and Transform scenarios up to 2050 whilst the total number of cars for
Ignore and Steer increases in the same period (these overlap in Fig. 6
as the Steer scenario uses the same energy service-demand projections
as the Ignore scenario). For Shift and Transform, the proportion of
these cars that are EVs increases significantly from 2025 and begins
to plateau around 2045. For Steer, the proportion of cars that are EVs
also increases significantly, though slightly less than both Shift and

Transform in 2030, Steer has a greater proportion of cars that are EVs
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Fig. 6. Total cars and proportion of battery electric vehicles by scenario for study area
as output by STEVE.

Algorithm 1 Statistical Impact Assessment
1: for 𝑦𝑒𝑎𝑟 ∈ 𝑦𝑒𝑎𝑟𝑠 do
2: Transport spatial modelling: 𝑝𝑒𝑣 for 𝑦𝑒𝑎𝑟
3: Transport temporal modelling: profiles for 𝑦𝑒𝑎𝑟
4: Heat spatial modelling: 𝑝ℎ𝑝 & 𝑝𝑒𝑠ℎ for 𝑦𝑒𝑎𝑟
5: Heat temporal modelling: profiles for 𝑦𝑒𝑎𝑟
6: while 𝑖 < 𝑚𝑖𝑛 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
7: Sample ESH profiles based on 𝑝𝑒𝑠ℎ
8: Sample DD profiles based on remaining houses
9: Sample EV charging profiles based on 𝑝𝑒𝑣

10: Sample HP profiles based on 𝑝ℎ𝑝
11: Stochastically distribute on the network
12: Add to demand base load per household
13: Execute daily load flow
14: Store results for every sampling iteration 𝑖
15: 𝑖 = 𝑖 + 1
16: return the distribution of results for 𝑦𝑒𝑎𝑟

in 2050 by comparison. For the Ignore scenario, the proportion of cars
that are EVs remains much lower in comparison with only a marginal
increase across the same period. EV uptake for each of the scenarios
for the case study area as shown in Fig. 6 is then used to determine
the proportion of EVs connected to the LV distribution network that is
modelled within the study area. Fig. 7 presents a detailed visualisation
of this network which has been modelled using the method presented
in [63].

8.2. Case study 1: no flexibility (base case)

This case study represents the base case where there is no optimi-
sation or incentivisation driving flexibility modelling (i.e. the charging
and discharging actions associated with the EVs). As a result, in this
scenario, the EVs are essentially modelled as ‘dumb’ where the charge
obtained for each charge interval is the battery’s maximum capacity
relative to the charge constraints. With no flexibility, the focus of this
case study is solely concerned with the network impact of the different
future energy demand narratives. Algorithm 1, demonstrates at a high-
level, the approach taken to carry out a statistical power flow impact
assessment of the existing LV network infrastructure for this case study,
where 𝑝𝑒𝑣, 𝑝ℎ𝑝 and 𝑝𝑒𝑠ℎ represent the penetration of EVs, HPs and ESHs,
respectively.

For each year modelled, spatially explicit uptake penetrations in-
formed by the PLEFs are obtained for EVs, HPs and ESHs using the
modelling approaches described in Section 4. The bank of smart meter
profiles containing both ESH and generic domestic demand are first
sampled and distributed relative to the ESH penetration. The secondary
bank of smart meter profiles solely containing generic domestic demand
(DD in Algorithm 1) are then sampled and assigned to each of the
10
remaining households. Following this, a series of daily demand profiles
with half-hourly temporal granularity are obtained for both HPs and
EVs relative to their penetration. These are stochastically distributed
across the network (with the constraint that households with an ESH
should not also have a HP and that there should only be one ESH or
HP for each household, there can be multiple EVs connected at each
household with the ability to charge simultaneously) and combined
with the base demand on a household basis. A statistical assessment
with a number of sampling iterations is then carried out to ascertain the
distribution of impact stemming from the uptake of these technologies.

8.3. Case study 2 and 3: smart charging and vehicle-to-grid

The smart charging and V2G case studies are semi-related and are
therefore described together in this section. Both the modelling method
and the objective function are also described.

8.3.1. Modelling method
For these case studies, EV travel diaries that represent travel be-

haviour (i.e. plug-in time and stay duration) are used as time-coupled
constraint windows within the optimisation that inform when charge
and discharge events take place. From the smart charging and
parametrised V2G model described in Section 7.2, for case study 2
(smart charging), only the charging portion of the formulation is con-
sidered. For case study 3 (smart charging and V2G) the full formulation
as presented is applied. This distinction is also applied to the objective
function.

Linearisation of non-linear AC power flow equations to model volt-
ages and reactive power has become common in recent years [79–81].
However, this paper takes a traditional approach to non-linear ACOPF
to account for the high line impedances and voltage variations typi-
cally observed in distribution networks [82]. However, with the time-
coupled modelling of EV charging, this results in a significantly large-
scale optimisation problem. Further complexity is introduced with the
introduction of the V2G and discharging element in case study 3
as a complementarity constraint is used to ensure that only either
charging or discharging can occur at any single instance. Problems with
these types of constraints are inherently difficult to solve. Therefore
Knitro, a specialised solver for solving large scale non-linear mathe-
matical optimisation problems (primarily using interior-point methods
and active-set methods) with built-in techniques for handling such
constraints, is used in this work [83]. Despite using Knitro to handle
this complexity it is difficult to guarantee a global optimal solution,
particularly when there are high penetrations of EVs. As such, case
study 2 and 3 are only demonstrated at a feeder level to reduce the
problem scale and complexity.

A high-level overview of the developed method for these case
studies is presented in Fig. 8. The figure highlights that contextual
knowledge pertaining to the historical evolution of distribution net-
work planning practices and standards in GB as summarised in the
network headroom, engineering upgrades and public acceptance (NE-
UPA) project [84,85], is paired with the distribution network mod-
elling method described in Section 6.1. Whilst the NEUPA knowledge
provides context for the case study area that is the focus of this
work, the LV network modelling method captures spatial and technical
information pertaining to the network infrastructure.

The figure then highlights the approach taken to model future
spatial and temporal demand for heating and transport as described in
Sections 4 and 5, and domestic demand as described in Section 6.2.
A similar stochastic sampling approach to the method described in
Section 8.2 is then undertaken based on technology penetration for
each future energy scenario and year simulated. The outputs along with
the network model then become the primary inputs to the OPF model
described in Section 7.
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Fig. 7. Satellite visualisation of the low voltage distribution network under study using Bing Aerial showing which households are connected to which of the four network feeders
in the area that are connected to the substation shown.
min
∑

𝑡∈

(

∑

𝑒∈𝐸
(𝑝𝑐ℎ𝑒,𝑡 × 𝑐𝑏𝑢𝑦𝑒,𝑡 ) −

∑

𝑒∈𝐸
(𝑝𝑑𝑐ℎ𝑒,𝑡 × 𝑐𝑠𝑒𝑙𝑙𝑒,𝑡 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Cost of charging and discharging all EVs

+
∑

ℎ∈𝐻
(𝑃𝐻

ℎ,𝑡 − 𝑝𝐻ℎ,𝑡)𝑉 𝑜𝑙𝑙𝐻ℎ +
∑

𝑑∈𝐷
(𝑃𝐷

𝑑,𝑡 − 𝑝𝐷𝑑,𝑡)𝑉 𝑜𝑙𝑙𝐷𝑑

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Cost of shedding HP and base demand

)

𝛥𝑡 (26)

Box I.
8.3.2. Objective function
In this work, an optimisation is used to show an idealised utilisation

of the available network capacity and demand flexibility to show the
upper limit of what might be achieved by the latter. In acknowledge-
ment of this, two distinct objective functions have been created, with
one specifically for case study 2 and the other for case study 3. For case
study 2 the objective function is to minimise the total cost of charging
all EVs and the cost associated with any necessary load shedding whilst
satisfying network constraints and asset physical limits. For case study
3, the total cost of discharging all EVs is also introduced and is given
by (26), where 𝐸 is a set of electric vehicles, indexed by 𝑒, 𝐻 is a set
of heat pumps, indexed by ℎ, 𝐷 is a set of base demands, indexed by 𝑑,
𝑝𝑐ℎ𝑒,𝑡 , 𝑝

𝑑𝑐ℎ
𝑒,𝑡 are the active power charged and discharged by EV 𝑒 at time

period [𝑡, 𝑡 + 1], 𝑐𝑏𝑢𝑦𝑒,𝑡 , 𝑐𝑠𝑒𝑙𝑙𝑒,𝑡 are the buy and sell price for EV 𝑒 at time
period [𝑡, 𝑡 + 1] and 𝑉 𝑜𝑙𝑙𝐻ℎ , 𝑉 𝑜𝑙𝑙𝐷𝑑 are the VOLLs for heat pump ℎ and
base demand 𝑑.

In case study 2, for 𝑐𝑏𝑢𝑦𝑒,𝑡 , a flat price profile is used across the time-
horizon (effectively minimising losses) whereas in case study 3, for
𝑐𝑏𝑢𝑦𝑒,𝑡 , 𝑐𝑠𝑒𝑙𝑙𝑒,𝑡 , the use case import (buy) and export (sell) Octopus Agile
time-varying electricity tariffs (half-hourly price changes based on day-
ahead wholesale rates) shown in Fig. 9 are used as a price differential
to demonstrate V2G functionality [86–88]. For load shedding, it is
assumed that 𝑉 𝐻

ℎ , 𝑉 𝐷
𝑑 are fixed at a penalty price of £16,940/MWh [89]

such that the optimiser would only consider curtailment as a last resort
measure.

9. Case study results

The PLEFs are modelled using the full assessment methodology
developed in this work for 2030 and 2050 (these are key milestones
11
in the net-zero time frame) for each of the case studies. For case
study 1, results are presented by considering both transport and heat
separately, and then combined. For case studies 2 and 3 only the
combined scenarios are considered.

9.1. Case study 1: no flexibility (base case)

The results for case study 1 are presented in Figs. 10 and 11 where
the impact of the PLEF scenarios on transformer loading across two
days (a 0 ◦C winter Tuesday and Wednesday) is shown for 2030 and
2050, respectively. These results are reported in terms of the average
transformer loading for the sample and also show the interquartile
range variance. In each figure, electricity demand from other domestic
devices is included. The top plot shows additional demand from trans-
port only (i.e. no heat demand or supply technologies are modelled);
the middle plot shows additional demand from heat only (i.e. no
transport demand or supply technologies are modelled); the bottom
plot shows the combined impacts from heat and transport (i.e. both
are modelled). Note that to show impact over the two day period, it is
assumed that domestic demand and heat demand are similar each day
i.e. a standard two day working period in winter where the average
temperature is 0 ◦C.

Considering transport demand, it is demonstrated that the uptake
of EVs in all scenarios has a significant impact on the traditional
evening peak. From Fig. 10, the impact of EV uptake is much less
pronounced than in Fig. 11, emphasising that penetration is the key
determinant of impact in terms of magnitude. This is further evi-
denced when comparing between the different PLEF scenarios in each
of the figures. In Fig. 10, the Shift and Transform scenarios are similar
with only marginal difference from Steer. However, in Fig. 11, the
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Fig. 8. High-level flow chart of the entire methodology and integration of the various modelling techniques.

Fig. 9. Use case Agile tariff price profiles with price differential for demonstration of V2G functionality.
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Fig. 10. Impact on transformer loading for 2030: (top) transport demand, (middle) heat demand, (bottom) combined demand.
Fig. 11. Impact on transformer loading for 2050: (top) transport demand, (middle) heat demand, (bottom) combined demand.
ifference between the Steer scenario and both the Transform and Shift
cenarios is more prominent around the traditional evening peaks. The
bserved difference between Shift and Transform is primarily due to the
hanges in number of trips and trip distance between 2030 and 2050
13

s presented in Table 2. An additional observation is the difference in
scenario impact around the traditional evening peak on each individual
day in Fig. 11, with the difference between the scenarios typically more
pronounced on the Wednesday showing the Transform scenario to have
a lower impact than in the Shift scenario and a reduction in the peak

for Steer. This relates to the prevalence of certain trip types in certain
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a
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Fig. 12. PLEF scenario comparison by year considering only transport demand, showing the transformer headroom as a percentage of the time spent in each classification band
cross all simulations in the sample.
Fig. 13. PLEF scenario comparison by year considering only heating demand, showing the transformer headroom as a percentage of the time spent in each classification band
cross all simulations in the sample.
Fig. 14. PLEF scenario comparison by year considering both transport and heating demand, showing the transformer headroom as a percentage of the time spent in each
classification band across all simulations in the sample.
weekdays, and is reflective of wider variation in travel habits as per the
UK NTS [90].

Considering heating demand, in both Figs. 10 and 11, there is an
observed increase in demand during the early morning hours that can
be attributed to the ESHs. This noticeably decreases in the Shift and
14
Transform scenarios in comparison with the Ignore and Steer scenario
as the ESHs are replaced with HPs. Also, for Shift and Transform, a
second morning increase in demand that can be attributed to HP usage
for space heating demand is observed. In Fig. 10, as similar with EVs,

penetration dominates impact in terms of magnitude and there is a
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distinct difference between Transform and the other scenarios (Trans-
form has a higher percentage penetration of HPs in 2030 as in Fig. 4). In
Fig. 11, where both Shift and Transform HP penetrations are 100%, the
marginal difference in impact can be attributed to the representative
heat demand reductions used in each scenario. Additionally, despite
Transform having a greater number of HPs than Steer, due to the
comparative difference in heat demand reductions this results in a fairly
similar profile in terms of magnitude.

Considering the combined effects of heating and transport, the
extent of the impact is evident in comparison of Figs. 10 and 11. In
Fig. 11, the traditional evening peak is significantly increased for the
Steer, Shift and Transform scenarios in comparison with the Ignore
scenario, increasing from an approximate loading of 200 kVA in the
Ignore scenario to 500–750 kVA in the Steer, Shift and Transform
scenarios. Note that the rating of this transformer is 800 kVA and would
likely have initially been sized to accommodate the large increase in
demand at midnight stemming from the ESHs. However, consider that
the case study represents a location that, today, predominantly uses
gas heating but otherwise is the same as the case study area. The
ESH related loading would only be present for any household that
adopts them in place of gas heating. With the policies present in the
Shift and Transform scenarios the agent-based model indicates that all
households would adopt HPs. For Steer, it is likely that the majority
would also adopt HPs with a smaller portion continuing to use gas. In
Ignore, they would continue using gas. Therefore, in a network that
was not designed to accommodate ESHs, the substation would likely
have a lower kVA rating unless oversized for a particular reason in the
planning process. As such, given transformer headroom is significantly
eroded in the combined scenarios, it raises concerns with existing
transformers that have lower levels of headroom currently available.
Also, as HPs are constrained to one at each household and EVs can
have multiple connections that charge simultaneously, EV impact tends
to dominate.

Ultimately, a network operator’s decision to invest in network rein-
forcement is based on its peak loading. As such, transformer headroom
is considered next. The headroom for a particular time interval (ℎ𝑡) is

measure of how much spare capacity is available in a transformer
t a specific instance in time, expressed as a percentage of maximum
apacity. It is calculated by comparing the apparent power observed at
hat specific time interval (𝑆𝑡) to the transformer’s rated capacity. For
his analysis, a simple classification is used to split the daily headroom
nto four percentage bands: ℎ𝑡 ≥ 75, 75 > ℎ𝑡 ≥ 50, 50 > ℎ𝑡 ≥ 25 and
5 > ℎ𝑡. Using this classification, Figs. 12–14 present a comparison of
ach PLEF scenario by year, considering in turn demand from transport,
eating and combined impacts, showing the transformer headroom
s a percentage of the time spent in each classification band across
ll simulations in the sample. These figures are used to complement
igs. 10 and 11 and the accompanying analysis.

.2. Case study 2 and 3: smart charging and vehicle-to-grid

For case study 2, Fig. 15 shows the impact on transformer loading
with only feeder 1 modelled) for the Steer, Shift and Transform scenar-
os in 2030 and 2050 comparing generic ‘dumb’ EV charging with smart
V charging for combined heating and transport demand. In this figure,
hilst the optimisation is performed over the same two day period, the

esults are presented over a period that spans from 12:30 to 12:00 the
ollowing day to emphasise the impact of smart charging on the evening
eak and overnight (typically when it would be expected that the bulk
f charging would be carried out). The figure demonstrates that flexible
mart charging can be used to reduce peak demand in each of the PLEF
cenarios, both in 2030 and 2050.

For case study 3, Fig. 16 shows the impact on transformer loading
with only feeder 1 modelled) for the Steer, Shift and Transform sce-
arios in 2030 and 2050 comparing dumb charging with use of smart
15

harging that includes V2G. As before, electricity demand from both u
ransport and heating is considered. In the V2G scenarios, with the use
ase Agile price profiles, the evening peak loading as seen at the trans-
ormer is further reduced in all scenarios. The extent of this reduction
s accentuated in 2050, primarily as there are a greater number of EVs
onnected. Whilst the traditional evening peak is significantly reduced,
here is a substantial increase in overnight charging in each of the sce-
arios. This emphasises that although the V2G scenarios have an impact
hat exceeds that of the smart charging with respect to the traditional
vening peak demand reduction, the overnight demand increase from
harging is greater in comparison. This would be expected as the EVs
perating as V2G during the traditional evening peak would have a
educed capacity and thus require additional demand than in the smart
nly scenario to satisfy the charging constraints.

Ultimately, Fig. 16 shows the increase in the potential for EV
harging demand to act more flexibly under the more ambitious PLEF
cenarios. This results from the assets having a lower duty cycle, being
vailable more with a lower requirement for energy. Whilst under-used
rivate vehicles are a persistent symptom of modern transportation
ystems, their use as distributed electricity storage providers has the
otential to offer benefits to the wider energy system.

On the basis of the presented case studies, which considered a
ypical winter demand day, energy futures based on EDR policies
ere found to reduce evening transformer loading significantly. The

ransformer loading between 16:00 and 21:00 in 2050 was found to
educe on average by 11.55% and 16.10% for the Shift and Transform
cenarios relative to the Steer scenario. In addition to EDR based
olicies, introduction of flexible smart charging achieved reductions on
verage of 39.26% and 43.29% for the Shift and Transform scenarios
elative to the Steer scenario. The achievable reductions increased to
6.64% and 69.07% for the Shift and Transform scenarios relative to
he Steer scenario with the use of V2G (driven by the use case import
nd export Octopus Agile tariffs).

0. Discussion

The discussion presented in this section takes a wider contextual
iew of the presented findings and considers the broader implications.
he value of the developed methodology is also established with respect
o key actors that are actively involved in the energy transition.

0.1. Electricity system operators

The method presented in this work describes an approach that has
he ability to postulate what electric heating and EV charging demand
ould be for a particular local area under particular future scenarios.
he approach then has the capability to assess whether a particular
lectricity distribution network could accommodate those demands and
he extent to which optimal utilisation of smart charging can avoid or
efer network reinforcement. The findings emphasise that local level
hallenges will emerge as to when and where investment in infrastruc-
ure and management solutions should be focused, emphasising the
hallenge with both heat and transport electrification and the extent
hat this may impact existing infrastructure. This extends beyond use of
implistic network planning metrics such as ADMD – the highest point
f electricity consumption that is expected to occur after accounting
or consumer diversity – which looks at individual instances of peak
emand separately and therefore does not account for coincidence of
aximum demand peaks, potentially leading to an underestimation of

he actual network requirements during critical periods.
Areas with higher flexibility potential can be identified using the

resented method. However, to fully capitalise on this, several ques-
ions remain: how would the necessary flexibility actions for a par-
icular day be identified, and who would be responsible for carrying
hem out? Does the DSO have a role? Will this depend on household-
rs responding to price signals as modelled in this work (with some

ncertainty as to whether they will)? Or is there a role for a third
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Fig. 15. Impact on transformer loading with only feeder 1 modelled for Steer, Shift and Transform scenarios in 2030 (top) and 2050 (bottom) comparing smart charging with
dumb charging — both heating and transport demand.

Fig. 16. Impact on transformer loading with only feeder 1 modelled for Steer, Shift and Transform scenarios in 2030 (top) and 2050 (bottom) comparing V2G with dumb charging
— both heating and transport demand.
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party to do the work for energy users (using automation, i.e. adopting
technology as an enabler of behavioural change)? A challenge in the
case of using price signals, is that price signals articulated only at a
wholesale/national system level may fail to reflect the times at which
local network constraints arise.

The case study area described in this work has been used to demon-
strate the presented method’s high-resolution applicability at the ‘local’
level. However, it also must be recognised that this is a single local
area with one ground mounted secondary transformer. Therefore, it is
also important to acknowledge the wider implications in the context
of aggregated impacts at the national and sub-national level, i.e. as
seen by the transmission and wider distribution networks. The methods
presented for estimating future energy demand and the likely time
series of power demand are generally scalable for use at less granular
resolutions. The main challenge is around mapping this to detailed
network models. The network modelling methodology used is highly
transferable in that different LV networks for alternative case study
areas can be easily modelled. Simplifications such as use of a single
phase model and relaxation of constraints e.g. voltage or thermal can
be made to improve scalability.

10.2. National policymakers, regulators and local authorities

Local authorities have the potential to influence and guide locally-
specific decarbonisation pathways [91]. This requires high-level plan-
ning and a significant understanding of local requirements. It is also
recognised that the feasibility of interventions from such parties are
highly dependent on future network capability and headroom e.g.
works including [92], are recommending that local government should
have a statutory role in guiding the future development of local en-
ergy infrastructure, including investment decision-making. To do so
effectively, whilst also addressing social objectives, they require an
understanding of network capability and future flexibility potential
based on the unique characteristics of specific localities. They also
require a broader understanding of different types of emerging heating
technologies including heat networks (and for those heat networks to
access low carbon sources of heat, which might be large electric HPs)
and for use of low carbon hydrogen. This would allow for investment to
be optimised with better foresight of regional economic plans and local
area energy infrastructure. The method presented in this work can be
used to inform on the impacts of local development strategies and the
proposed interventions in this regard.

For policymakers the presented method can be used to inform
on the impacts of decision making in this space e.g. as evidenced
through the presented findings and analysis, the policy options and
narratives (described in detail in [34]) that underpin the modelled
future scenarios yield different network impacts at varying timescales.
As evidenced by the results in this paper (see in particular Fig. 14), EDR
policies have the potential to mitigate the need for reinforcement of
energy networks. This chimes with existing decarbonisation strategies
presented for the UK: for example, the CCC’s Sixth Carbon Budget
recommendation (2020) details varying pathways to reaching the 2050
Net Zero target [2]. The pathways are presented as a trade-off between
technological intervention and behaviour change; scenarios with more
onus on energy demand reduction (through reduced car use, reduced
meat consumption, etc.) require fewer engineering interventions (in-
cluding technologies that are as yet unproven at scale, including direct
air carbon capture).

Furthermore, policies aimed at enabling the use of smart function-
ality to unlock the flexibilities offered by electrified technologies is
likely to have significant impacts on networks. The findings evidence
that greater peak demand reductions can be achieved when these are
applied in combination with policies focused on consumer behavioural
17

aspects of demand reduction.
11. Conclusion & further work

This paper presents a methodology to translate narratives on energy
demand futures in heating and transport to impacts on distribution
networks. Previously developed low-energy future demand scenarios
are used to drive spatially explicit modelling of the uptake of electrified
transport and heating; and temporally explicit modelling of the electric-
ity demand of these technologies for local geography. The methodology
is demonstrated on a model of a real electricity distribution network
that serves households within the local geography and is used as the
basis to examine the impacts of the varying demand scenarios on key
network infrastructure. An OPF formulation that enables smart EV
charging and V2G also forms part of the methodology and is used to
investigate the impact of these future demand scenarios on the potential
of flexibility in electricity demand.

Electrification of heat and transport enables more efficient use of
primary energy than use of fossil fuels. However, as a consequence,
the electricity demand will significantly increase, challenging existing
electricity system infrastructure. On the basis of the reported findings,
we conclude that:

1. Energy demand futures with policies focused on EDR using the
Avoid-Shift-Improve framework [9] are shown to mitigate the
need for reinforcement of electricity networks. For the case study
considered a reduction in evening transformer loading of up to
16% can be achieved.

2. However, flexibility in electricity demand contributes a larger
difference to a network’s ability to host electrified heat and
transport than relying solely on EDR.

3. Energy futures that combine policies that pursue EDR and si-
multaneously enable electricity system flexibility present the
greatest benefits, both to the mitigation of reinforcement and
to system operability in the context of growing penetrations of
variable renewable generation. For the case studies considered
a reduction in evening transformer loading of up to 69% can be
achieved.

4. Despite these benefits, it has been shown that electricity demand
is still likely to increase significantly relative to the current
baseline. Therefore, widespread reinforcement of the electric-
ity system will still be necessary in the transition to net-zero
and, accordingly, urgent investment is required to support the
realisation of the UK’s legally-binding climate goals.

We recommend several pieces of further work based on this re-
search. Firstly, we recommend that the impact and role of flexible
heating demand in parallel with flexible transport demand be inves-
tigated. Secondly, as the assumptions used for future reductions in
heating demand in the CREDS PLEFs are relatively vague, this limited
the derivation of quantitative demand reduction values in this work.
Therefore, although plausible future reductions in heating demand are
used to capture improvements in building fabric and the evolution
of heating technologies. We recommend future research surrounding
derivation of future heating demand and the role of policies aimed at
demand reduction, and energy efficiency improvement. We note that
there are contradicting assumptions/evidence in the existing literature
in this respect. More broadly, there are further opportunities to explore
the impacts of changes in heating and domestic demand usage patterns
under different future demand scenarios with a need to explore whether
much greater sensitivity of demand to time of use tariffs might have
adverse effects due to the erosion of diversity. There is also scope to
conduct further research to account for different heating technologies

and the respective impacts on network infrastructure.
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